1
|
Liu J, Ilie R, Borovsky JE, Liemohn MW. A New Mechanism for Early-Time Plasmaspheric Refilling: The Role of Charge Exchange Reactions in the Transport of Energy and Mass Throughout the Ring Current-Plasmasphere System. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022; 127:e2022JA030619. [PMID: 36591319 PMCID: PMC9787766 DOI: 10.1029/2022ja030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Cold H+ produced via charge exchange reactions between ring current ions and exospheric neutral hydrogen constitutes an additional source of cold plasma that further contributes to the plasmasphere and affects the plasma dynamics in the Earth's magnetosphere system; however, its production and associated effects on the plasmasphere dynamics have not been fully assessed and quantified. In this study, we perform numerical simulations mimicking an idealized three-phase geomagnetic storm to investigate the role of heavy ion composition in the ring current (O+ vs. N+) and exospheric neutral hydrogen density in the production of cold H+ via charge exchange reactions. It is found that ring current heavy ions produce more than 50% of the total cold H+ via charge exchange reactions, and energetic N+ is more efficient in producing cold H+ via charge exchange reactions than O+. Furthermore, the density structure of the cold H+ is highly dependent on the mass of the parent ion; that is, cold H+ deriving from charge exchange reactions involving energetic O+ with neutral hydrogen, populates the lower L-shells, while cold H+ deriving from charge exchange reactions involving energetic N+ with neutral hydrogen populates the higher L-shells. In addition, the density of cold H+ produced via charge exchange reactions involving N+ can be peak at values up to one order of magnitude larger than the local plasmaspheric density, suggesting that solely considering the supply of cold plasma from the ionosphere to the plasmasphere can lead to a significant underestimation of plasmasphere density.
Collapse
Affiliation(s)
- Jianghuai Liu
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Raluca Ilie
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | | | - Michael W. Liemohn
- Department of Climate and Space Science and EngineeringUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
2
|
Kitamura N, Seki K, Keika K, Nishimura Y, Hori T, Hirahara M, Lund EJ, Kistler LM, Strangeway RJ. On the relationship between energy input to the ionosphere and the ion outflow flux under different solar zenith angles. EARTH, PLANETS, AND SPACE : EPS 2021; 73:202. [PMID: 34790028 PMCID: PMC8572202 DOI: 10.1186/s40623-021-01532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The ionosphere is one of the important sources for magnetospheric plasma, particularly for heavy ions with low charge states. We investigate the effect of solar illumination on the number flux of ion outflow using data obtained by the Fast Auroral SnapshoT (FAST) satellite at 3000-4150 km altitude from 7 January 1998 to 5 February 1999. We derive empirical formulas between energy inputs and outflowing ion number fluxes for various solar zenith angle ranges. We found that the outflowing ion number flux under sunlit conditions increases more steeply with increasing electron density in the loss cone or with increasing precipitating electron density (> 50 eV), compared to the ion flux under dark conditions. Under ionospheric dark conditions, weak electron precipitation can drive ion outflow with small averaged fluxes (~ 107 cm-2 s-1). The slopes of relations between the Poynting fluxes and outflowing ion number fluxes show no clear dependence on the solar zenith angle. Intense ion outflow events (> 108 cm-2 s-1) occur mostly under sunlit conditions (solar zenith angle < 90°). Thus, it is presumably difficult to drive intense ion outflows under dark conditions, because of a lack of the solar illumination (low ionospheric density and/or small scale height owing to low plasma temperature).
Collapse
Affiliation(s)
- Naritoshi Kitamura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kanako Seki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Keika
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yukitoshi Nishimura
- Department of Electrical and Computer Engineering and Center for Space Physics, Boston University, Boston, MA USA
| | - Tomoaki Hori
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masafumi Hirahara
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Eric J. Lund
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
- College Brook Scientific, Durham, NH USA
| | - Lynn M. Kistler
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
- Department of Physics, University of New Hampshire, Durham, NH USA
| | - Robert J. Strangeway
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA USA
| |
Collapse
|
3
|
Zhang B, Delamere PA, Yao Z, Bonfond B, Lin D, Sorathia KA, Brambles OJ, Lotko W, Garretson JS, Merkin VG, Grodent D, Dunn WR, Lyon JG. How Jupiter's unusual magnetospheric topology structures its aurora. SCIENCE ADVANCES 2021; 7:7/15/eabd1204. [PMID: 33837073 PMCID: PMC8034855 DOI: 10.1126/sciadv.abd1204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/22/2021] [Indexed: 05/24/2023]
Abstract
Jupiter's bright persistent polar aurora and Earth's dark polar region indicate that the planets' magnetospheric topologies are very different. High-resolution global simulations show that the reconnection rate at the interface between the interplanetary and jovian magnetic fields is too slow to generate a magnetically open, Earth-like polar cap on the time scale of planetary rotation, resulting in only a small crescent-shaped region of magnetic flux interconnected with the interplanetary magnetic field. Most of the jovian polar cap is threaded by helical magnetic flux that closes within the planetary interior, extends into the outer magnetosphere, and piles up near its dawnside flank where fast differential plasma rotation pulls the field lines sunward. This unusual magnetic topology provides new insights into Jupiter's distinctive auroral morphology.
Collapse
Affiliation(s)
- Binzheng Zhang
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Peter A Delamere
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Zhonghua Yao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bertrand Bonfond
- LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium
| | - D Lin
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Kareem A Sorathia
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - William Lotko
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jeff S Garretson
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - Denis Grodent
- LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium
| | - William R Dunn
- Mullard Space Science Laboratory, University College London, Dorking, UK
| | - John G Lyon
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
- Gamera Consulting, Hanover, NH, USA
| |
Collapse
|
4
|
Glocer A, Toth G, Fok MC. Including Kinetic Ion Effects in the Coupled Global Ionospheric Outflow Solution. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2018; 123:2851-2871. [PMID: 33510994 PMCID: PMC7839317 DOI: 10.1002/2018ja025241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a new expansion of the Polar Wind Outflow Model (PWOM) to include kinetic ions using the Particle-in-Cell (PIC) approach with Monte Carlo collisions. This implementation uses the original hydrodynamic solution at low altitudes for efficiency, and couples to the kinetic solution at higher altitudes to account for kinetic effects important for ionospheric outflow. The modeling approach also includes wave-particle interactions, suprathermal electrons, and an hybrid parallel computing approach combining shared and distributed memory paralellization. The resulting model is thus a comprehensive, global, model of ionospheric outflow that can be run efficiently on large supercomputing clusters. We demonstrate the model's capability to study a range of problems starting with the comparison of kinetic and hydrodynamic solutions along a single field line in the sunlit polar cap, and progressing to the altitude evolution of the ion conic distribution in the cusp region. The interplay between convection and the cusp on the global outflow solution is also examined. Finally, we demonstrate the impact of these new model features on the magnetosphere by presenting the first 2-way coupled ionospheric outflow-magnetosphere calculation including kinetic ion effects.
Collapse
Affiliation(s)
| | - G. Toth
- Climate and Space Sciences and Engineering, University of Michigan,Ann Arbor, MI, USA
| | | |
Collapse
|
5
|
Borovsky JE, Valdivia JA. The Earth's Magnetosphere: A Systems Science Overview and Assessment. SURVEYS IN GEOPHYSICS 2018; 39:817-859. [PMID: 30956375 PMCID: PMC6428226 DOI: 10.1007/s10712-018-9487-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/07/2018] [Indexed: 05/20/2023]
Abstract
A systems science examination of the Earth's fully interconnected dynamic magnetosphere is presented. Here the magnetospheric system (a.k.a. the magnetosphere-ionosphere-thermosphere system) is considered to be comprised of 14 interconnected subsystems, where each subsystem is a characteristic particle population: 12 of those particle populations are plasmas and two (the atmosphere and the hydrogen geocorona) are neutrals. For the magnetospheric system, an assessment is made of the applicability of several system descriptors, such as adaptive, nonlinear, dissipative, interdependent, open, irreversible, and complex. The 14 subsystems of the magnetospheric system are cataloged and described, and the various types of magnetospheric waves that couple the behaviors of the subsystems to each other are explained. This yields a roadmap of the connectivity of the magnetospheric system. Various forms of magnetospheric activity beyond geomagnetic activity are reviewed, and four examples of emergent phenomena in the Earth's magnetosphere are presented. Prior systems science investigations of the solar-wind-driven magnetospheric system are discussed: up to the present these investigations have not accounted for the full interconnectedness of the system. This overview and assessment of the Earth's magnetosphere hopes to facilitate (1) future global systems science studies that involve the entire interconnected magnetospheric system with its diverse time and spatial scales and (2) connections of magnetospheric systems science with the broader Earth systems science.
Collapse
Affiliation(s)
- Joseph E. Borovsky
- Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 USA
| | | |
Collapse
|
6
|
Welling DT, Barakat AR, Eccles JV, Schunk RW, Chappell CR. Coupling the Generalized Polar Wind Model to Global Magnetohydrodynamics. MAGNETOSPHERE-IONOSPHERE COUPLING IN THE SOLAR SYSTEM 2016. [DOI: 10.1002/9781119066880.ch14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel T. Welling
- Department of Climate and Space Sciences and Engineering; University of Michigan; Ann Arbor MI USA
| | - Abdallah R. Barakat
- Center for Atmospheric and Space Sciences; Utah State University; Logan UT USA
| | - J. Vincent Eccles
- Center for Atmospheric and Space Sciences; Utah State University; Logan UT USA
| | - R. W. Schunk
- Center for Atmospheric and Space Sciences; Utah State University; Logan UT USA
| | | |
Collapse
|
7
|
Ilie R, Liemohn MW, Toth G, Yu Ganushkina N, Daldorff LKS. Assessing the role of oxygen on ring current formation and evolution through numerical experiments. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2015; 120:4656-4668. [PMID: 26937329 PMCID: PMC4758612 DOI: 10.1002/2015ja021157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 06/05/2023]
Abstract
Low O+/H+ ratio produced stronger ring currentInclusion of physics-based ionospheric outflow leads to a reduction in the CPCPOxygen presence is linked to a nightside reconnection point closer to the Earth.
Collapse
Affiliation(s)
- R. Ilie
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - M. W. Liemohn
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - G. Toth
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - N. Yu Ganushkina
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
- Earth ObservationsFinnish Meteorological InstituteHelsinkiFinland
| | - L. K. S. Daldorff
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
Lotko W, Smith RH, Zhang B, Ouellette JE, Brambles OJ, Lyon JG. Space weather. Ionospheric control of magnetotail reconnection. Science 2014; 345:184-7. [PMID: 25013068 DOI: 10.1126/science.1252907] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail.
Collapse
Affiliation(s)
- William Lotko
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. Research Affiliate, High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA.
| | - Ryan H Smith
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Binzheng Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jeremy E Ouellette
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. Department of Computer and Information Systems, Vermont Technical College, Randolph Center, VT, USA
| | | | - John G Lyon
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
| |
Collapse
|