1
|
Minow MAA, Coneva V, Lesy V, Misyura M, Colasanti J. Plant gene silencing signals move from the phloem to influence gene expression in shoot apical meristems. BMC PLANT BIOLOGY 2022; 22:606. [PMID: 36550422 PMCID: PMC9783409 DOI: 10.1186/s12870-022-03998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Small RNAs (sRNA) are potent regulators of gene expression that can diffuse short distances between cells and move long distances through plant vasculature. However, the degree to which sRNA silencing signals can move from the phloem to the shoot apical meristem (SAM) remains unclear. RESULTS Two independent transgenic approaches were used to examine whether phloem sRNA silencing can reach different domains of the SAM and silence SAM-expressed genes. First, the phloem companion-cell specific SUCROSE-PROTON SYMPORTER2 (SUC2) promoter was used to drive expression of an inverted repeat to target the FD gene, an exclusively SAM-localized floral regulator. Second, the SUC2 promoter was used to express an artificial microRNA (aMiR) designed to target a synthetic CLAVATA3 (CLV3) transgene in SAM stem cells. Both phloem silencing signals phenocopied the loss of function of their targets and altered target gene expression suggesting that a phloem-to-SAM silencing communication axis exists, connecting distal regions of the plant to SAM stem cells. CONCLUSIONS Demonstration of phloem-to-SAM silencing reveals a regulatory link between somatic sRNA expressed in distal regions of the plant and the growing shoot. Since the SAM stem cells ultimately produce the gametes, we discuss the intriguing possibility that phloem-to-SAM sRNA trafficking could allow transient somatic sRNA expression to manifest stable, transgenerational epigenetic changes.
Collapse
Affiliation(s)
- Mark A. A. Minow
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Viktoriya Coneva
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Victoria Lesy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Max Misyura
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| |
Collapse
|
2
|
Abstract
Epigenetic changes influence gene expression and contribute to the modulation of biological processes in response to the environment. Transgenerational epigenetic changes in gene expression have been described in many eukaryotes. However, plants appear to have a stronger propensity for inheriting novel epialleles. This mini-review discusses how plant traits, such as meristematic growth, totipotency, and incomplete epigenetic erasure in gametes promote epiallele inheritance. Additionally, we highlight how plant biology may be inherently tailored to reap the benefits of epigenetic metastability. Importantly, environmentally triggered small RNA expression and subsequent epigenetic changes may allow immobile plants to adapt themselves, and possibly their progeny, to thrive in local environments. The change of epigenetic states through the passage of generations has ramifications for evolution in the natural and agricultural world. In populations containing little genetic diversity, such as elite crop germplasm or habitually self-reproducing species, epigenetics may provide an important source of heritable phenotypic variation. Basic understanding of the processes that direct epigenetic shifts in the genome may allow for breeding or bioengineering for improved plant traits that do not require changes to DNA sequence.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Liu H, Able AJ, Able JA. SMARTER De-Stressed Cereal Breeding. TRENDS IN PLANT SCIENCE 2016; 21:909-925. [PMID: 27514453 DOI: 10.1016/j.tplants.2016.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 05/06/2023]
Abstract
In cereal breeding programs, improved yield potential and stability are ultimate goals when developing new varieties. To facilitate achieving these goals, reproductive success under stressful growing conditions is of the highest priority. In recent times, small RNA (sRNA)-mediated pathways have been associated with the regulation of genes involved in stress adaptation and reproduction in both model plants and several cereals. Reproductive and physiological traits such as flowering time, reproductive branching, and root architecture can be manipulated by sRNA regulatory modules. We review sRNA-mediated pathways that could be exploited to expand crop diversity with adaptive traits and, in particular, the development of high-yielding stress-tolerant cereals: SMARTER cereal breeding through 'Small RNA-Mediated Adaptation of Reproductive Targets in Epigenetic Regulation'.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
4
|
Iwamoto M, Tagiri A. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:466-77. [PMID: 26729506 DOI: 10.1111/tpj.13117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Fertilizers are often potential environmental pollutants, therefore increasing productivity and the efficiency of nutrient uptake to boost crop yields without the risk of environmental pollution is a desirable goal. Here, we show that the transcription factor encoding gene RDD1 plays a role in improving the uptake and accumulation of various nutrient ions in rice. RDD1 was found to be targeted by the microRNA miR166. An RDD1 transgene driven by a strong constitutive promoter exhibited a diurnally oscillating expression similar to that of the endogenous RDD1, and nucleotide substitution within the miR166 recognition site to prevent miR166-RDD1 mRNA pairing resulted in constitutive RDD1 expression. The RDD1 protein was localized to vascular tissue because miR166 repressed RDD1 expression in the mesophyll. The overexpression of RDD1 induced the expression of genes associated with the transport of several nutrients such as NH4(+), Na(+), SO4(2-), Cl(-), PO4(3-) and sucrose, and the uptake and accumulation of various nutrient ions under low-nutrient conditions. Moreover, the overexpression of RDD1 increased nitrogen responsiveness and grain productivity. Our results suggest that RDD1 can contribute to the increased grain productivity of rice via inducing the efficient uptake and accumulation of various nutrient ions.
Collapse
Affiliation(s)
- Masao Iwamoto
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba Ibaraki, 305-8602, Japan
- JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akemi Tagiri
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba Ibaraki, 305-8602, Japan
| |
Collapse
|
5
|
Zhang ZJ. Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. PLANTA 2014; 239:1139-46. [PMID: 24643516 DOI: 10.1007/s00425-014-2054-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/05/2014] [Indexed: 05/25/2023]
Abstract
Completion of whole genome sequencing in many plant species including economically important crop species not only opens up new opportunities but also imposes challenges for plant science research community. Functional validation and utilization of these enormous DNA sequences necessitate new or improved tools with high accuracy and efficiency. Of various tools, small RNA-mediated gene silencing platform plays an important and unique role in functional verification of plant genes and trait improvements. Artificial trans-acting small interfering RNA (atasiRNA) has emerged as a potent and specific gene silencing platform which overcomes major limitations of other small RNA silencing approaches including double-stranded RNA, artificial microRNA (amiRNA), and microRNA-induced gene silencing. To best utilize atasiRNA platform, it is essential to be able to test candidate atasiRNAs efficiently through either in vivo or in vitro validation approach. Very recently, a breakthrough has been made in developing a new method for in vitro screen of amiRNA candidates, named "epitope-tagged protein-based amiRNA screens". Such a screen can be readily employed to validate atasiRNA candidates and thus accelerate the deployment of atasiRNA technology. Therefore, atasiRNA as an emerging tool shall accelerate both plant biology study and crop genetic improvements including trait stacking.
Collapse
Affiliation(s)
- Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA,
| |
Collapse
|
6
|
Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 113:439-46. [PMID: 23257323 DOI: 10.1016/j.pbiomolbio.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/29/2023]
Abstract
In trangenerational epigenetic inheritance, phenotypic information not encoded in DNA sequence is transmitted across generations. In germline-dependent mode, memory of environmental exposure in parental generation is transmitted through gametes, leading to appearance of phenotypes in the unexposed future generations. The memory is considered to be encoded in epigenetic factors like DNA methylation, histone modifications and regulatory RNAs. Environmental exposure may cause epigenetic modifications in the germline either directly or indirectly through primarily affecting the soma. The latter possibility is most intriguing because it contradicts the established dogma that hereditary information flows only from germline to soma, not in reverse. As such, identification of the factor(s) mediating soma to germline information transfer in transgenerational epigenetic inheritance would be pathbreaking. Regulatory RNAs and hormone have previously been implicated or proposed to play a role in soma to germline communication in epigenetic inheritance. This review examines the recent examples of gametogenic transgenerational inheritance in plants and animals in order to assess if evidence of regulatory RNAs and hormones as mediators of information transfer is supported. Overall, direct evidence for both mobile regulatory RNAs and hormones is found to exist in plants. In animals, although involvement of mobile RNAs seems imminent, direct evidence of RNA-mediated soma to germline information transfer in transgenerational epigenetic inheritance is yet to be obtained. Direct evidence is also lacking for hormones in animals. However, detailed examination of recently reported examples of transgenerational inheritance reveals circumstantial evidence supporting a role of hormones in information transmission.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi University Campus, Mall Road, Delhi 110007, India.
| |
Collapse
|
7
|
Lisch D. Regulation of transposable elements in maize. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:511-516. [PMID: 22824142 DOI: 10.1016/j.pbi.2012.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
Maize is a typical plant with respect to the proportion of its genome that is composed of transposable elements (TEs), but it is unusual in the number of well-characterized active TEs that it hosts. This has made it possible to examine in some detail the factors responsible for regulating the activity of these elements, particularly the means by which they are recognized and epigenetically silenced. That analysis has revealed that TE silencing is a complex process that involves careful distinctions of different developmental times and tissue types. The available evidence from maize and other species suggests that these distinctions are made in order to generate information in somatic tissues that can be used to induce or reinforce silencing in germinal tissues.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
8
|
Abstract
Rapid progress in our understanding of chromatin regulation has fueled considerable interest in epigenetic mechanisms governing the stable inheritance of chromatin states. Findings from several systems reveal small RNAs of the RNAi pathway as critical determinants of epigenetic gene silencing. Notably, recent investigations into the mechanisms of RNAi-mediated heterochromatin assembly in the fission yeast Schizosaccharomyces pombe have yielded new insights regarding the roles of RNAi in chromatin regulation and epigenetic inheritance.
Collapse
Affiliation(s)
- Hugh P Cam
- Boston College, Biology Department, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
9
|
Saze H. Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants. Genes Genet Syst 2012; 87:145-52. [DOI: 10.1266/ggs.87.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University
- PRESTO, Japan Science and Technology Agency (JST)
| |
Collapse
|
10
|
Lee EK, Cibrian-Jaramillo A, Kolokotronis SO, Katari MS, Stamatakis A, Ott M, Chiu JC, Little DP, Stevenson DW, McCombie WR, Martienssen RA, Coruzzi G, DeSalle R. A functional phylogenomic view of the seed plants. PLoS Genet 2011; 7:e1002411. [PMID: 22194700 PMCID: PMC3240601 DOI: 10.1371/journal.pgen.1002411] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/21/2011] [Indexed: 12/01/2022] Open
Abstract
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.
Collapse
Affiliation(s)
- Ernest K. Lee
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Angelica Cibrian-Jaramillo
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- Cullman Program in Molecular Systematics, The New York Botanical Garden, Bronx, New York, United States of America
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Sergios-Orestis Kolokotronis
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Manpreet S. Katari
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | | | - Michael Ott
- Department of Computer Science, Technische Universität München, Munich, Germany
| | - Joanna C. Chiu
- Department of Entomology, University of California Davis, Davis, California, United States of America
| | - Damon P. Little
- Cullman Program in Molecular Systematics, The New York Botanical Garden, Bronx, New York, United States of America
| | - Dennis Wm. Stevenson
- Cullman Program in Molecular Systematics, The New York Botanical Garden, Bronx, New York, United States of America
| | - W. Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Gloria Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
11
|
Creasey KM, Martienssen RA. Germline reprogramming of heterochromatin in plants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:269-74. [PMID: 21502413 DOI: 10.1101/sqb.2010.75.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterochromatin is composed of transposable elements (TEs) and other repeats and was once considered to be a wasteland of redundant genetic material and potentially harmful TE. Therefore, the reprogramming of heterochromatin and subsequent reactivation of TE in the immature seed and pollen is paradoxical in plants. Recent studies have shown that reactivation of TE occurs specifically in germline companion cells, the vegetative nucleus (VN) in pollen (Slotkin et al. 2009) and the endosperm in seed (Gehring et al. 2009). In the ovule, ARGONAUTE 9 (AGO9) not only has a role in silencing TE in the egg cell but also in preventing the formation of multiple asexual gametophytes (Olmedo-Monfil et al. 2010). We propose that reprogramming of heterochromatin in germline companion cells reveals TE in a controlled manner to expose them within the germline and, by the production of small interfering RNA (siRNA), ensures TE silencing in the next generation. We also propose that the mechanisms evolved to silence TE may actually promote sexual reproduction by inhibiting the formation of asexual gametes.
Collapse
Affiliation(s)
- K M Creasey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
12
|
Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD. MicroRNA activity in the Arabidopsis male germline. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1611-20. [PMID: 21357774 PMCID: PMC5536363 DOI: 10.1093/jxb/erq452] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 05/19/2023]
Abstract
Most of the core proteins involved in the microRNA (miRNA) pathway in plants have been identified, and almost simultaneously hundreds of miRNA sequences processed in the Arabidopsis sporophyte have been discovered by exploiting next-generation sequencing technologies. However, there is very limited understanding about potentially distinct mechanisms of post-transcriptional regulation between different cell lineages. In this review the focus is on the Arabidopsis male gametophyte (pollen), where the germline differentiates after meiosis giving rise to the male gametes. Based on comparative analysis of miRNAs identified in sperm cells by in-depth sequencing, their possible functions during germ cell specification and beyond fertilization are discussed. In addition, 25 potentially novel miRNAs processed in sperm cells and pollen were identified, as well as enriched variations in the sequence length of known miRNAs, which might indicate subfunctionalization by association with a putative germline-specific Argonaute complex. ARGONAUTE 5 (AGO5), by close homology to AGO1 and localizing preferentially to the sperm cell cytoplasm in mature pollen, may be part of such a complex.
Collapse
|
13
|
Abstract
The epigenomic regulation of chromatin structure and genome stability is essential for the interpretation of genetic information and ultimately the determination of phenotype. High-resolution maps of plant epigenomes have been obtained through a combination of chromatin technologies and genomic tiling microarrays and through high-throughput sequencing-based approaches. The transcriptomic activity of a plant at a certain stage of development is controlled by genome-wide combinatorial interactions of epigenetic modifications. Tissue- or environment-specific epigenomes are established during plant development. Epigenomic reprogramming triggered by the activation and movement of small RNAs is important for plant gametogenesis. Genome-wide loss of DNA methylation in the endosperm and the accompanying endosperm-specific gene expression during seed development provide a genomic insight into epigenetic regulation of gene imprinting in plants. Global changes of histone modifications during plant responses to different light environments play an important regulatory role in a sophisticated light-regulated transcriptional network. Epigenomic natural variation that developed during evolution is important for phenotypic diversity and can potentially contribute to the molecular mechanisms of complex biological phenomena such as heterosis in plants.
Collapse
Affiliation(s)
- Guangming He
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
14
|
Lisch D, Slotkin RK. Strategies for silencing and escape: the ancient struggle between transposable elements and their hosts. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:119-52. [PMID: 22078960 DOI: 10.1016/b978-0-12-386033-0.00003-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several years, there has been an explosion in our understanding of the mechanisms by which plant transposable elements (TEs) are epigenetically silenced and maintained in an inactive state over long periods of time. This highly efficient process results in vast numbers of inactive TEs; indeed, the majority of many plant genomes are composed of these quiescent elements. This observation has led to the rather static view that TEs represent an essentially inert portion of plant genomes. However, recent work has demonstrated that TE silencing is a highly dynamic process that often involves transcription of TEs at particular times and places during plant development. Plants appear to use transcripts from silenced TEs as an ongoing source of information concerning the mobile portion of the genome. In contrast to our understanding of silencing pathways, we know relatively little about the ways in which TEs evade silencing. However, vast differences in TE content between even closely related plant species suggest that they are often wildly successful at doing so. Here, we discuss TE activity in plants as the result of a constantly shifting balance between host strategies for TE silencing and TE strategies for escape and amplification.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | | |
Collapse
|