1
|
Zhu Y, Gelnaw H, Leary P, Raghuraman R, Kamath N, Kraja A, Liu J, Bai Q, Higashijima SI, Burton EA, Schoppik D. Tau load in select brainstem neurons predicts the severity and nature of balance deficits in the absence of cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618073. [PMID: 39464026 PMCID: PMC11507750 DOI: 10.1101/2024.10.14.618073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Patients with tauopathies present with profoundly different clinical symptoms 1 , even within the same disorder 2 . A central hypothesis in the field, well-supported by biomarker studies 3,4 and post-mortem pathology 5-7 , is that clinical heterogeneity reflects differential degeneration of vulnerable neuronal populations responsible for specific neurological functions. Recent work has revealed mechanisms underlying susceptibility of particular cell types 8-10 , but relating tau load to disrupted behavior - es- pecially before cell death - requires a targeted circuit-level approach. Here we studied two distinct balance behaviors in larval zebrafish 11 expressing a human 0N/4R-tau allele 12 in select populations of evolutionarily-conserved and well-characterized brainstem vestibular circuits 13,14 . We observed that human tau load predicted the severity of circuit-specific deficits in posture and navigation in the ab- sence of cell death. Targeting expression to either mid- or hindbrain balance neurons recapitulated these particular deficits in posture and navigation. By parametrically linking tau load in specific neu- rons to early behavioral deficits, our work moves beyond cell type to close the gap between pathological and neurological conceptions of tauopathy.
Collapse
|
2
|
Vijatovic D, Toma FA, Harrington ZPM, Sommer C, Hauschild R, Trevisan AJ, Chapman P, Julseth MJ, Brenner-Morton S, Gabitto MI, Dasen JS, Bikoff JB, Sweeney LB. Spinal neuron diversity scales exponentially with swim-to-limb transformation during frog metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614050. [PMID: 39345366 PMCID: PMC11430061 DOI: 10.1101/2024.09.20.614050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrates exhibit a wide range of motor behaviors, ranging from swimming to complex limb-based movements. Here we take advantage of frog metamorphosis, which captures a swim-to-limb-based movement transformation during the development of a single organism, to explore changes in the underlying spinal circuits. We find that the tadpole spinal cord contains small and largely homogeneous populations of motor neurons (MNs) and V1 interneurons (V1s) at early escape swimming stages. These neuronal populations only modestly increase in number and subtype heterogeneity with the emergence of free swimming. In contrast, during frog metamorphosis and the emergence of limb movement, there is a dramatic expansion of MN and V1 interneuron number and transcriptional heterogeneity, culminating in cohorts of neurons that exhibit striking molecular similarity to mammalian motor circuits. CRISPR/Cas9-mediated gene disruption of the limb MN and V1 determinants FoxP1 and Engrailed-1, respectively, results in severe but selective deficits in tail and limb function. Our work thus demonstrates that neural diversity scales exponentially with increasing behavioral complexity and illustrates striking evolutionary conservation in the molecular organization and function of motor circuits across species.
Collapse
Affiliation(s)
- David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mara J. Julseth
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Jeremy S. Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lora B. Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
3
|
Barrios G, Olechowski-Bessaguet A, Pain M, Bacqué-Cazenave J, Cardoit L, Cabirol MJ, Le Ray D, Lambert FM. Functional organization of vestibulospinal inputs responsible for tail postural control in larval Xenopus. Front Neurol 2024; 15:1439784. [PMID: 39220733 PMCID: PMC11361976 DOI: 10.3389/fneur.2024.1439784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
In all vertebrates, maintaining trunk posture primarily depends on descending commands originating from brainstem vestibulospinal nuclei. Despite being broadly outlined across species, the detailed anatomical and operational structure of these vestibulospinal networks remains poorly understood. Xenopus frogs have previously served as an excellent model for exploring such anatomical and functional aspects in relation to the animal's behavioral requirements. In this study, we examined the reflex motor reactions induced by vestibular stimulation in pre-metamorphic tadpoles. Our findings indicate that natural vestibular stimulation in the horizontal plane yields greater efficacy compared to stimulation in other planes, a phenomenon replicated in a frequency-dependent manner through specific galvanic stimulation (GVS) of the horizontal semicircular canals. With the exception of a very rostral cluster of neurons that receive vestibular inputs and project to the spinal cord, the overall anatomical segregation of vestibulospinal nuclei in the brainstem mirrors that observed in juvenile frogs. However, our results suggest closer similarities to mammalian organization than previously acknowledged. Moreover, we demonstrated that vestibulospinal cells project not only to spinal motoneurons in rostral segments but also to more distal segments that undergo regression during metamorphosis. Lastly, we illustrated how vestibular-induced spinal reflexes change during larval development, transitioning from tail swim-based activity to rostral trunk bursting responses, likely anticipating postural control in post-metamorphic frogs.
Collapse
Affiliation(s)
| | | | - Mathilde Pain
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Julien Bacqué-Cazenave
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
- Normandie Univ, Unicaen, CNRS, EthoS, Caen, France
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine)-UMR 6552, Rennes, France
| | - Laura Cardoit
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Didier Le Ray
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
4
|
Miles KD, Barker CM, Russell KP, Appel BH, Doll CA. Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome. J Neurosci 2024; 44:e2275232024. [PMID: 38969506 PMCID: PMC11293453 DOI: 10.1523/jneurosci.2275-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.
Collapse
Affiliation(s)
- Kaleb D Miles
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Chase M Barker
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristen P Russell
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Bruce H Appel
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Caleb A Doll
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
5
|
Pallucchi I, Bertuzzi M, Madrid D, Fontanel P, Higashijima SI, El Manira A. Molecular blueprints for spinal circuit modules controlling locomotor speed in zebrafish. Nat Neurosci 2024; 27:78-89. [PMID: 37919423 PMCID: PMC10774144 DOI: 10.1038/s41593-023-01479-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
The flexibility of motor actions is ingrained in the diversity of neurons and how they are organized into functional circuit modules, yet our knowledge of the molecular underpinning of motor circuit modularity remains limited. Here we use adult zebrafish to link the molecular diversity of motoneurons (MNs) and the rhythm-generating V2a interneurons (INs) with the modular circuit organization that is responsible for changes in locomotor speed. We show that the molecular diversity of MNs and V2a INs reflects their functional segregation into slow, intermediate or fast subtypes. Furthermore, we reveal shared molecular signatures between V2a INs and MNs of the three speed circuit modules. Overall, by characterizing how the molecular diversity of MNs and V2a INs relates to their function, connectivity and behavior, our study provides important insights not only into the molecular mechanisms for neuronal and circuit diversity for locomotor flexibility but also for charting circuits for motor actions in general.
Collapse
Affiliation(s)
- Irene Pallucchi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Madrid
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Fontanel
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shin-Ichi Higashijima
- Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Japan
- Neuronal Networks Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | | |
Collapse
|
6
|
Lin A, Álvarez-Salvado E, Milicic N, Pujara N, Ehrlich DE. Multisensory navigational strategies of hatchling fish for dispersal. Curr Biol 2023; 33:4917-4925.e4. [PMID: 37865093 PMCID: PMC10842570 DOI: 10.1016/j.cub.2023.09.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Animals influence how they disperse in the environment by sensing local cues and adapting how they move. However, controlling dispersal can present a particular challenge early in life when animals tend to be more limited in their capacities to sense and move. To what extent and by what mechanisms can newly hatched fish control how they disperse? Here, we reveal hatchling sensorimotor mechanisms for controlling dispersal by combining swim tracking and precise sensory manipulations of a model species, zebrafish. In controlled laboratory experiments, if we physically constrained hatchlings or blocked sensations of motion through vision and the lateral line, hatchlings responded by elevating their buoyancy and passively moving with faster surface currents. Complementarily, in stagnant water, hatchlings covered more ground using hyperstable swimming, strongly orienting based on graviception. Using experimentally calibrated hydrodynamic simulations, we show that these hatchling behaviors nearly tripled diffusivity and made dispersal robust to local conditions, suggesting this multisensory strategy may provide important advantages for early life in a variable environment.
Collapse
Affiliation(s)
- Allia Lin
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Efrén Álvarez-Salvado
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nikola Milicic
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrative Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nimish Pujara
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David E Ehrlich
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrative Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
El Manira A. Modular circuit organization for speed control of locomotor movements. Curr Opin Neurobiol 2023; 82:102760. [PMID: 37597455 DOI: 10.1016/j.conb.2023.102760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
Our movements and actions stem from complex processes in the central nervous system. Precise adaptation of locomotor movements is essential for effectively interacting with the environment. To understand the mechanisms underlying these movements, it is crucial to determine the organization of spinal circuits at the level of individual neurons and synapses. This review highlights the insights gained from studying spinal circuits in adult zebrafish and discusses their broader implications for our understanding of locomotor control across species.
Collapse
|
8
|
Liu Z, Bagnall MW. Organization of vestibular circuits for postural control in zebrafish. Curr Opin Neurobiol 2023; 82:102776. [PMID: 37634321 DOI: 10.1016/j.conb.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Most animals begin controlling their posture, or orientation with respect to gravity, at an early stage in life. Posture is vital for locomotor function. Even animals like fish, which are capable of swimming upside-down, must actively control their orientation to coordinate behaviors such as capturing prey near the water's surface. Here we review recent research from multiple laboratories investigating the organization and function of the vestibular circuits underlying postural control in zebrafish. Some findings in zebrafish strongly align with prior observations in mammals, reinforcing our understanding of homologies between systems. In other instances, the unique transparency and accessibility of zebrafish has enabled new analyses of several neural circuit components that remain challenging to study in mammalian systems. These new results demonstrate topographical and circuit features in postural control.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/zhikai_liu
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA.
| |
Collapse
|
9
|
Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del'Immagine A, Böhm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci 2023; 24:540-556. [PMID: 37558908 DOI: 10.1038/s41583-023-00723-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France.
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | | | - Urs L Böhm
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Jensen NO, Burris B, Zhou L, Yamada H, Reyes C, Pincus Z, Mokalled MH. Functional trajectories during innate spinal cord repair. Front Mol Neurosci 2023; 16:1155754. [PMID: 37492522 PMCID: PMC10365889 DOI: 10.3389/fnmol.2023.1155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023] Open
Abstract
Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for 60 individual zebrafish spanning 8 weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.
Collapse
Affiliation(s)
- Nicholas O. Jensen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brooke Burris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Hunter Yamada
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachary Pincus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Sengupta M, Bagnall MW. Spinal Interneurons: Diversity and Connectivity in Motor Control. Annu Rev Neurosci 2023; 46:79-99. [PMID: 36854318 DOI: 10.1146/annurev-neuro-083122-025325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.
Collapse
Affiliation(s)
- Mohini Sengupta
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
12
|
Beiza-Canelo N, Moulle H, Pujol T, Panier T, Migault G, Le Goc G, Tapie P, Desprat N, Straka H, Debrégeas G, Bormuth V. Magnetic actuation of otoliths allows behavioral and brain-wide neuronal exploration of vestibulo-motor processing in larval zebrafish. Curr Biol 2023:S0960-9822(23)00621-8. [PMID: 37285844 DOI: 10.1016/j.cub.2023.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
The vestibular system in the inner ear plays a central role in sensorimotor control by informing the brain about the orientation and acceleration of the head. However, most experiments in neurophysiology are performed using head-fixed configurations, depriving animals of vestibular inputs. To overcome this limitation, we decorated the utricular otolith of the vestibular system in larval zebrafish with paramagnetic nanoparticles. This procedure effectively endowed the animal with magneto-sensitive capacities: applied magnetic field gradients induced forces on the otoliths, resulting in robust behavioral responses comparable to those evoked by rotating the animal by up to 25°. We recorded the whole-brain neuronal response to this fictive motion stimulation using light-sheet functional imaging. Experiments performed in unilaterally injected fish revealed the activation of a commissural inhibition between the brain hemispheres. This magnetic-based stimulation technique for larval zebrafish opens new perspectives to functionally dissect the neural circuits underlying vestibular processing and to develop multisensory virtual environments, including vestibular feedback.
Collapse
Affiliation(s)
- Natalia Beiza-Canelo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Hippolyte Moulle
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Thomas Pujol
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Plateforme d'Imagerie, 75005 Paris, France
| | - Geoffrey Migault
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Guillaume Le Goc
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Pierre Tapie
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Nicolas Desprat
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; Université Paris Diderot, 10 Rue Alice Domon et Leonie Duquet, 75013 Paris, France
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152 Planegg, Germany
| | - Georges Debrégeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Volker Bormuth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France.
| |
Collapse
|
13
|
Jay M, MacIver MA, McLean DL. Spinal Basis of Direction Control during Locomotion in Larval Zebrafish. J Neurosci 2023; 43:4062-4074. [PMID: 37127363 PMCID: PMC10255127 DOI: 10.1523/jneurosci.0703-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Navigation requires steering and propulsion, but how spinal circuits contribute to direction control during ongoing locomotion is not well understood. Here, we use drifting vertical gratings to evoke directed "fictive" swimming in intact but immobilized larval zebrafish while performing electrophysiological recordings from spinal neurons. We find that directed swimming involves unilateral changes in the duration of motor output and increased recruitment of motor neurons, without impacting the timing of spiking across or along the body. Voltage-clamp recordings from motor neurons reveal increases in phasic excitation and inhibition on the side of the turn. Current-clamp recordings from premotor interneurons that provide phasic excitation or inhibition reveal two types of recruitment patterns. A direction-agnostic pattern with balanced recruitment on the turning and nonturning sides is primarily observed in excitatory V2a neurons with ipsilateral descending axons, while a direction-sensitive pattern with preferential recruitment on the turning side is dominated by V2a neurons with ipsilateral bifurcating axons. Inhibitory V1 neurons are also divided into direction-sensitive and direction-agnostic subsets, although there is no detectable morphologic distinction. Our findings support the modular control of steering and propulsion by spinal premotor circuits, where recruitment of distinct subsets of excitatory and inhibitory interneurons provide adjustments in direction while on the move.SIGNIFICANCE STATEMENT Spinal circuits play an essential role in coordinating movements during locomotion. However, it is unclear how they participate in adjustments in direction that do not interfere with coordination. Here we have developed a system using larval zebrafish that allows us to directly record electrical signals from spinal neurons during "fictive" swimming guided by visual cues. We find there are subsets of spinal interneurons for coordination and others that drive unilateral asymmetries in motor neuron recruitment for direction control. Our findings suggest a modular organization of spinal premotor circuits that enables uninterrupted adjustments in direction during ongoing locomotion.
Collapse
Affiliation(s)
- Michael Jay
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
| | - Malcolm A MacIver
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208
| | - David L McLean
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
14
|
Baeza-Loya S, Raible DW. Vestibular physiology and function in zebrafish. Front Cell Dev Biol 2023; 11:1172933. [PMID: 37143895 PMCID: PMC10151581 DOI: 10.3389/fcell.2023.1172933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular system of the inner ear provides information about head motion and spatial orientation relative to gravity to ensure gaze stability, balance, and postural control. Zebrafish, like humans, have five sensory patches per ear that serve as peripheral vestibular organs, with the addition of the lagena and macula neglecta. The zebrafish inner ear can be easily studied due to its accessible location, the transparent tissue of larval fish, and the early development of vestibular behaviors. Thus, zebrafish are an excellent model for studying the development, physiology, and function of the vestibular system. Recent work has made great strides to elucidate vestibular neural circuitry in fish, tracing sensory transmission from receptors in the periphery to central computational circuits driving vestibular reflexes. Here we highlight recent work that illuminates the functional organization of vestibular sensory epithelia, innervating first-order afferent neurons, and second-order neuronal targets in the hindbrain. Using a combination of genetic, anatomical, electrophysiological, and optical techniques, these studies have probed the roles of vestibular sensory signals in fish gaze, postural, and swimming behaviors. We discuss remaining questions in vestibular development and organization that are tractable in the zebrafish model.
Collapse
Affiliation(s)
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS and Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Lacroix-Ouellette P, Dubuc R. Brainstem neural mechanisms controlling locomotion with special reference to basal vertebrates. Front Neural Circuits 2023; 17:910207. [PMID: 37063386 PMCID: PMC10098025 DOI: 10.3389/fncir.2023.910207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Over the last 60 years, the basic neural circuitry responsible for the supraspinal control of locomotion has progressively been uncovered. Initially, significant progress was made in identifying the different supraspinal structures controlling locomotion in mammals as well as some of the underlying mechanisms. It became clear, however, that the complexity of the mammalian central nervous system (CNS) prevented researchers from characterizing the detailed cellular mechanisms involved and that animal models with a simpler nervous system were needed. Basal vertebrate species such as lampreys, xenopus embryos, and zebrafish became models of choice. More recently, optogenetic approaches have considerably revived interest in mammalian models. The mesencephalic locomotor region (MLR) is an important brainstem region known to control locomotion in all vertebrate species examined to date. It controls locomotion through intermediary cells in the hindbrain, the reticulospinal neurons (RSNs). The MLR comprises populations of cholinergic and glutamatergic neurons and their specific contribution to the control of locomotion is not fully resolved yet. Moreover, the downward projections from the MLR to RSNs is still not fully understood. Reporting on discoveries made in different animal models, this review article focuses on the MLR, its projections to RSNs, and the contribution of these neural elements to the control of locomotion. Excellent and detailed reviews on the brainstem control of locomotion have been recently published with emphasis on mammalian species. The present review article focuses on findings made in basal vertebrates such as the lamprey, to help direct new research in mammals, including humans.
Collapse
Affiliation(s)
| | - Réjean Dubuc
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Physical Activity Sciences, Université du Québec à Montréal, Montréal, QC, Canada
- Research Group for Adapted Physical Activity, Université du Québec à Montréal, Montréal, QC, Canada
- *Correspondence: Réjean Dubuc,
| |
Collapse
|
16
|
Biomechanics and neural circuits for vestibular-induced fine postural control in larval zebrafish. Nat Commun 2023; 14:1217. [PMID: 36898983 PMCID: PMC10006170 DOI: 10.1038/s41467-023-36682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Land-walking vertebrates maintain a desirable posture by finely controlling muscles. It is unclear whether fish also finely control posture in the water. Here, we showed that larval zebrafish have fine posture control. When roll-tilted, fish recovered their upright posture using a reflex behavior, which was a slight body bend near the swim bladder. The vestibular-induced body bend produces a misalignment between gravity and buoyancy, generating a moment of force that recovers the upright posture. We identified the neural circuits for the reflex, including the vestibular nucleus (tangential nucleus) through reticulospinal neurons (neurons in the nucleus of the medial longitudinal fasciculus) to the spinal cord, and finally to the posterior hypaxial muscles, a special class of muscles near the swim bladder. These results suggest that fish maintain a dorsal-up posture by frequently performing the body bend reflex and demonstrate that the reticulospinal pathway plays a critical role in fine postural control.
Collapse
|
17
|
Zhu SI, Goodhill GJ. From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish. Front Neural Circuits 2023; 17:1087993. [PMID: 36817645 PMCID: PMC9928868 DOI: 10.3389/fncir.2023.1087993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field.
Collapse
Affiliation(s)
- Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
18
|
Jensen NO, Burris B, Zhou L, Yamada H, Reyes C, Mokalled MH. Functional Trajectories during innate spinal cord repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526502. [PMID: 36778427 PMCID: PMC9915574 DOI: 10.1101/2023.01.31.526502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for sixty individual zebrafish spanning eight weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.
Collapse
|
19
|
Bello-Rojas S, Bagnall MW. Clonally related, Notch-differentiated spinal neurons integrate into distinct circuits. eLife 2022; 11:e83680. [PMID: 36580075 PMCID: PMC9799969 DOI: 10.7554/elife.83680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/30/2022] Open
Abstract
Shared lineage has diverse effects on patterns of neuronal connectivity. In mammalian cortex, excitatory sister neurons assemble into shared microcircuits. In Drosophila, in contrast, sister neurons with different levels of Notch expression (NotchON/NotchOFF) develop distinct identities and diverge into separate circuits. Notch-differentiated sister neurons have been observed in vertebrate spinal cord and cerebellum, but whether they integrate into shared or distinct circuits remains unknown. Here, we evaluate how sister V2a (NotchOFF)/V2b (NotchON) neurons in the zebrafish integrate into spinal circuits. Using an in vivo labeling approach, we identified pairs of sister V2a/b neurons born from individual Vsx1+ progenitors and observed that they have somata in close proximity to each other and similar axonal trajectories. However, paired whole-cell electrophysiology and optogenetics revealed that sister V2a/b neurons receive input from distinct presynaptic sources, do not communicate with each other, and connect to largely distinct targets. These results resemble the divergent connectivity in Drosophila and represent the first evidence of Notch-differentiated circuit integration in a vertebrate system.
Collapse
Affiliation(s)
- Saul Bello-Rojas
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
20
|
Bhandiwad AA, Chu NC, Semenova SA, Holmes GA, Burgess HA. A cerebellar-prepontine circuit for tonic immobility triggered by an inescapable threat. SCIENCE ADVANCES 2022; 8:eabo0549. [PMID: 36170356 PMCID: PMC9519051 DOI: 10.1126/sciadv.abo0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Sudden changes in the environment are frequently perceived as threats and provoke defensive behavioral states. One such state is tonic immobility, a conserved defensive strategy characterized by powerful suppression of movement and motor reflexes. Tonic immobility has been associated with multiple brainstem regions, but the underlying circuit is unknown. Here, we demonstrate that a strong vibratory stimulus evokes tonic immobility in larval zebrafish defined by suppressed locomotion and sensorimotor responses. Using a circuit-breaking screen and targeted neuron ablations, we show that cerebellar granule cells and a cluster of glutamatergic ventral prepontine neurons (vPPNs) that express key stress-associated neuropeptides are critical components of the circuit that suppresses movement. The complete sensorimotor circuit transmits information from sensory ganglia through the cerebellum to vPPNs to regulate reticulospinal premotor neurons. These results show that cerebellar regulation of a neuropeptide-rich prepontine structure governs a conserved and ancestral defensive behavior that is triggered by an inescapable threat.
Collapse
|
21
|
Kawai K, Tazoe T, Yanai T, Kanosue K, Nishimura Y. Activation of human spinal locomotor circuitry using transvertebral magnetic stimulation. Front Hum Neurosci 2022; 16:1016064. [PMID: 36211130 PMCID: PMC9537552 DOI: 10.3389/fnhum.2022.1016064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Transvertebral magnetic stimulation (TVMS) of the human lumbar spinal cord can evoke bilateral rhythmic leg movements, as in walking, supposedly through the activation of spinal locomotor neural circuitry. However, an appropriate stimulus intensity that can effectively drive the human spinal locomotor circuitry to evoke walking-like movements has not been determined. To address this issue, TVMS was delivered over an intervertebral space of the lumbar cord (L1–L3) at different stimulus intensities (10–70% of maximum stimulator output) in healthy human adults. In a stimulus intensity-dependent manner, TVMS evoked two major patterns of rhythmic leg movements in which the left-right movement cycles were coordinated with different phase relationships: hopping-like movements, in which both legs moved in the same direction in phase, and walking-like movements, in which both legs moved alternatively in anti-phase; uncategorized movements were also observed which could not be categorized as either movement type. Even at the same stimulation site, the stimulus-evoked rhythmic movements changed from hopping-like movements to walking-like movements as stimulus intensity was increased. Different leg muscle activation patterns were engaged in the induction of the hopping- and walking-like movements. The magnitude of the evoked hopping- and walking-like movements was positively correlated with stimulus intensity. The human spinal neural circuitry required a higher intensity of magnetic stimulation to produce walking-like leg movements than to produce hopping-like movements. These results suggest that TVMS activates distinct neural modules in the human spinal cord to generate hopping- and walking-like movements.
Collapse
Affiliation(s)
- Kazutake Kawai
- College of Sports Sciences, Nihon University, Tokyo, Japan
- Neural Prosthetics Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Toshiki Tazoe
- Neural Prosthetics Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshimasa Yanai
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Institute of Health and Sports Science and Medicine, Juntendo University, Chiba, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
22
|
Liu Z, Hildebrand DGC, Morgan JL, Jia Y, Slimmon N, Bagnall MW. Organization of the gravity-sensing system in zebrafish. Nat Commun 2022; 13:5060. [PMID: 36030280 PMCID: PMC9420129 DOI: 10.1038/s41467-022-32824-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/18/2022] [Indexed: 01/07/2023] Open
Abstract
Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.
Collapse
Affiliation(s)
- Zhikai Liu
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joshua L Morgan
- Dept. of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yizhen Jia
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Slimmon
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
23
|
Jia Y, Bagnall MW. Monosynaptic targets of utricular afferents in the larval zebrafish. Front Neurol 2022; 13:937054. [PMID: 35937055 PMCID: PMC9355653 DOI: 10.3389/fneur.2022.937054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022] Open
Abstract
The larval zebrafish acquires a repertoire of vestibular-driven behaviors that aid survival early in development. These behaviors rely mostly on the utricular otolith, which senses inertial (tilt and translational) head movements. We previously characterized the known central brainstem targets of utricular afferents using serial-section electron microscopy of a larval zebrafish brain. Here we describe the rest of the central targets of utricular afferents, focusing on the neurons whose identities are less certain in our dataset. We find that central neurons with commissural projections have a wide range of predicted directional tuning, just as in other vertebrates. In addition, somata of central neurons with inferred responses to contralateral tilt are located more laterally than those with inferred responses to ipsilateral tilt. Many dorsally located central utricular neurons are unipolar, with an ipsilateral dendritic ramification and commissurally projecting axon emerging from a shared process. Ventrally located central utricular neurons tended to receive otolith afferent synaptic input at a shorter distance from the soma than in dorsally located neurons. Finally, we observe an unexpected synaptic target of utricular afferents: afferents from the medial (horizontal) semicircular canal. Collectively, these data provide a better picture of the gravity-sensing circuit. Furthermore, we suggest that vestibular circuits important for survival behaviors develop first, followed by the circuits that refine these behaviors.
Collapse
Affiliation(s)
| | - Martha W. Bagnall
- Department of Neuroscience, Washington University, St. Louis, MO, United States
| |
Collapse
|
24
|
Bacqué-Cazenave J, Courtand G, Beraneck M, Straka H, Combes D, Lambert FM. Locomotion-induced ocular motor behavior in larval Xenopus is developmentally tuned by visuo-vestibular reflexes. Nat Commun 2022; 13:2957. [PMID: 35618719 PMCID: PMC9135768 DOI: 10.1038/s41467-022-30636-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Locomotion in vertebrates is accompanied by retinal image-stabilizing eye movements that derive from sensory-motor transformations and predictive locomotor efference copies. During development, concurrent maturation of locomotor and ocular motor proficiency depends on the structural and neuronal capacity of the motion detection systems, the propulsive elements and the computational capability for signal integration. In developing Xenopus larvae, we demonstrate an interactive plasticity of predictive locomotor efference copies and multi-sensory motion signals to constantly elicit dynamically adequate eye movements during swimming. During ontogeny, the neuronal integration of vestibulo- and spino-ocular reflex components progressively alters as locomotion parameters change. In young larvae, spino-ocular motor coupling attenuates concurrent angular vestibulo-ocular reflexes, while older larvae express eye movements that derive from a combination of the two components. This integrative switch depends on the locomotor pattern generator frequency, represents a stage-independent gating mechanism, and appears during ontogeny when the swim frequency naturally declines with larval age.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
- Normandie Univ, Unicaen, CNRS, EthoS, 14000, Caen, France
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine)-UMR 6552, F-35000, Rennes, France
| | - Gilles Courtand
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
| | - Mathieu Beraneck
- Université de Paris, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006, Paris, France
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152, Planegg, Germany
| | - Denis Combes
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
| | - François M Lambert
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France.
| |
Collapse
|
25
|
Auer F, Schoppik D. The Larval Zebrafish Vestibular System Is a Promising Model to Understand the Role of Myelin in Neural Circuits. Front Neurosci 2022; 16:904765. [PMID: 35600621 PMCID: PMC9122096 DOI: 10.3389/fnins.2022.904765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Myelin is classically known for its role in facilitating nerve conduction. However, recent work casts myelin as a key player in both proper neuronal circuit development and function. With this expanding role comes a demand for new approaches to characterize and perturb myelin in the context of tractable neural circuits as they mature. Here we argue that the simplicity, strong conservation, and clinical relevance of the vestibular system offer a way forward. Further, the tractability of the larval zebrafish affords a uniquely powerful means to test open hypotheses of myelin's role in normal development and disordered vestibular circuits. We end by identifying key open questions in myelin neurobiology that the zebrafish vestibular system is particularly well-suited to address.
Collapse
Affiliation(s)
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
26
|
Transformation of an early-established motor circuit during maturation in zebrafish. Cell Rep 2022; 39:110654. [PMID: 35417694 PMCID: PMC9071512 DOI: 10.1016/j.celrep.2022.110654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Locomotion is mediated by spinal circuits that generate movements with a precise coordination and vigor. The assembly of these circuits is defined early during development; however, whether their organization and function remain invariant throughout development is unclear. Here, we show that the first established fast circuit between two dorsally located V2a interneuron types and the four primary motoneurons undergoes major transformation in adult zebrafish compared with what was reported in larvae. There is a loss of existing connections and establishment of new connections combined with alterations in the mode, plasticity, and strength of synaptic transmission. In addition, we show that this circuit no longer serves as a swim rhythm generator, but instead its components become embedded within the spinal escape circuit and control propulsion following the initial escape turn. Our results thus reveal significant changes in the organization and function of a motor circuit as animals develop toward adulthood.
Collapse
|
27
|
Prilutsky BI, Parker J, Cymbalyuk GS, Klishko AN. Emergence of Extreme Paw Accelerations During Cat Paw Shaking: Interactions of Spinal Central Pattern Generator, Hindlimb Mechanics and Muscle Length-Depended Feedback. Front Integr Neurosci 2022; 16:810139. [PMID: 35431821 PMCID: PMC9007247 DOI: 10.3389/fnint.2022.810139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Cat paw shaking is a spinal reflex for removing an irritating stimulus from paw by developing extremely high paw accelerations. Previous studies of paw shaking revealed a proximal-to-distal gradient of hindlimb segmental velocities/accelerations, as well as complex inter-joint coordination: passive motion-dependent interaction moments acting on distal segments are opposed by distal muscle moments. However, mechanisms of developing extreme paw accelerations during paw shaking remain unknown. We hypothesized that paw-shaking mechanics and muscle activity might correspond to a whip-like mechanism of energy generation and transfer along the hindlimb. We first demonstrated in experiments with five intact, adult, female cats that during paw shaking, energy generated by proximal muscle moments was transmitted to distal segments by joint forces. This energy transfer was mostly responsible for the segmental velocity/acceleration proximal-to-distal gradient. Distal muscle moments mostly absorbed energy of the distal segments. We then developed a neuromechanical model of hindlimb paw shaking comprised a half-center CPG, activating hip flexors and extensors, and passive viscoelastic distal muscles that produced length/velocity-depended force. Simulations reproduced whip-like mechanisms found experimentally: the proximal-to-distal velocity/acceleration gradient, energy transfer by joint forces and energy absorption by distal muscle moments, as well as atypical co-activation of ankle and hip flexors with knee extensors. Manipulating model parameters, including reversal of segmental inertia distal-to-proximal gradient, demonstrated important inertia contribution to developing the segmental velocity/acceleration proximal-to-distal gradient. We concluded that extreme paw accelerations during paw shaking result from interactions between a spinal CPG, hindlimb segmental inertia, and muscle length/velocity-depended feedback that tunes limb viscoelastic properties.
Collapse
Affiliation(s)
- Boris I. Prilutsky
- Laboratory of Biomechanics and Motor Control, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jessica Parker
- Dynamical Neuroscience Laboratory, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Gennady S. Cymbalyuk
- Dynamical Neuroscience Laboratory, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Alexander N. Klishko
- Laboratory of Biomechanics and Motor Control, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
28
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
29
|
Harnie J, Audet J, Mari S, Lecomte CG, Merlet AN, Genois G, Rybak IA, Prilutsky BI, Frigon A. State- and Condition-Dependent Modulation of the Hindlimb Locomotor Pattern in Intact and Spinal Cats Across Speeds. Front Syst Neurosci 2022; 16:814028. [PMID: 35221937 PMCID: PMC8863752 DOI: 10.3389/fnsys.2022.814028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Locomotion after complete spinal cord injury (spinal transection) in animal models is usually evaluated in a hindlimb-only condition with the forelimbs suspended or placed on a stationary platform and compared with quadrupedal locomotion in the intact state. However, because of the quadrupedal nature of movement in these animals, the forelimbs play an important role in modulating the hindlimb pattern. This raises the question: whether changes in the hindlimb pattern after spinal transection are due to the state of the system (intact versus spinal) or because the locomotion is hindlimb-only. We collected kinematic and electromyographic data during locomotion at seven treadmill speeds before and after spinal transection in nine adult cats during quadrupedal and hindlimb-only locomotion in the intact state and hindlimb-only locomotion in the spinal state. We attribute some changes in the hindlimb pattern to the spinal state, such as convergence in stance and swing durations at high speed, improper coordination of ankle and hip joints, a switch in the timing of knee flexor and hip flexor bursts, modulation of burst durations with speed, and incidence of bi-phasic bursts in some muscles. Alternatively, some changes relate to the hindlimb-only nature of the locomotion, such as paw placement relative to the hip at contact, magnitude of knee and ankle yield, burst durations of some muscles and their timing. Overall, we show greater similarity in spatiotemporal and EMG variables between the two hindlimb-only conditions, suggesting that the more appropriate pre-spinal control is hindlimb-only rather than quadrupedal locomotion.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
- *Correspondence: Alain Frigon,
| |
Collapse
|
30
|
Sengupta M, Daliparthi V, Roussel Y, Bui TV, Bagnall MW. Spinal V1 neurons inhibit motor targets locally and sensory targets distally. Curr Biol 2021; 31:3820-3833.e4. [PMID: 34289387 PMCID: PMC8440420 DOI: 10.1016/j.cub.2021.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 01/30/2023]
Abstract
Rostro-caudal coordination of spinal motor output is essential for locomotion. Most spinal interneurons project axons longitudinally to govern locomotor output, yet their connectivity along this axis remains unclear. In this study, we use larval zebrafish to map synaptic outputs of a major inhibitory population, V1 (Eng1+) neurons, which are implicated in dual sensory and motor functions. We find that V1 neurons exhibit long axons extending rostrally and exclusively ipsilaterally for an average of 6 spinal segments; however, they do not connect uniformly with their post-synaptic targets along the entire length of their axon. Locally, V1 neurons inhibit motor neurons (both fast and slow) and other premotor targets, including V2a, V2b, and commissural premotor neurons. In contrast, V1 neurons make robust long-range inhibitory contacts onto a dorsal horn sensory population, the commissural primary ascending neurons (CoPAs). In a computational model of the ipsilateral spinal network, we show that this pattern of short-range V1 inhibition to motor and premotor neurons underlies burst termination, which is critical for coordinated rostro-caudal propagation of the locomotor wave. We conclude that spinal network architecture in the longitudinal axis can vary dramatically, with differentially targeted local and distal connections, yielding important consequences for function.
Collapse
Affiliation(s)
- Mohini Sengupta
- Washington University School of Medicine, Department of Neuroscience, St. Louis, MO, USA
| | - Vamsi Daliparthi
- Washington University School of Medicine, Department of Neuroscience, St. Louis, MO, USA
| | - Yann Roussel
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of Ottawa, Ottawa, Canada; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneve, Switzerland
| | - Tuan V Bui
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of Ottawa, Ottawa, Canada
| | - Martha W Bagnall
- Washington University School of Medicine, Department of Neuroscience, St. Louis, MO, USA.
| |
Collapse
|
31
|
Roussel Y, Gaudreau SF, Kacer ER, Sengupta M, Bui TV. Modeling spinal locomotor circuits for movements in developing zebrafish. eLife 2021; 10:e67453. [PMID: 34473059 PMCID: PMC8492062 DOI: 10.7554/elife.67453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/01/2021] [Indexed: 01/16/2023] Open
Abstract
Many spinal circuits dedicated to locomotor control have been identified in the developing zebrafish. How these circuits operate together to generate the various swimming movements during development remains to be clarified. In this study, we iteratively built models of developing zebrafish spinal circuits coupled to simplified musculoskeletal models that reproduce coiling and swimming movements. The neurons of the models were based upon morphologically or genetically identified populations in the developing zebrafish spinal cord. We simulated intact spinal circuits as well as circuits with silenced neurons or altered synaptic transmission to better understand the role of specific spinal neurons. Analysis of firing patterns and phase relationships helped to identify possible mechanisms underlying the locomotor movements of developing zebrafish. Notably, our simulations demonstrated how the site and the operation of rhythm generation could transition between coiling and swimming. The simulations also underlined the importance of contralateral excitation to multiple tail beats. They allowed us to estimate the sensitivity of spinal locomotor networks to motor command amplitude, synaptic weights, length of ascending and descending axons, and firing behavior. These models will serve as valuable tools to test and further understand the operation of spinal circuits for locomotion.
Collapse
Affiliation(s)
- Yann Roussel
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
- Blue Brain Project, École Polytechnique Fédérale de LausanneGenèveSwitzerland
| | - Stephanie F Gaudreau
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
| | - Emily R Kacer
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
| | - Mohini Sengupta
- Washington University School of Medicine, Department of NeuroscienceSt LouisUnited States
| | - Tuan V Bui
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
| |
Collapse
|
32
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
33
|
Vasudevan D, Liu YC, Barrios JP, Wheeler MK, Douglass AD, Dorsky RI. Regenerated interneurons integrate into locomotor circuitry following spinal cord injury. Exp Neurol 2021; 342:113737. [PMID: 33957107 DOI: 10.1016/j.expneurol.2021.113737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023]
Abstract
Whereas humans and other adult mammals lack the ability to regain locomotor function after spinal cord injury, zebrafish are able to recover swimming behavior even after complete spinal cord transection. We have previously shown that zebrafish larvae regenerate lost spinal cord neurons within 9 days post-injury (dpi), but it is unknown whether these neurons are physiologically active or integrate into functional circuitry. Here we show that genetically defined premotor interneurons are regenerated in injured spinal cord segments as functional recovery begins. Further, we show that these newly-generated interneurons receive excitatory input and fire synchronously with motor output by 9 dpi. Taken together, our data indicate that regenerative neurogenesis in the zebrafish spinal cord produces interneurons with the ability to integrate into existing locomotor circuitry.
Collapse
Affiliation(s)
- Deeptha Vasudevan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Yen-Chyi Liu
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Maya K Wheeler
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
34
|
Gao Y, Nicolson T. Temporal Vestibular Deficits in synaptojanin 1 ( synj1) Mutants. Front Mol Neurosci 2021; 13:604189. [PMID: 33584199 PMCID: PMC7874208 DOI: 10.3389/fnmol.2020.604189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
The lipid phosphatase synaptojanin 1 (synj1) is required for the disassembly of clathrin coats on endocytic compartments. In neurons such activity is necessary for the recycling of endocytosed membrane into synaptic vesicles. Mutations in zebrafish synj1 have been shown to disrupt the activity of ribbon synapses in sensory hair cells. After prolonged mechanical stimulation of hair cells, both phase locking of afferent nerve activity and the recovery of spontaneous release of synaptic vesicles are diminished in synj1 mutants. Presumably as a behavioral consequence of these synaptic deficits, synj1 mutants are unable to maintain an upright posture. To probe vestibular function with respect to postural control in synj1 mutants, we developed a method for assessing the vestibulospinal reflex (VSR) in larvae. We elicited the VSR by rotating the head and recorded tail movements. As expected, the VSR is completely absent in pcdh15a and lhfpl5a mutants that lack inner ear function. Conversely, lhfpl5b mutants, which have a selective loss of function of the lateral line organ, have normal VSRs, suggesting that the hair cells of this organ do not contribute to this reflex. In contrast to mechanotransduction mutants, the synj1 mutant produces normal tail movements during the initial cycles of rotation of the head. Both the amplitude and temporal aspects of the response are unchanged. However, after several rotations, the VSR in synj1 mutants was strongly diminished or absent. Mutant synj1 larvae are able to recover, but the time required for the reappearance of the VSR after prolonged stimulation is dramatically increased in synj1 mutants. Collectively, the data demonstrate a behavioral correlate of the synaptic defects caused by the loss of synj1 function. Our results suggest that defects in synaptic vesicle recycling give rise to fatigue of ribbons synapses and possibly other synapses of the VS circuit, leading to the loss of postural control.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| |
Collapse
|
35
|
Liu Z, Kimura Y, Higashijima SI, Hildebrand DGC, Morgan JL, Bagnall MW. Central Vestibular Tuning Arises from Patterned Convergence of Otolith Afferents. Neuron 2020; 108:748-762.e4. [PMID: 32937099 DOI: 10.1016/j.neuron.2020.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 08/19/2020] [Indexed: 01/31/2023]
Abstract
As sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict that complexity arises via convergent inputs from neurons with diverse response properties, in most vertebrate systems, convergence has only been inferred rather than tested directly. Here, we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. Strong, sparse synaptic inputs can be distinguished by their amplitudes, permitting analysis of afferent convergence in vivo. An independent approach, serial-section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Together, these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yukiko Kimura
- Department of Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | - Joshua L Morgan
- Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
36
|
Azevedo AW, Dickinson ES, Gurung P, Venkatasubramanian L, Mann RS, Tuthill JC. A size principle for recruitment of Drosophila leg motor neurons. eLife 2020; 9:e56754. [PMID: 32490810 PMCID: PMC7347388 DOI: 10.7554/elife.56754] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
37
|
Han E, Ho Oh K, Park S, Chan Rah Y, Park HC, Koun S, Choi J. Analysis of behavioral changes in zebrafish (Danio rerio) larvae caused by aminoglycoside-induced damage to the lateral line and muscles. Neurotoxicology 2020; 78:134-142. [PMID: 32169463 DOI: 10.1016/j.neuro.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Zebrafish behavior is influenced by the lateral line hair cells and muscles. Drug-induced behavioral changes can serve as indicators in the evaluation of drug toxicity. The aminoglycoside family of antibiotics comprise a number of agents, including neomycin (NM) and gentamicin (GM). We hypothesized that NM and GM exert different effects on zebrafish larvae through their action on the lateral line and muscle fibers, inducing different swimming behavioral patterns such as locomotor behavior and the startle response. In this study, 125 μM NM and 5, 10, 20 μM GM induced hair cell damage in the anterior and posterior lateral lines of zebrafish larvae. However, unlike GM, 125 μM NM also caused muscle damage. Locomotor behavior was decreased in the 125 μM NM-exposed group compared to the group exposed to GM. Furthermore, 125 μM NM exposure induced significantly different patterns of various indices of startle behavior compared with the GM exposure groups. Additionally, the larvae exhibited different startle responses depending on the concentration of GM. These results suggest that GM may be the drug-of-choice for analyzing behavioral changes in zebrafish caused by damage to the lateral line alone. Our study highlights the importance of confirming muscle damage in behavioral analyses using zebrafish.
Collapse
Affiliation(s)
- Eunjung Han
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| |
Collapse
|
38
|
Zarin AA, Mark B, Cardona A, Litwin-Kumar A, Doe CQ. A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila. eLife 2019; 8:e51781. [PMID: 31868582 PMCID: PMC6994239 DOI: 10.7554/elife.51781] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022] Open
Abstract
Animals generate diverse motor behaviors, yet how the same motor neurons (MNs) generate two distinct or antagonistic behaviors remains an open question. Here, we characterize Drosophila larval muscle activity patterns and premotor/motor circuits to understand how they generate forward and backward locomotion. We show that all body wall MNs are activated during both behaviors, but a subset of MNs change recruitment timing for each behavior. We used TEM to reconstruct a full segment of all 60 MNs and 236 premotor neurons (PMNs), including differentially-recruited MNs. Analysis of this comprehensive connectome identified PMN-MN 'labeled line' connectivity; PMN-MN combinatorial connectivity; asymmetric neuronal morphology; and PMN-MN circuit motifs that could all contribute to generating distinct behaviors. We generated a recurrent network model that reproduced the observed behaviors, and used functional optogenetics to validate selected model predictions. This PMN-MN connectome will provide a foundation for analyzing the full suite of larval behaviors.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Brandon Mark
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashok Litwin-Kumar
- Mortimer B Zuckerman Mind Brain Behavior Institute, Department of NeuroscienceColumbia UniversityNew YorkUnited States
| | - Chris Q Doe
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
39
|
Ehrlich DE, Schoppik D. A primal role for the vestibular sense in the development of coordinated locomotion. eLife 2019; 8:e45839. [PMID: 31591962 PMCID: PMC6783269 DOI: 10.7554/elife.45839] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Mature locomotion requires that animal nervous systems coordinate distinct groups of muscles. The pressures that guide the development of coordination are not well understood. To understand how and why coordination might emerge, we measured the kinematics of spontaneous vertical locomotion across early development in zebrafish (Danio rerio) . We found that zebrafish used their pectoral fins and bodies synergistically during upwards swims. As larvae developed, they changed the way they coordinated fin and body movements, allowing them to climb with increasingly stable postures. This fin-body synergy was absent in vestibular mutants, suggesting sensed imbalance promotes coordinated movements. Similarly, synergies were systematically altered following cerebellar lesions, identifying a neural substrate regulating fin-body coordination. Together these findings link the vestibular sense to the maturation of coordinated locomotion. Developing zebrafish improve postural stability by changing fin-body coordination. We therefore propose that the development of coordinated locomotion is regulated by vestibular sensation.
Collapse
Affiliation(s)
- David E Ehrlich
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| | - David Schoppik
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
40
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Hierarchical control of locomotion by distinct types of spinal V2a interneurons in zebrafish. Nat Commun 2019; 10:4197. [PMID: 31519892 PMCID: PMC6744451 DOI: 10.1038/s41467-019-12240-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
In all vertebrates, excitatory spinal interneurons execute dynamic adjustments in the timing and amplitude of locomotor movements. Currently, it is unclear whether interneurons responsible for timing control are distinct from those involved in amplitude control. Here, we show that in larval zebrafish, molecularly, morphologically and electrophysiologically distinct types of V2a neurons exhibit complementary patterns of connectivity. Stronger higher-order connections from type I neurons to other excitatory V2a and inhibitory V0d interneurons provide timing control, while stronger last-order connections from type II neurons to motor neurons provide amplitude control. Thus, timing and amplitude are coordinated by distinct interneurons distinguished not by their occupation of hierarchically-arranged anatomical layers, but rather by differences in the reliability and probability of higher-order and last-order connections that ultimately form a single anatomical layer. These findings contribute to our understanding of the origins of timing and amplitude control in the spinal cord. V2a excitatory interneurons in the spinal cord are important for coordinating locomotion. Here the authors describe two types of V2a neuron with differences in higher order and lower order connectivity in larval zebrafish.
Collapse
|
42
|
Callahan RA, Roberts R, Sengupta M, Kimura Y, Higashijima SI, Bagnall MW. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. eLife 2019; 8:e47837. [PMID: 31355747 PMCID: PMC6701946 DOI: 10.7554/elife.47837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.
Collapse
Affiliation(s)
- Rebecca A Callahan
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Richard Roberts
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Mohini Sengupta
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | | | | | - Martha W Bagnall
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| |
Collapse
|
43
|
Diversity of neurons and circuits controlling the speed and coordination of locomotion. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
|
45
|
Abstract
Measuring how the brain encodes and processes an animal's own motion presents major technical challenges. New approaches demonstrate the viability and merit of measuring vestibular responses throughout the entire brain.
Collapse
Affiliation(s)
- David E Ehrlich
- Neuroscience Institute and Depts. of Neuroscience & Physiology and Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Neuroscience Institute and Depts. of Neuroscience & Physiology and Otolaryngology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
46
|
Favre-Bulle IA, Vanwalleghem G, Taylor MA, Rubinsztein-Dunlop H, Scott EK. Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain. Curr Biol 2018; 28:3711-3722.e3. [PMID: 30449665 DOI: 10.1016/j.cub.2018.09.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/26/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
The vestibular system, which reports on motion and gravity, is essential to postural control, balance, and egocentric representations of movement and space. The motion needed to stimulate the vestibular system complicates studying its circuitry, so we previously developed a method for fictive vestibular stimulation in zebrafish, using optical trapping to apply physical forces to the otoliths. Here, we combine this approach with whole-brain calcium imaging at cellular resolution, delivering a comprehensive map of the brain regions and cellular responses involved in basic vestibular processing. We find responses broadly distributed across the brain, with unique profiles of cellular responses and topography in each region. The most widespread and abundant responses involve excitation that is graded to the stimulus strength. Other responses, localized to the telencephalon and habenulae, show excitation that is only weakly correlated to stimulus strength and that is sensitive to weak stimuli. Finally, numerous brain regions contain neurons that are inhibited by vestibular stimuli, and these neurons are often tightly localized spatially within their regions. By exerting separate control over the left and right otoliths, we explore the laterality of brain-wide vestibular processing, distinguishing between neurons with unilateral and bilateral vestibular sensitivity and revealing patterns whereby conflicting signals from the ears mutually cancel. Our results confirm previously identified vestibular responses in specific regions of the larval zebrafish brain while revealing a broader and more extensive network of vestibular responsive neurons than has previously been described. This provides a departure point for more targeted studies of the underlying functional circuits.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gilles Vanwalleghem
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael A Taylor
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
47
|
Migault G, van der Plas TL, Trentesaux H, Panier T, Candelier R, Proville R, Englitz B, Debrégeas G, Bormuth V. Whole-Brain Calcium Imaging during Physiological Vestibular Stimulation in Larval Zebrafish. Curr Biol 2018; 28:3723-3735.e6. [PMID: 30449666 PMCID: PMC6288061 DOI: 10.1016/j.cub.2018.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/25/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
The vestibular apparatus provides animals with postural and movement-related information that is essential to adequately execute numerous sensorimotor tasks. In order to activate this sensory system in a physiological manner, one needs to macroscopically rotate or translate the animal's head, which in turn renders simultaneous neural recordings highly challenging. Here we report on a novel miniaturized, light-sheet microscope that can be dynamically co-rotated with a head-restrained zebrafish larva, enabling controlled vestibular stimulation. The mechanical rigidity of the microscope allows one to perform whole-brain functional imaging with state-of-the-art resolution and signal-to-noise ratio while imposing up to 25° in angular position and 6,000°/s2 in rotational acceleration. We illustrate the potential of this novel setup by producing the first whole-brain response maps to sinusoidal and stepwise vestibular stimulation. The responsive population spans multiple brain areas and displays bilateral symmetry, and its organization is highly stereotypic across individuals. Using Fourier and regression analysis, we identified three major functional clusters that exhibit well-defined phasic and tonic response patterns to vestibular stimulation. Our rotatable light-sheet microscope provides a unique tool for systematically studying vestibular processing in the vertebrate brain and extends the potential of virtual-reality systems to explore complex multisensory and motor integration during simulated 3D navigation.
Collapse
Affiliation(s)
- Geoffrey Migault
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thijs L van der Plas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Hugo Trentesaux
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thomas Panier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Rémi Proville
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM, U1215, 33077 Bordeaux Cedex, France
| | - Bernhard Englitz
- Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Georges Debrégeas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Volker Bormuth
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France.
| |
Collapse
|
48
|
Israely S, Leisman G, Carmeli E. Neuromuscular synergies in motor control in normal and poststroke individuals. Rev Neurosci 2018; 29:593-612. [PMID: 29397390 DOI: 10.1515/revneuro-2017-0058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/26/2017] [Indexed: 01/03/2023]
Abstract
Muscle synergies are proposed to function as motor primitives that are modulated by frontal brain areas to construct a large repertoire of movement. This paper reviews the history of the development of our current theoretical understanding of nervous system-based motor control mechanisms and more specifically the concept of muscle synergies. Computational models of muscle synergies, especially the nonnegative matrix factorization algorithm, are discussed with specific reference to the changes in synergy control post-central nervous system (CNS) lesions. An alternative approach for motor control is suggested, exploiting a combination of synergies control or flexible muscle control used for gross motor skills and for individualized finger movements. Rehabilitation approaches, either supporting or inhibiting the use of basic movement patterns, are discussed in the context of muscle synergies. Applications are discussed for the use of advanced technologies that can promote the recovery and functioning of the human CNS after stroke.
Collapse
Affiliation(s)
- Sharon Israely
- Department of Physical Therapy, University of Haifa, Haifa 3498838, Israel
| | - Gerry Leisman
- Department of Physical Therapy, University of Haifa, Haifa 3498838, Israel.,National Institute for Brain and Rehabilitation Sciences-Israel, Nazareth 16470, Israel
| | - Eli Carmeli
- Department of Physical Therapy, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
49
|
Berg EM, Björnfors ER, Pallucchi I, Picton LD, El Manira A. Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish. Front Neural Circuits 2018; 12:73. [PMID: 30271327 PMCID: PMC6146226 DOI: 10.3389/fncir.2018.00073] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022] Open
Abstract
Locomotor behaviors are critical for survival and enable animals to navigate their environment, find food and evade predators. The circuits in the brain and spinal cord that initiate and maintain such different modes of locomotion in vertebrates have been studied in numerous species for over a century. In recent decades, the zebrafish has emerged as one of the main model systems for the study of locomotion, owing to its experimental amenability, and work in zebrafish has revealed numerous new insights into locomotor circuit function. Here, we review the literature that has led to our current understanding of the neural circuits controlling swimming and escape in zebrafish. We highlight recent studies that have enriched our comprehension of key topics, such as the interactions between premotor excitatory interneurons (INs) and motoneurons (MNs), supraspinal and spinal circuits that coordinate escape maneuvers, and developmental changes in overall circuit composition. We also discuss roles for neuromodulators and sensory inputs in modifying the relative strengths of constituent circuit components to provide flexibility in zebrafish behavior, allowing the animal to accommodate changes in the environment. We aim to provide a coherent framework for understanding the circuitry in the brain and spinal cord of zebrafish that allows the animal to flexibly transition between different speeds, and modes, of locomotion.
Collapse
Affiliation(s)
- Eva M Berg
- Department of Neuroscience, Karolinska Institute (KI), Stockholm, Sweden
| | | | - Irene Pallucchi
- Department of Neuroscience, Karolinska Institute (KI), Stockholm, Sweden
| | - Laurence D Picton
- Department of Neuroscience, Karolinska Institute (KI), Stockholm, Sweden
| | | |
Collapse
|
50
|
Development of vestibular behaviors in zebrafish. Curr Opin Neurobiol 2018; 53:83-89. [PMID: 29957408 DOI: 10.1016/j.conb.2018.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Most animals orient their bodies with respect to gravity to facilitate locomotion and perception. The neural circuits responsible for these orienting movements have long served as a model to address fundamental questions in systems neuroscience. Though postural control is vital, we know little about development of either balance reflexes or the neural circuitry that produces them. Recent work in a genetically and optically accessible vertebrate, the larval zebrafish, has begun to reveal the mechanisms by which such vestibular behaviors and circuits come to function. Here we highlight recent work that leverages the particular advantages of the larval zebrafish to illuminate mechanisms of postural development, the role of sensation for balance circuit development, and the organization of developing vestibular circuits. Further, we frame open questions regarding the developmental mechanisms for functional circuit assembly and maturation where studying the zebrafish vestibular system is likely to open new frontiers.
Collapse
|