1
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
2
|
Perez-Boerema A, Engel BD, Wietrzynski W. Evolution of Thylakoid Structural Diversity. Annu Rev Cell Dev Biol 2024; 40:169-193. [PMID: 38950450 DOI: 10.1146/annurev-cellbio-120823-022747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.
Collapse
|
3
|
Mondal S, Pandey D, Singh SP. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14536. [PMID: 39323055 DOI: 10.1111/ppl.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.
Collapse
Affiliation(s)
- Soumila Mondal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepa Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shailendra P Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Zhang X, Xiao Y, You X, Sun S, Sui SF. In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy. Nat Commun 2024; 15:7201. [PMID: 39169020 PMCID: PMC11339077 DOI: 10.1038/s41467-024-51460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.
Collapse
Affiliation(s)
- Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yanan Xiao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Tomar RS, Niedzwiedzki DM, Liu H. Altered excitation energy transfer between phycobilisome and photosystems in the absence of ApcG, a small linker peptide, in Synechocystis sp. PCC 6803, a cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149049. [PMID: 38801856 DOI: 10.1016/j.bbabio.2024.149049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.
Collapse
Affiliation(s)
- Rupal Singh Tomar
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Haijun Liu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA.
| |
Collapse
|
6
|
Grettenberger CL, Abou‐Shanab R, Hamilton TL. Limiting factors in the operation of photosystems I and II in cyanobacteria. Microb Biotechnol 2024; 17:e14519. [PMID: 39101352 PMCID: PMC11298993 DOI: 10.1111/1751-7915.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024] Open
Abstract
Cyanobacteria are important targets for biotechnological applications due to their ability to grow in a wide variety of environments, rapid growth rates, and tractable genetic systems. They and their bioproducts can be used as bioplastics, biofertilizers, and in carbon capture and produce important secondary metabolites that can be used as pharmaceuticals. However, the photosynthetic process in cyanobacteria can be limited by a wide variety of environmental factors such as light intensity and wavelength, exposure to UV light, nutrient limitation, temperature, and salinity. Carefully considering these limitations, modifying the environment, and/or selecting cyanobacterial species will allow cyanobacteria to be used in biotechnological applications.
Collapse
Affiliation(s)
- Christen L. Grettenberger
- Department of Earth and Planetary SciencesUniversity of California DavisDavisCaliforniaUSA
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| | - Reda Abou‐Shanab
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Trinity L. Hamilton
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- The Biotechnology Institute, University of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
7
|
Zhang S, Si L, Su X, Zhao X, An X, Li M. Growth phase-dependent reorganization of cryptophyte photosystem I antennae. Commun Biol 2024; 7:560. [PMID: 38734819 PMCID: PMC11088674 DOI: 10.1038/s42003-024-06268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Photosynthetic cryptophytes are eukaryotic algae that utilize membrane-embedded chlorophyll a/c binding proteins (CACs) and lumen-localized phycobiliproteins (PBPs) as their light-harvesting antennae. Cryptophytes go through logarithmic and stationary growth phases, and may adjust their light-harvesting capability according to their particular growth state. How cryptophytes change the type/arrangement of the photosynthetic antenna proteins to regulate their light-harvesting remains unknown. Here we solve four structures of cryptophyte photosystem I (PSI) bound with CACs that show the rearrangement of CACs at different growth phases. We identify a cryptophyte-unique protein, PsaQ, which harbors two chlorophyll molecules. PsaQ specifically binds to the lumenal region of PSI during logarithmic growth phase and may assist the association of PBPs with photosystems and energy transfer from PBPs to photosystems.
Collapse
Affiliation(s)
- Shumeng Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Long Si
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Su
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuelin Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaomin An
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Beck WF. Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01095-5. [PMID: 38656684 DOI: 10.1007/s11120-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale. Tuning of the ground state conformations of the chromophores to manipulate their ICT character provides a natural photoregulatory mechanism, which would control the overall quantum yield of excitation energy transfer by turning on and off the delocalized character of the optical excitations.
Collapse
Affiliation(s)
- Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Stadnichuk IN, Krasilnikov PM. Relationship between non-photochemical quenching efficiency and the energy transfer rate from phycobilisomes to photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 159:177-189. [PMID: 37328680 DOI: 10.1007/s11120-023-01031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The chromophorylated PBLcm domain of the ApcE linker protein in the cyanobacterial phycobilisome (PBS) serves as a bottleneck for Förster resonance energy transfer (FRET) from the PBS to the antennal chlorophyll of photosystem II (PS II) and as a redirection point for energy distribution to the orange protein ketocarotenoid (OCP), which is excitonically coupled to the PBLcm chromophore in the process of non-photochemical quenching (NPQ) under high light conditions. The involvement of PBLcm in the quenching process was first directly demonstrated by measuring steady-state fluorescence spectra of cyanobacterial cells at different stages of NPQ development. The time required to transfer energy from the PBLcm to the OCP is several times shorter than the time it takes to transfer energy from the PBLcm to the PS II, ensuring quenching efficiency. The data obtained provide an explanation for the different rates of PBS quenching in vivo and in vitro according to the half ratio of OCP/PBS in the cyanobacterial cell, which is tens of times lower than that realized for an effective NPQ process in solution.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya 35, 127726, Moscow, Russia.
| | - Pavel M Krasilnikov
- Biological Faculty of M.V., Lomonosov State University, Lenin Hills 12, 119991, Moscow, Russia
| |
Collapse
|
10
|
Ueno Y, Akimoto S. Long-term light adaptation of light-harvesting and energy-transfer processes in the glaucophyte Cyanophora paradoxa under different light conditions. PHOTOSYNTHESIS RESEARCH 2024; 159:165-175. [PMID: 37233900 DOI: 10.1007/s11120-023-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
In response to fluctuation in light intensity and quality, oxygenic photosynthetic organisms modify their light-harvesting and excitation energy-transfer processes to maintain optimal photosynthetic activity. Glaucophytes, which are a group of primary symbiotic algae, possess light-harvesting antennas called phycobilisomes (PBSs) consistent with cyanobacteria and red algae. However, compared with cyanobacteria and red algae, glaucophytes are poorly studied and there are few reports on the regulation of photosynthesis in the group. In this study, we examined the long-term light adaptation of light-harvesting functions in a glaucophyte, Cyanophora paradoxa, grown under different light conditions. Compared with cells grown under white light, the relative number of PBSs to photosystems (PSs) increased in blue-light-grown cells and decreased in green-, yellow-, and red-light-grown cells. Moreover, the PBS number increased with increment in the monochromatic light intensity. More energy was transferred from PBSs to PSII than to PSI under blue light, whereas energy transfer from PBSs to PSII was reduced under green and yellow lights, and energy transfer from the PBSs to both PSs decreased under red light. Decoupling of PBSs was induced by intense green, yellow, and red lights. Energy transfer from PSII to PSI (spillover) was observed, but the contribution of the spillover did not distinctly change depending on the culture light intensity and quality. These results suggest that the glaucophyte C. paradoxa modifies the light-harvesting abilities of both PSs and excitation energy-transfer processes between the light-harvesting antennas and both PSs during long-term light adaption.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
- Institute of Arts and Science, Tokyo University of Science, Tokyo, 162-8601, Japan.
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
11
|
Espinoza-Corral R, Iwai M, Zavřel T, Lechno-Yossef S, Sutter M, Červený J, Niyogi KK, Kerfeld CA. Phycobilisome protein ApcG interacts with PSII and regulates energy transfer in Synechocystis. PLANT PHYSIOLOGY 2024; 194:1383-1396. [PMID: 37972281 PMCID: PMC10904348 DOI: 10.1093/plphys/kiad615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Drásov 470, CZ-66424 Drásov, Czech Republic
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Drásov 470, CZ-66424 Drásov, Czech Republic
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Gisriel CJ, Shen G, Brudvig GW, Bryant DA. Structure of the antenna complex expressed during far-red light photoacclimation in Synechococcus sp. PCC 7335. J Biol Chem 2024; 300:105590. [PMID: 38141759 PMCID: PMC10810746 DOI: 10.1016/j.jbc.2023.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023] Open
Abstract
Far-red light photoacclimation, or FaRLiP, is a facultative response exhibited by some cyanobacteria that allows them to absorb and utilize lower energy light (700-800 nm) than the wavelengths typically used for oxygenic photosynthesis (400-700 nm). During this process, three essential components of the photosynthetic apparatus are altered: photosystem I, photosystem II, and the phycobilisome. In all three cases, at least some of the chromophores found in these pigment-protein complexes are replaced by chromophores that have red-shifted absorbance relative to the analogous complexes produced in visible light. Recent structural and spectroscopic studies have elucidated important features of the two photosystems when altered to absorb and utilize far-red light, but much less is understood about the modified phycobiliproteins made during FaRLiP. We used single-particle, cryo-EM to determine the molecular structure of a phycobiliprotein core complex comprising allophycocyanin variants that absorb far-red light during FaRLiP in the marine cyanobacterium Synechococcus sp. PCC 7335. The structure reveals the arrangement of the numerous red-shifted allophycocyanin variants and the probable locations of the chromophores that serve as the terminal emitters in this complex. It also suggests how energy is transferred to the photosystem II complexes produced during FaRLiP. The structure additionally allows comparisons with other previously studied allophycocyanins to gain insights into how phycocyanobilin chromophores can be tuned to absorb far-red light. These studies provide new insights into how far-red light is harvested and utilized during FaRLiP, a widespread cyanobacterial photoacclimation mechanism.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
13
|
Akhtar P, Balog-Vig F, Han W, Li X, Han G, Shen JR, Lambrev PH. Quantifying the Energy Spillover between Photosystems II and I in Cyanobacterial Thylakoid Membranes and Cells. PLANT & CELL PHYSIOLOGY 2024; 65:95-106. [PMID: 37874689 DOI: 10.1093/pcp/pcad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
The spatial separation of photosystems I and II (PSI and PSII) is thought to be essential for efficient photosynthesis by maintaining a balanced flow of excitation energy between them. Unlike the thylakoid membranes of plant chloroplasts, cyanobacterial thylakoids do not form tightly appressed grana stacks that enforce strict lateral separation. The coexistence of the two photosystems provides a ground for spillover-excitation energy transfer from PSII to PSI. Spillover has been considered as a pathway of energy transfer from the phycobilisomes to PSI and may also play a role in state transitions as means to avoid overexcitation of PSII. Here, we demonstrate a significant degree of energy spillover from PSII to PSI in reconstituted membranes and isolated thylakoid membranes of Thermosynechococcus (Thermostichus) vulcanus and Synechocystis sp. PCC 6803 by steady-state and time-resolved fluorescence spectroscopy. The quantum yield of spillover in these systems was determined to be up to 40%. Spillover was also found in intact cells but to a considerably lower degree (20%) than in isolated thylakoid membranes. The findings support a model of coexistence of laterally separated microdomains of PSI and PSII in the cyanobacterial cells as well as domains where the two photosystems are energetically connected. The methodology presented here can be applied to probe spillover in other photosynthetic organisms.
Collapse
Affiliation(s)
- Parveen Akhtar
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Fanny Balog-Vig
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530 Japan
| | - Petar H Lambrev
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
14
|
Biswas A, Akhtar P, Lambrev PH, van Stokkum IH. Energy transfer from phycobilisomes to photosystem I at room temperature. FRONTIERS IN PLANT SCIENCE 2024; 14:1300532. [PMID: 38259910 PMCID: PMC10800844 DOI: 10.3389/fpls.2023.1300532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
The phycobilisomes function as the primary light-harvesting antennae in cyanobacteria and red algae, effectively harvesting and transferring excitation energy to both photosystems. Here we investigate the direct energy transfer route from the phycobilisomes to photosystem I at room temperature in a mutant of the cyanobacterium Synechocystis sp. PCC 6803 that lacks photosystem II. The excitation dynamics are studied by picosecond time-resolved fluorescence measurements in combination with global and target analysis. Global analysis revealed several fast equilibration time scales and a decay of the equilibrated system with a time constant of ≈220 ps. From simultaneous target analysis of measurements with two different excitations of 400 nm (chlorophyll a) and 580 nm (phycobilisomes) a transfer rate of 42 ns-1 from the terminal emitter of the phycobilisome to photosystem I was estimated.
Collapse
Affiliation(s)
- Avratanu Biswas
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Insitute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Parveen Akhtar
- Insitute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Petar H. Lambrev
- Insitute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ivo H.M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Yokono M, Noda C, Minagawa J. Spillover in the direct-type PSI-PSII megacomplex isolated from Arabidopsis thaliana is regulated by pH. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149012. [PMID: 37704004 DOI: 10.1016/j.bbabio.2023.149012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
Various megacomplexes in which Photosystem I and Photosystem II are physically bound (PSI-PSII m.c.) have been found in many organisms. In terms of function, these can be divided into two groups: those in which PSII and PSI are closely coupled (direct-type, photoprotection), and those in which a large light-harvesting antenna is placed between PSII and PSI (bridged-type, energy sharing). Arabidopsis thaliana has been reported to use the direct-type, where fast energy transfer occurs from PSII to PSI (~20 ps, fast spillover). In this paper, we show that the fast spillover is reversibly regulated depending on pH.
Collapse
Affiliation(s)
- Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Basic Biology Program, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
| | - Chiyo Noda
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Basic Biology Program, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
16
|
Liu R, Zhen ZH, Li W, Ge B, Qin S. How can Phycobilisome, the unique light harvesting system in certain algae working highly efficiently: The connection in between structures and functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:39-52. [PMID: 38030044 DOI: 10.1016/j.pbiomolbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria, red algae, and certain cryptomonads, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.
Collapse
Affiliation(s)
- Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Zhang-He Zhen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Baosheng Ge
- China University of Petroleum (HUADONG), Qingdao, Shandong, 266580, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
17
|
Ko JT, Li YY, Chen PY, Liu PY, Ho MY. Use of 16S rRNA gene sequences to identify cyanobacteria that can grow in far-red light. Mol Ecol Resour 2024; 24:e13871. [PMID: 37772760 DOI: 10.1111/1755-0998.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Although most cyanobacteria use visible light (VL; λ = 400-700 nm) for photosynthesis, some have evolved strategies to use far-red light (FRL; λ = 700-800 nm). These cyanobacteria are defined as far-red light-utilizing cyanobacteria (FRLCyano), including two groups: (1) chlorophyll d-producing Acaryochloris spp. and (2) polyphyletic cyanobacteria that produce chlorophylls d and f in response to FRL. Numerous ecological studies examine pigments, such as chlorophylls d and f, to investigate the presence of FRLCyano in the environment. This method is not ideal because it can only detect FRLCyano that have made chlorophylls d or f. Here we develop a new method, far-red cyanobacteria identification (FRCI), to identify FRLCyano based on 16S rRNA gene sequences. From public databases and published articles, 62 16S rRNA gene sequences of FRLCyano were extracted. Comparing with related lineages, we determined that 97% sequence identity is the optimal cut-off for distinguishing FRLCyano from other cyanobacteria. To test the method experimentally, we collected samples from 17 sites in Taipei, Taiwan, and conducted VL and FRL enrichments. Our results demonstrate that FRCI can detect FRLCyano during FRL enrichments more sensitively than pigment analysis. FRCI can also resolve the composition of FRLCyano at the genus level, which pigment analysis cannot do. In addition, we applied FRCI to published datasets and discovered putative FRLCyano in diverse environments, including soils, hot springs and deserts. Overall, our results indicate that FRCI is a sensitive and high-resolution method using 16S rRNA gene sequences to identify FRLCyano.
Collapse
Affiliation(s)
- Jui-Tse Ko
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Yang Li
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pa-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Zlenko DV, Protasova EA, Tsoraev GV, Sluchanko NN, Cherepanov DA, Friedrich T, Ge B, Qin S, Maksimov EG, Rubin AB. Anti-stokes fluorescence of phycobilisome and its complex with the orange carotenoid protein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149014. [PMID: 37739300 DOI: 10.1016/j.bbabio.2023.149014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Phycobilisomes (PBSs) are giant water-soluble light-harvesting complexes of cyanobacteria and red algae, consisting of hundreds of phycobiliproteins precisely organized to deliver the energy of absorbed light to chlorophyll chromophores of the photosynthetic electron-transport chain. Quenching the excess of excitation energy is necessary for the photoprotection of photosynthetic apparatus. In cyanobacteria, quenching of PBS excitation is provided by the Orange Carotenoid Protein (OCP), which is activated under high light conditions. In this work, we describe parameters of anti-Stokes fluorescence of cyanobacterial PBSs in quenched and unquenched states. We compare the fluorescence readout from entire phycobilisomes and their fragments. The obtained results revealed the heterogeneity of conformations of chromophores in isolated phycobiliproteins, while such heterogeneity was not observed in the entire PBS. Under excitation by low-energy quanta, we did not detect a significant uphill energy transfer from the core to the peripheral rods of PBS, while the one from the terminal emitters to the bulk allophycocyanin chromophores is highly probable. We show that this direction of energy migration does not eliminate fluorescence quenching in the complex with OCP. Thus, long-wave excitation provides new insights into the pathways of energy conversion in the phycobilisome.
Collapse
Affiliation(s)
- Dmitry V Zlenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Elena A Protasova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Georgy V Tsoraev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russia.; A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, D-10623 Berlin, Germany
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China
| | - Song Qin
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Eugene G Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Andrew B Rubin
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
19
|
Jiang HW, Wu HY, Wang CH, Yang CH, Ko JT, Ho HC, Tsai MD, Bryant DA, Li FW, Ho MC, Ho MY. A structure of the relict phycobilisome from a thylakoid-free cyanobacterium. Nat Commun 2023; 14:8009. [PMID: 38049400 PMCID: PMC10696076 DOI: 10.1038/s41467-023-43646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Phycobilisomes (PBS) are antenna megacomplexes that transfer energy to photosystems II and I in thylakoids. PBS likely evolved from a basic, inefficient form into the predominant hemidiscoidal shape with radiating peripheral rods. However, it has been challenging to test this hypothesis because ancestral species are generally inaccessible. Here we use spectroscopy and cryo-electron microscopy to reveal a structure of a "paddle-shaped" PBS from a thylakoid-free cyanobacterium that likely retains ancestral traits. This PBS lacks rods and specialized ApcD and ApcF subunits, indicating relict characteristics. Other features include linkers connecting two chains of five phycocyanin hexamers (CpcN) and two core subdomains (ApcH), resulting in a paddle-shaped configuration. Energy transfer calculations demonstrate that chains are less efficient than rods. These features may nevertheless have increased light absorption by elongating PBS before multilayered thylakoids with hemidiscoidal PBS evolved. Our results provide insights into the evolution and diversification of light-harvesting strategies before the origin of thylakoids.
Collapse
Affiliation(s)
- Han-Wei Jiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Tse Ko
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan.
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Balaga RR, Itoh F, Chauhan S, Mandal M, Krishna PS, Suzuki I, Prakash JSS. Sll1252 Coordinates Electron Transport between Plastoquinone and Cytochrome b6/f Complex in Synechocystis PCC 6803. Genes (Basel) 2023; 14:2151. [PMID: 38136973 PMCID: PMC10743179 DOI: 10.3390/genes14122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.
Collapse
Affiliation(s)
- Radha Rani Balaga
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Fumihiro Itoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Suraj Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Mukulika Mandal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Pilla Sankara Krishna
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Jogadhenu S. S. Prakash
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| |
Collapse
|
21
|
van Stokkum IHM, Akhtar P, Biswas A, Lambrev PH. Energy transfer from phycobilisomes to photosystem I at 77 K. FRONTIERS IN PLANT SCIENCE 2023; 14:1293813. [PMID: 38078099 PMCID: PMC10702739 DOI: 10.3389/fpls.2023.1293813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/01/2023] [Indexed: 04/14/2024]
Abstract
Phycobilisomes serve as a light-harvesting antenna of both photosystem I (PSI) and II (PSII) in cyanobacteria, yet direct energy transfer from phycobilisomes to PSI is not well documented. Here we recorded picosecond time-resolved fluorescence at wavelengths of 605-760 nm in isolated photosystem I (PSI), phycobilisomes and intact cells of a PSII-deficient mutant of Synechocystis sp. PCC 6803 at 77 K to study excitation energy transfer and trapping. By means of a simultaneous target analysis of the kinetics of isolated complexes and whole cells, the pathways and dynamics of energy transfer in vitro and in vivo were established. We establish that the timescale of the slowest equilibration between different terminal emitters in the phycobilisome is ≈800 ps. It was estimated that the terminal emitter in about 40% of the phycobilisomes transfers its energy with a rate constant of 42 ns-1 to PSI. This energy transfer rate is higher than the rates of equilibration within the phycobilisome - between the rods and the core or between the core cylinders - and is evidence for the existence of specific phycobilisome-PSI interactions. The rest of the phycobilisomes remain unconnected or slowly transferring energy to PSI.
Collapse
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Parveen Akhtar
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Avratanu Biswas
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Petar H. Lambrev
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
22
|
Shimizu S, Ogawa H, Tsuboshita N, Suzuki T, Kato K, Nakajima Y, Dohmae N, Shen JR, Nagao R. Tight association of CpcL with photosystem I in Anabaena sp. PCC 7120 grown under iron-deficient conditions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148993. [PMID: 37321385 DOI: 10.1016/j.bbabio.2023.148993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Phycobilisomes (PBSs), which are huge pigment-protein complexes displaying distinctive color variations, bind to photosystem cores for excitation-energy transfer. It is known that isolation of supercomplexes consisting of PBSs and photosystem I (PSI) or PBSs and photosystem II is challenging due to weak interactions between PBSs and the photosystem cores. In this study, we succeeded in purifying PSI-monomer-PBS and PSI-dimer-PBS supercomplexes from the cyanobacterium Anabaena sp. PCC 7120 grown under iron-deficient conditions by anion-exchange chromatography, followed by trehalose density gradient centrifugation. The absorption spectra of the two types of supercomplexes showed apparent bands originating from PBSs, and their fluorescence-emission spectra exhibited characteristic peaks of PBSs. Two-dimensional blue-native (BN)/SDS-PAGE of the two samples showed a band of CpcL, which is a linker protein of PBS, in addition to PsaA/B. Since interactions of PBSs with PSI are easily dissociated during BN-PAGE using thylakoids from this cyanobacterium grown under iron-replete conditions, it is suggested that iron deficiency for Anabaena induces tight association of CpcL with PSI, resulting in the formation of PSI-monomer-PBS and PSI-dimer-PBS supercomplexes. Based on these findings, we discuss interactions of PBSs with PSI in Anabaena.
Collapse
Affiliation(s)
- Shota Shimizu
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
23
|
van Stokkum IHM, Weißenborn J, Weigand S, Snellenburg JJ. Pyglotaran: a lego-like Python framework for global and target analysis of time-resolved spectra. Photochem Photobiol Sci 2023; 22:2413-2431. [PMID: 37523126 DOI: 10.1007/s43630-023-00460-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
The dynamics of molecular systems can be studied with time-resolved spectroscopy combined with model-based analysis. A Python framework for global and target analysis of time-resolved spectra is introduced with the help of three case studies. The first study, concerning broadband absorption of intersystem crossing in 4-thiothymidine, demonstrates the framework's ability to resolve vibrational wavepackets with a time resolution of ≈10 fs using damped oscillations and their associated spectra and phases. Thereby, a parametric description of the "coherent artifact" is crucial. The second study addresses multichromophoric systems composed of two perylene bisimide chromophores. Here, pyglotaran's guidance spectra and lego-like model composition enable the integration of spectral and kinetic properties of the parent chromophores, revealing a loss process, the undesired production of a radical pair, that reduces the light harvesting efficiency. In the third, time-resolved emission case study of whole photosynthetic cells, a megacomplex containing ≈500 chromophores of five different types is described by a combination of the kinetic models for its elements. As direct fitting of the data by theoretical simulation is unfeasible, our global and target analysis methodology provides a useful 'middle ground' where the theoretical description and the fit of the experimental data can meet. The pyglotaran framework enables the lego-like creation of kinetic models through its modular design and seamless integration with the rich Python ecosystem, particularly Jupyter notebooks. With extensive documentation and a robust validation framework, pyglotaran ensures accessibility and reliability for researchers, serving as an invaluable tool for understanding complex molecular systems.
Collapse
Affiliation(s)
- Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Sebastian Weigand
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Joris J Snellenburg
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Ifuku K. Diversity of the PSI-PSII Megacomplexes That Conduct Energy Spillover in Green Plants. PLANT & CELL PHYSIOLOGY 2023; 64:844-846. [PMID: 37384582 DOI: 10.1093/pcp/pcad069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
25
|
Kirsch ZJ, Blake JM, Huynh U, Agrohia DK, Tremblay CY, Graban EM, Vaughan RC, Vachet RW. Membrane Protein Binding Interactions Studied in Live Cells via Diethylpyrocarbonate Covalent Labeling Mass Spectrometry. Anal Chem 2023; 95:7178-7185. [PMID: 37102678 PMCID: PMC10350911 DOI: 10.1021/acs.analchem.2c05616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Membrane proteins are vital in the human proteome for their cellular functions and make up a majority of drug targets in the U.S. However, characterizing their higher-order structures and interactions remains challenging. Most often membrane proteins are studied in artificial membranes, but such artificial systems do not fully account for the diversity of components present in cell membranes. In this study, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling mass spectrometry can provide binding site information for membrane proteins in living cells using membrane-bound tumor necrosis factor α (mTNFα) as a model system. Using three therapeutic monoclonal antibodies that bind TNFα, our results show that residues that are buried in the epitope upon antibody binding generally decrease in DEPC labeling extent. Additionally, serine, threonine, and tyrosine residues on the periphery of the epitope increase in labeling upon antibody binding because of a more hydrophobic microenvironment that is created. We also observe changes in labeling away from the epitope, indicating changes to the packing of the mTNFα homotrimer, compaction of the mTNFα trimer against the cell membrane, and/or previously uncharacterized allosteric changes upon antibody binding. Overall, DEPC-based covalent labeling mass spectrometry offers an effective means of characterizing structure and interactions of membrane proteins in living cells.
Collapse
Affiliation(s)
- Zachary J. Kirsch
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jeanna M. Blake
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Uyen Huynh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Catherine Y. Tremblay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Eric M. Graban
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Robert C. Vaughan
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
26
|
Shimakawa G. Electron transport in cyanobacterial thylakoid membranes: Are cyanobacteria simple models for photosynthetic organisms? JOURNAL OF EXPERIMENTAL BOTANY 2023:erad118. [PMID: 37025010 DOI: 10.1093/jxb/erad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cyanobacteria are structurally the simplest oxygenic phototrophs, which makes it difficult to understand the regulation of photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aimed to summarise the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation has the dominant electron flux in the thylakoid membranes. The capacity of O2 photoreduction in cyanobacteria is comparable to the photosynthetic CO2 assimilation, which is mediated by flavodiiron proteins. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as the part of cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transports through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transports are recently being understood one by one, the complexity as the whole regulatory system remains to be uncovered in near future.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
27
|
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature 2023; 616:199-206. [PMID: 36922595 DOI: 10.1038/s41586-023-05831-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.
Collapse
Affiliation(s)
- Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xiao
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
28
|
Gisriel CJ, Elias E, Shen G, Soulier NT, Flesher DA, Gunner MR, Brudvig GW, Croce R, Bryant DA. Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium. SCIENCE ADVANCES 2023; 9:eadg0251. [PMID: 36961897 PMCID: PMC10038336 DOI: 10.1126/sciadv.adg0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
To compete in certain low-light environments, some cyanobacteria express a paralog of the light-harvesting phycobiliprotein, allophycocyanin (AP), that strongly absorbs far-red light (FRL). Using cryo-electron microscopy and time-resolved absorption spectroscopy, we reveal the structure-function relationship of this FRL-absorbing AP complex (FRL-AP) that is expressed during acclimation to low light and that likely associates with chlorophyll a-containing photosystem I. FRL-AP assembles as helical nanotubes rather than typical toroids due to alterations of the domain geometry within each subunit. Spectroscopic characterization suggests that FRL-AP nanotubes are somewhat inefficient antenna; however, the enhanced ability to harvest FRL when visible light is severely attenuated represents a beneficial trade-off. The results expand the known diversity of light-harvesting proteins in nature and exemplify how biological plasticity is achieved by balancing resource accessibility with efficiency.
Collapse
Affiliation(s)
| | - Eduard Elias
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan T. Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - M. R. Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Roberta Croce
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
29
|
Liu H. Cyanobacterial Phycobilisome Allostery as Revealed by Quantitative Mass Spectrometry. Biochemistry 2023; 62:1307-1320. [PMID: 36943676 DOI: 10.1021/acs.biochem.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Phycobilisomes (PBSs) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. PBS, a multisubunit protein complex, has two major interfaces that comprise intrinsically disordered regions (IDRs): rod-core and core-membrane. IDRs do not form regular, three-dimensional structures on their own. Their presence in the photosynthetic pigment-protein complexes portends their structural and functional importance. A recent model suggests that PB-loop, an IDR located on the PBS subunit ApcE and C-terminal extension (CTE) of the PBS subunit ApcG, forms a structural protrusion on the PBS core-membrane side, facing the thylakoid membrane. Here, the structural synergy between the rod-core region and the core-membrane region was investigated using quantitative mass spectrometry (MS). The AlphaFold-predicted CpcG-CTE structure was first modeled onto the PBS rod-core region, guided and justified by the isotopically encoded structural MS data. Quantitative cross-linking MS analysis revealed that the structural proximity of the PB-loop in ApcE and ApcG-CTE is significantly disturbed in the absence of six PBS rods, which are attached to PBS via CpcG-CTE, indicative of drastic conformational changes and decreased structural integrity. These results suggest that CpcG-rod attachment on the PBS rod-core side is essentially required for the PBS core-membrane structural assembly. The hypothesized long-range synergy between the rod-core interface (where the orange carotenoid protein also functions) and the terminal energy emitter of PBS must have important regulatory roles in PBS core assembly, light-harvesting, and excitation energy transmission. These data also lend strategies that genetic truncation of the light-harvesting antennas aimed for improved photosynthetic productivity must rely on an in-depth understanding of their global structural integrity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
30
|
Peña-Medina RL, Fimbres-Olivarría D, Enríquez-Ocaña LF, Martínez-Córdova LR, Del-Toro-Sánchez CL, López-Elías JA, González-Vega RI. Erythroprotective Potential of Phycobiliproteins Extracted from Porphyridium cruentum. Metabolites 2023; 13:metabo13030366. [PMID: 36984806 PMCID: PMC10057957 DOI: 10.3390/metabo13030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
There are multiple associations between the different blood groups (ABO and RhD) and the incidence of oxidative stress-related diseases, such as certain carcinomas and COVID-19. Bioactive compounds represent an alternative to its prevention and treatment. Phycobiliproteins (PBP) are bioactive compounds present in the microalga Porphyridium cruentum and, despite its antioxidant activity, their inhibitory effect on hemolysis has not been reported. The aim of this work was to evaluate the erythroprotective potential of phycobiliproteins from P. cruentum in different blood groups. The microalga was cultured in F/2 medium under controlled laboratory conditions. Day 10 of culture was determined as the harvest point. The microalgal biomass was lyophilized and a methanolic (MetOH), Tris HCl (T-HCl), and a physiological solution (PS) ultrasound-assisted extraction were performed. Extract pigments were quantified by spectrophotometry. The antioxidant activity of the extracts was evaluated with the ABTS+•, DPPH•, and FRAP methods, finding that the main antioxidant mechanism on the aqueous extracts was HAT (hydrogen atom transfer), while for MetOH it was SET (single electron transfer). The results of the AAPH, hypotonicity, and heat-induced hemolysis revealed a probable relationship between the different antigens (ABO and RhD) with the antihemolytic effect, highlighting the importance of bio-directed drugs.
Collapse
Affiliation(s)
- Rubria Lucía Peña-Medina
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Diana Fimbres-Olivarría
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| | - Luis Fernando Enríquez-Ocaña
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Luis Rafael Martínez-Córdova
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - José Antonio López-Elías
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Ricardo Iván González-Vega
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| |
Collapse
|
31
|
Watanabe M, Ikeuchi M, Wilde A. The organization of the phycobilisome-photosystem I supercomplex depends on the ratio between two different phycobilisome linker proteins. Photochem Photobiol Sci 2023:10.1007/s43630-023-00397-2. [PMID: 36859522 DOI: 10.1007/s43630-023-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
The phycobilisome (PBS) is an antenna protein complex in cyanobacteria, Glaucocystophytes, and red algae. In the standard PBS, the rod-core PBS, the rods are connected to the core by the rod-core linker protein CpcG. The rod-core PBS transfers the light energy mainly to photosystem (PS) II and to a lesser extent to PSI. Cyanobacteria assemble another type of PBS, the CpcL-PBS, which consists of only one rod. This rod-type PBS is connected to the thylakoid membrane by the linker protein CpcL and is a PSI-specific antenna. In the filamentous heterocyst-forming cyanobacterium Anabaena (Nostoc) sp. PCC 7120, the CpcL-PBS forms a complex with the tetrameric PSI (PBS-PSI supercomplex). The CpcL-PBS and the rod part of the rod-core PBS are identical except for the linker proteins CpcL and CpcG. How cells control the accumulation of the two different types of PBS is unknown. Here, we analyzed two mutant strains which either lack the major rod-core linker CpcG4 or overexpress the rod-membrane linker CpcL. In both mutant strains, more and larger PBS-PSI supercomplexes accumulated compared to the wild type. Our results suggest that CpcL and CpcG4 compete for the same phycobiliprotein pool, and therefore the CpcL/CpcG4 ratio determines the levels of PBS-PSI supercomplexes. We propose that the CpcL-PBS and the rod-core PBS fulfill distinct functions in light harvesting.
Collapse
Affiliation(s)
- Mai Watanabe
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany. .,Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan. .,Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
32
|
Pan X, Tran T, Kirsch ZJ, Thompson LK, Vachet RW. Diethylpyrocarbonate-Based Covalent Labeling Mass Spectrometry of Protein Interactions in a Membrane Complex System. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:82-91. [PMID: 36475668 PMCID: PMC9812933 DOI: 10.1021/jasms.2c00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Membrane-associated proteins are important because they mediate interactions between a cell's external and internal environment and they are often targets of therapeutics. Characterizing their structures and binding interactions, however, is challenging because they typically must be solubilized using artificial membrane systems that can make measurements difficult. Mass spectrometry (MS) is emerging as a valuable tool for studying membrane-associated proteins, and covalent labeling MS has unique potential to provide higher order structure and binding information for these proteins in complicated membrane systems. Here, we demonstrate that diethylpyrocarbonate (DEPC) can be effectively used as a labeling reagent to characterize the binding interactions between a membrane-associated protein and its binding partners in an artificial membrane system. Using chemotaxis histidine kinase (CheA) as a model system, we demonstrate that DEPC-based covalent labeling MS can provide structural and binding information about the ternary complex of CheA with two other proteins that is consistent with structural models of this membrane-associated chemoreceptor system. Despite the moderate hydrophobicity of DEPC, we find that its reactivity with proteins is not substantially influenced by the presence of the artificial membranes. However, correct structural information for this multiprotein chemoreceptor system requires measurements of DEPC labeling at multiple reagent concentrations to enable an accurate comparison between CheA and its ternary complex in the chemoreceptor system. In addition to providing structural information that is consistent with the model of this complex system, the labeling data supplements structural information that is not sufficiently refined in the chemoreceptor model.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| | - Thomas Tran
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| | - Zachary J. Kirsch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| | - Lynmarie K. Thompson
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
33
|
Voerman SE, Ruseckas A, Turnbull GA, Samuel IDW, Burdett HL. Red algae acclimate to low light by modifying phycobilisome composition to maintain efficient light harvesting. BMC Biol 2022; 20:291. [PMID: 36575464 PMCID: PMC9794408 DOI: 10.1186/s12915-022-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite a global prevalence of photosynthetic organisms in the ocean's mesophotic zone (30-200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae - here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale. RESULTS Following initial absorption by phycourobilin and phycoerythrobilin in phycoerythrin, energy was transferred from the phycobilisome to photosystems I and II within 120 ps. This enabled delivery of 94% of excitations to reaction centres. Low light intensity, and to a lesser extent a mesophotic spectrum, caused significant acclimatory change in chromophores and biliproteins, including a 10% increase in phycoerythrin light harvesting capacity and a 20% reduction in chlorophyll-a concentration and photon requirements for photosystems I and II. The rate of energy transfer remained consistent across experimental treatments, indicating an acclimatory response that maintains energy transfer. CONCLUSIONS Our results demonstrate that responsive light harvesting by phycobilisomes and photosystem functional acclimation are key to red algal success in the mesophotic zone.
Collapse
Affiliation(s)
- Sofie E. Voerman
- Lyell Centre for Earth and Marine Science and Technology, Edinburgh, EH14 4BA UK ,grid.9531.e0000000106567444School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Arvydas Ruseckas
- grid.11914.3c0000 0001 0721 1626Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS UK
| | - Graham A. Turnbull
- grid.11914.3c0000 0001 0721 1626Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS UK
| | - Ifor D. W. Samuel
- grid.11914.3c0000 0001 0721 1626Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS UK
| | - Heidi L. Burdett
- Lyell Centre for Earth and Marine Science and Technology, Edinburgh, EH14 4BA UK ,grid.9531.e0000000106567444School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS UK ,grid.12650.300000 0001 1034 3451Present Address: Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
| |
Collapse
|
34
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
35
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
36
|
Mohamed A, Nishi S, Kawakami K, Shen JR, Itoh S, Fukumura H, Shibata Y. Exciton quenching by oxidized chlorophyll Z across the two adjacent monomers in a photosystem II core dimer. PHOTOSYNTHESIS RESEARCH 2022; 154:277-289. [PMID: 35976595 DOI: 10.1007/s11120-022-00948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to clarify (1) which pigment in a photosystem II (PSII) core complex is responsible for the 695-nm emission at 77 K and (2) the molecular basis for the oxidation-induced fluorescence quenching in PSII. Picosecond time-resolved fluorescence dynamics was compared between the dimeric and monomeric PSII with and without addition of an oxidant. The results indicated that the excitation-energy flow to the 695-nm-emitting chlorophyll (Chl) at 36 K and 77 K was hindered upon monomerization, clearly demonstrating significant exciton migration from the Chls on one monomer to the 695-nm-emitting pigment on the adjacent monomer. Oxidation of the redox-active Chl, which is named ChlZ caused almost equal quenching of the 684-nm and 695-nm emission bands in the dimer, and lower quenching of the 695-nm band in the monomer. These results suggested two possible scenarios responsible for the 695-nm emission band: (A) Chl11-13 pair and the oxidized ChlZD1 work as the 695-nm emitting Chl and the quenching site, respectively, and (B) Chl29 and the oxidized ChlZD2 work as the 695-nm emitting Chl and the quenching site, respectively.
Collapse
Affiliation(s)
- Ahmed Mohamed
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Boul. Lionel-Boulet, Varennes, QC, J3X 1S2, Canada
| | - Shunsuke Nishi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keisuke Kawakami
- Biostructural Mechanism Laboratory, RIKEN Spring-8 Center, Hyogo, 679-5148, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
37
|
Liu H. AlphaFold and Structural Mass Spectrometry Enable Interrogations on the Intrinsically Disordered Regions in Cyanobacterial Light-harvesting Complex Phycobilisome. J Mol Biol 2022; 434:167831. [PMID: 36116541 DOI: 10.1016/j.jmb.2022.167831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins/regions (IDPRs) are a very large and functionally important class of proteins that participate in weak multivalent interactions in protein complexes. They are recalcitrant for interrogations using X-ray crystallography and cryo-EM. The IDPRs observed at the interface of the photosynthetic pigment protein complexes (PPCs) remain much less clear, e.g., the major cyanobacterial light-harvesting complex (PBS) contains an unstructured PB-loop insertion in the phycocyanobilin domain (PB domain) of ApcE (the largest polypeptide in PBS). Here, a joint platform is built to probe such structural domains. This platform is characterized by two-round progressive justifications of in silico models by using the structural mass spectrometry data. First, the AlphaFold-generated 3D structure of the PB domain (containing PB-loop) was justified in the context of PBS. Second, docking the AlphaFold-generated ApcG (a ligand) into the first-step justified structure (a receptor). The final ligand-receptor complex was then subjected to a second-round justification, again, by using unequivocal isotopically-encoded cross-links identified in LC-MS/MS. This work reveals a full-length PB-loop structure modelled in the PBS basal cylinder, free from any spatial conflicts against the other subunits in PBS. The structure of PB domain highlights the close associations of the intrinsically disordered PB-loop with its binding partners in PBS, including ApcG, another IDPR. The PB-loop region involved in the binding of photosystem II (PSII) is also discussed in the context of excitation energy transfer regulation. This work calls attention to the highly disordered, yet interrogatable interface between the light-harvesting antenna complexes and the reaction centers.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
38
|
Biswas S, Niedzwiedzki DM, Pakrasi HB. Introduction of cysteine-mediated quenching in the CP43 protein of photosystem II builds resilience to high-light stress in a cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148580. [PMID: 35654167 DOI: 10.1016/j.bbabio.2022.148580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green‑sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
39
|
Sil S, Tilluck RW, Mohan T M N, Leslie CH, Rose JB, Domínguez-Martín MA, Lou W, Kerfeld CA, Beck WF. Excitation energy transfer and vibronic coherence in intact phycobilisomes. Nat Chem 2022; 14:1286-1294. [PMID: 36123451 DOI: 10.1038/s41557-022-01026-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
The phycobilisome is an oligomeric chromoprotein complex that serves as the principal mid-visible light-harvesting system in cyanobacteria. Here we report the observation of excitation-energy-transfer pathways involving delocalized optical excitations of the bilin (linear tetrapyrrole) chromophores in intact phycobilisomes isolated from Fremyella diplosiphon. By using broadband multidimensional electronic spectroscopy with 6.7-fs laser pulses, we are able to follow the progress of excitation energy from the phycoerythrin disks at the ends of the phycobilisome's rods to the C-phycocyanin disks along their length in <600 fs. Oscillation maps show that coherent wavepacket motions prominently involving the hydrogen out-of-plane vibrations of the bilins mediate non-adiabatic relaxation of a manifold of vibronic exciton states. However, the charge-transfer character of the bilins in the allophycocyanin-containing segments localizes the excitations in the core of the phycobilisome, yielding a kinetic bottleneck that enables photoregulatory mechanisms to operate efficiently on the >10-ps timescale.
Collapse
Affiliation(s)
- Sourav Sil
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Nila Mohan T M
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Chase H Leslie
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Justin B Rose
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - Wenjing Lou
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
40
|
Tsoraev GV, Protasova EA, Klimanova EA, Ryzhykau YL, Kuklin AI, Semenov YS, Ge B, Li W, Qin S, Friedrich T, Sluchanko NN, Maksimov EG. Anti-Stokes fluorescence excitation reveals conformational mobility of the C-phycocyanin chromophores. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054701. [PMID: 36065339 PMCID: PMC9440762 DOI: 10.1063/4.0000164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 05/15/2023]
Abstract
The structural organization of natural pigment-protein complexes provides a specific environment for the chromophore groups. Yet, proteins are inherently dynamic and conformationally mobile. In this work, we demonstrate the heterogeneity of chromophores of C-phycocyanin (C-PC) from Arthrospira platensis. Part of the population of trimeric C-PC is subject to spontaneous disturbances of protein-protein interactions resulting in increased conformational mobility of the chromophores. Upon fluorescence excitation in the visible range, the spectral signatures of these poorly populated states are masked by bulk chromophore states, but the former could be clearly discriminated when the fluorescence is excited by near-infrared quanta. Such selective excitation of conformationally mobile C-PC chromophores is due to the structure of their S1 level, which is characterized by a significantly broadened spectral line. We demonstrate that the anti-Stokes C-PC fluorescence is the result of single-photon absorption. By combining spectral and structural methods, we characterize four distinct states of C-PC chromophores emitting at 620, 650, 665, and 720 nm and assigned the fast component in the anti-Stokes fluorescence decay kinetics in the range of 690-750 nm to the chromophores with increased conformational mobility. Our data suggest that the spectral and temporal characteristics of the anti-Stokes fluorescence can be used to study protein dynamics and develop methods to visualize local environment parameters such as temperature.
Collapse
Affiliation(s)
- Georgy V. Tsoraev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | | | - Yury S. Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, People's Republic of China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | | | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, D-10623 Berlin, Germany
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Author to whom correspondence should be addressed:. Tel.: +7 (926) 735–04-37
| |
Collapse
|
41
|
Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022; 609:835-845. [PMID: 36045294 DOI: 10.1038/s41586-022-05156-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.
Collapse
|
42
|
Otsu T, Eki T, Hirose Y. A hybrid type of chromatic acclimation regulated by the dual green/red photosensory systems in cyanobacteria. PLANT PHYSIOLOGY 2022; 190:779-793. [PMID: 35751608 PMCID: PMC9434153 DOI: 10.1093/plphys/kiac284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are phototrophic bacteria that perform oxygenic photosynthesis. They use a supermolecular light-harvesting antenna complex, the phycobilisome (PBS), to capture and transfer light energy to photosynthetic reaction centers. Certain cyanobacteria alter the absorption maxima and/or overall structure of their PBSs in response to the ambient light wavelength-a process called chromatic acclimation (CA). One of the most well-known CA types is the response to green and red light, which is controlled by either the RcaEFC or CcaSR photosensory system. Here, we characterized a hybrid type of CA in the cyanobacterium Pleurocapsa sp. Pasteur Culture Collection (PCC) 7319 that uses both RcaEFC and CcaSR systems. In vivo spectroscopy suggested that strain PCC 7319 alters the relative composition of green-absorbing phycoerythrin and red-absorbing phycocyanin in the PBS. RNA sequencing and promoter motif analyses suggested that the RcaEFC system induces a gene operon for phycocyanin under red light, whereas the CcaSR system induces a rod-membrane linker gene under green light. Induction of the phycoerythrin genes under green light may be regulated through a yet unidentified photosensory system called the Cgi system. Spectroscopy analyses of the isolated PBSs suggested that hemidiscoidal and rod-shaped PBSs enriched with phycoerythrin were produced under green light, whereas only hemidiscoidal PBSs enriched with phycocyanin were produced under red light. PCC 7319 uses the RcaEFC and CcaSR systems to regulate absorption of green or red light (CA3) and the amount of rod-shaped PBSs (CA1), respectively. Cyanobacteria can thus flexibly combine diverse CA types to acclimate to different light environments.
Collapse
Affiliation(s)
- Takuto Otsu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
43
|
Chromatic Acclimation Processes and Their Relationships with Phycobiliprotein Complexes. Microorganisms 2022; 10:microorganisms10081562. [PMID: 36013980 PMCID: PMC9415938 DOI: 10.3390/microorganisms10081562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/02/2022] Open
Abstract
Chromatic acclimation (CA) is a widespread mechanism for optimizing the composition of phycobiliprotein complexes to maximize the cyanobacterial light capture efficiency. There are seven CA types, CA1-CA7, classified according to various photoregulatory pathways. Here, we use sequence analyses and bioinformatics to predict the presence of CA types according to three GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA)-containing photoreceptors, CcaS (cyanobacterial chromatic acclimation sensor), RcaE (regulator of chromatic adaptation), and RfpA (regulator for far-red photoacclimation). These photoreceptors were classified into three different phylogenetic groups leading different CA types in a diverse range of cyanobacteria. Combining with genomic information of phycobilisome compositions, the CA capabilities of various cyanobacteria were conjectured. Screening 65 accessible cyanobacterial genomes, we defined 19 cyanobacteria that have the capability to perform far-red light photoacclimation (FaRLiP) under the control of RfpA. Forty out of sixty-five cyanobacteria have the capability to perform green/red light photoacclimation, although they use different photoreceptors (RcaE and/or CcaS) and photoregulatory pathways. The reversible response of photoreceptors in CA regulation pathways trigged by changed light conditions reflects the flexibility of photoregulatory mechanisms in cyanobacteria and the putative independent evolutionary origin of photoacclimation types.
Collapse
|
44
|
The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II. Nat Commun 2022; 13:3562. [PMID: 35729108 PMCID: PMC9213480 DOI: 10.1038/s41467-022-31099-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria carry out photosynthetic light-energy conversion using phycobiliproteins for light harvesting and the chlorophyll-rich photosystems for photochemistry. While most cyanobacteria only absorb visible photons, some of them can acclimate to harvest far-red light (FRL, 700-800 nm) by integrating chlorophyll f and d in their photosystems and producing red-shifted allophycocyanin. Chlorophyll f insertion enables the photosystems to use FRL but slows down charge separation, reducing photosynthetic efficiency. Here we demonstrate with time-resolved fluorescence spectroscopy that on average charge separation in chlorophyll-f-containing Photosystem II becomes faster in the presence of red-shifted allophycocyanin antennas. This is different from all known photosynthetic systems, where additional light-harvesting complexes increase the overall absorption cross section but slow down charge separation. This remarkable property can be explained with the available structural and spectroscopic information. The unique design is probably important for these cyanobacteria to efficiently switch between visible and far-red light.
Collapse
|
45
|
Akhtar P, Biswas A, Balog-Vig F, Domonkos I, Kovács L, Lambrev PH. Trimeric photosystem I facilitates energy transfer from phycobilisomes in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2022; 189:827-838. [PMID: 35302607 PMCID: PMC9157137 DOI: 10.1093/plphys/kiac130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 05/31/2023]
Abstract
In cyanobacteria, phycobilisomes (PBS) serve as peripheral light-harvesting complexes of the two photosystems, extending their antenna size and the wavelength range of photons available for photosynthesis. The abundance of PBS, the number of phycobiliproteins they contain, and their light-harvesting function are dynamically adjusted in response to the physiological conditions. PBS are also thought to be involved in state transitions that maintain the excitation balance between the two photosystems. Unlike its eukaryotic counterpart, PSI is trimeric in many cyanobacterial species and the physiological significance of this is not well understood. Here, we compared the composition and light-harvesting function of PBS in cells of Synechocystis sp. PCC 6803, which has primarily trimeric PSI, and the ΔpsaL mutant, which lacks the PsaL subunit of PSI and is unable to form trimers. We also investigated a mutant additionally lacking the PsaJ and PsaF subunits of PSI. Both strains with monomeric PSI accumulated significantly more allophycocyanin per chlorophyll, indicating higher abundance of PBS. On the other hand, a higher phycocyanin:allophycocyanin ratio in the wild type suggests larger PBS or the presence of APC-less PBS (CpcL-type) that are not assembled in cells with monomeric PSI. Steady-state and time-resolved fluorescence spectroscopy at room temperature and 77 K revealed that PSII receives more energy from the PBS at the expense of PSI in cells with monomeric PSI, regardless of the presence of PsaF. Taken together, these results show that the oligomeric state of PSI impacts the excitation energy flow in Synechocystis.
Collapse
Affiliation(s)
- Parveen Akhtar
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Avratanu Biswas
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged 6726, Hungary
| | - Fanny Balog-Vig
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Ildikó Domonkos
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - László Kovács
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| | - Petar H Lambrev
- Szeged Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
46
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
47
|
Advances in the Understanding of the Lifecycle of Photosystem II. Microorganisms 2022; 10:microorganisms10050836. [PMID: 35630282 PMCID: PMC9145668 DOI: 10.3390/microorganisms10050836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Photosystem II is a light-driven water-plastoquinone oxidoreductase present in cyanobacteria, algae and plants. It produces molecular oxygen and protons to drive ATP synthesis, fueling life on Earth. As a multi-subunit membrane-protein-pigment complex, Photosystem II undergoes a dynamic cycle of synthesis, damage, and repair known as the Photosystem II lifecycle, to maintain a high level of photosynthetic activity at the cellular level. Cyanobacteria, oxygenic photosynthetic bacteria, are frequently used as model organisms to study oxygenic photosynthetic processes due to their ease of growth and genetic manipulation. The cyanobacterial PSII structure and function have been well-characterized, but its lifecycle is under active investigation. In this review, advances in studying the lifecycle of Photosystem II in cyanobacteria will be discussed, with a particular emphasis on new structural findings enabled by cryo-electron microscopy. These structural findings complement a rich and growing body of biochemical and molecular biology research into Photosystem II assembly and repair.
Collapse
|
48
|
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. PHOTOSYNTHESIS RESEARCH 2022; 152:23-42. [PMID: 35064531 DOI: 10.1007/s11120-021-00892-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 05/06/2023]
Abstract
Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phycobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photosynthetic efficiency.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Tanja A Hofmann
- OSFC, Scrivener Drive, Pinewood, Ipswich, IP8 3SU, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
49
|
Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nat Commun 2022; 13:1690. [PMID: 35354803 PMCID: PMC8967839 DOI: 10.1038/s41467-022-29211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cyclophilins, or immunophilins, are proteins found in many organisms including bacteria, plants and humans. Most of them display peptidyl-prolyl cis-trans isomerase activity, and play roles as chaperones or in signal transduction. Here, we show that cyclophilin anaCyp40 from the cyanobacterium Anabaena sp. PCC 7120 is enzymatically active, and seems to be involved in general stress responses and in assembly of photosynthetic complexes. The protein is associated with the thylakoid membrane and interacts with phycobilisome and photosystem components. Knockdown of anacyp40 leads to growth defects under high-salt and high-light conditions, and reduced energy transfer from phycobilisomes to photosystems. Elucidation of the anaCyp40 crystal structure at 1.2-Å resolution reveals an N-terminal helical domain with similarity to PsbQ components of plant photosystem II, and a C-terminal cyclophilin domain with a substrate-binding site. The anaCyp40 structure is distinct from that of other multi-domain cyclophilins (such as Arabidopsis thaliana Cyp38), and presents features that are absent in single-domain cyclophilins.
Collapse
|
50
|
Squires A, Wang Q, Dahlberg P, Moerner WE. A bottom-up perspective on photodynamics and photoprotection in light-harvesting complexes using anti-Brownian trapping. J Chem Phys 2022; 156:070901. [DOI: 10.1063/5.0079042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Quan Wang
- Genomics, Princeton University, United States of America
| | | | - W. E. Moerner
- Department of Chemistry, Stanford University, United States of America
| |
Collapse
|