1
|
Mallik S, Venezian J, Lobov A, Heidenreich M, Garcia-Seisdedos H, Yeates TO, Shiber A, Levy ED. Structural determinants of co-translational protein complex assembly. Cell 2024:S0092-8674(24)01330-8. [PMID: 39708808 DOI: 10.1016/j.cell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Protein assembly into functional complexes is critical to life's processes. While complex assembly is classically described as occurring between fully synthesized proteins, recent work showed that co-translational assembly is prevalent in human cells. However, the biological basis for the existence of this process and the identity of protein pairs that assemble co-translationally remain unknown. We show that co-translational assembly is governed by structural characteristics of complexes and involves mutually stabilized subunits. Accordingly, co-translationally assembling subunits are unstable in isolation and exhibit synchronized proteostasis with their partner. By leveraging structural signatures and AlphaFold2-based predictions, we accurately predicted co-translational assembly, including pair identities, at proteome scale and across species. We validated our predictions by ribosome profiling, stoichiometry perturbations, and single-molecule RNA-fluorescence in situ hybridization (smFISH) experiments that revealed co-localized mRNAs. This work establishes a fundamental connection between protein structure and the translation process, highlighting the overarching impact of three-dimensional structure on gene expression, mRNA localization, and proteostasis.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel.
| | - Johannes Venezian
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Arseniy Lobov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Meta Heidenreich
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Hector Garcia-Seisdedos
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ayala Shiber
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Hocher A, Warnecke T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol Evol 2024; 16:evae029. [PMID: 38366053 PMCID: PMC10919886 DOI: 10.1093/gbe/evae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque. Histone-fold proteins are also found in archaea, but the nucleosome we know-a hetero-octameric complex composed of histones with long, disordered tails-is a hallmark of eukaryotes. What were the properties of the earliest nucleosomes? Did ancestral histones inevitably assemble into nucleosomes? When and why did the four core histones evolve? This review will look at the evolution of the eukaryotic nucleosome from the vantage point of archaea, focusing on the key evolutionary transitions required to build a modern nucleosome. We will highlight recent work on the closest archaeal relatives of eukaryotes, the Asgardarchaea, and discuss what their histones can and cannot tell us about the early evolution of eukaryotic chromatin. We will also discuss how viruses have become an unexpected source of information about the evolutionary path toward the nucleosome. Finally, we highlight the properties of early nucleosomes as an area where new tools and data promise tangible progress in the not-too-distant future.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tobias Warnecke
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Trinity College, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Pierson E, De Pol F, Fillet M, Wouters J. A morpheein equilibrium regulates catalysis in phosphoserine phosphatase SerB2 from Mycobacterium tuberculosis. Commun Biol 2023; 6:1024. [PMID: 37817000 PMCID: PMC10564941 DOI: 10.1038/s42003-023-05402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Mycobacterium tuberculosis phosphoserine phosphatase MtSerB2 is of interest as a new antituberculosis target due to its essential metabolic role in L-serine biosynthesis and effector functions in infected cells. Previous works indicated that MtSerB2 is regulated through an oligomeric transition induced by L-Ser that could serve as a basis for the design of selective allosteric inhibitors. However, the mechanism underlying this transition remains highly elusive due to the lack of experimental structural data. Here we describe a structural, biophysical, and enzymological characterisation of MtSerB2 oligomerisation in the presence and absence of L-Ser. We show that MtSerB2 coexists in dimeric, trimeric, and tetrameric forms of different activity levels interconverting through a conformationally flexible monomeric state, which is not observed in two near-identical mycobacterial orthologs. This morpheein behaviour exhibited by MtSerB2 lays the foundation for future allosteric drug discovery and provides a starting point to the understanding of its peculiar multifunctional moonlighting properties.
Collapse
Affiliation(s)
- Elise Pierson
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000, Namur, Belgium
| | - Florian De Pol
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000, Namur, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Center for Interdisciplinary Research on Medicines (CIRM), University of Liège (ULiège), 4000, Liège, Belgium
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000, Namur, Belgium.
| |
Collapse
|
4
|
Abstract
Machine-learning algorithm uses structure prediction to spot disease-causing mutations.
Collapse
Affiliation(s)
- Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Mazumder M, Kumar S, Kumar D, Bhattacharya A, Gourinath S. Machine learning-based modulation of Ca 2+-binding affinity in EF-hand proteins and comparative structural insights into site-specific cooperative binding. Int J Biol Macromol 2023; 248:125866. [PMID: 37473887 DOI: 10.1016/j.ijbiomac.2023.125866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Ca2+-binding proteins are present in almost all living organisms and different types display different levels of binding affinities for the cation. Here, we report two new scoring schemes enabling the user to estimate and manipulate the calcium binding affinities in EF hand containing proteins. To validate this, we designed a unique EF-hand loop capable of binding calcium with high affinity by altering five residues. The N-terminal domain of Entamoeba histolytica calcium-binding protein1 (NtEhCaBP1) is used for site-directed mutagenesis to incorporate the designed loop sequence into the second EF-hand motif of this protein, referred as Nt-EhCaBP1-EF2 mutant. The binding isotherms calculated using ITC calorimetry showed that Nt-EhCaBP1-EF2 mutant site binds Ca2+ with higher affinity than Wt-Nt-EhCaBP1, by ∼600 times. The crystal structure of the mutant displayed more compact Ca2+-coordination spheres in both of its EF loops than the structure of the wildtype protein. The compact coordination sphere of EF-2 causes the bend in the helix-3, which leads to the formation of unexpected hexamer of NtEhCaBP1-EF2 mutant structure. Further dynamic correlation analysis revealed that the mutation in the second EF loop changed the entire residue network of the monomer, resulting in stronger coordination of Ca2+ even in another EF-hand loop.
Collapse
Affiliation(s)
- Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Pine Biotech, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232-0146, USA
| | - Devbrat Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Mathy CJP, Kortemme T. Emerging maps of allosteric regulation in cellular networks. Curr Opin Struct Biol 2023; 80:102602. [PMID: 37150039 PMCID: PMC10960510 DOI: 10.1016/j.sbi.2023.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Allosteric regulation is classically defined as action at a distance, where a perturbation outside of a protein active site affects function. While this definition has motivated many studies of allosteric mechanisms at the level of protein structure, translating these insights to the allosteric regulation of entire cellular processes - and their crosstalk - has received less attention, despite the broad importance of allostery for cellular regulation foreseen by Jacob and Monod. Here, we revisit an evolutionary model for the widespread emergence of allosteric regulation in colocalized proteins, describe supporting evidence, and discuss emerging advances in mapping allostery in cellular networks that link precise and often allosteric perturbations at the molecular level to functional changes at the pathway and systems levels.
Collapse
Affiliation(s)
- Christopher J P Mathy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, CA, 94158, USA; The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA, 94158, USA.
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, CA, 94158, USA; The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA, 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Malinverni D, Babu MM. Data-driven design of orthogonal protein-protein interactions. Sci Signal 2023; 16:eabm4484. [PMID: 36853962 DOI: 10.1126/scisignal.abm4484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Engineering protein-protein interactions to generate new functions presents a challenge with great potential for many applications, ranging from therapeutics to synthetic biology. To avoid unwanted cross-talk with preexisting protein interaction networks in a cell, the specificity and selectivity of newly engineered proteins must be controlled. Here, we developed a computational strategy that mimics gene duplication and the divergence of preexisting interacting protein pairs to design new interactions. We used the bacterial PhoQ-PhoP two-component system as a model system to demonstrate the feasibility of this strategy and validated the approach with known experimental results. The designed protein pairs are predicted to exclusively interact with each other and to be insulated from potential cross-talk with their native partners. Thus, our approach enables exploration of uncharted regions of the protein sequence space and the design of new interacting protein pairs.
Collapse
Affiliation(s)
- Duccio Malinverni
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Dasgupta B, Tiwari SP. Explicit versus implicit consideration of binding partners in protein-protein complex to elucidate intrinsic dynamics. Biophys Rev 2022; 14:1379-1392. [PMID: 36659985 PMCID: PMC9842844 DOI: 10.1007/s12551-022-01026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
The binding of many proteins to their protein partners is tightly regulated via control of their relative intrinsic dynamics during the binding process, a phenomenon which can in turn be modulated. Therefore, investigating the intrinsic dynamics of proteins is necessary to understand function in a comprehensive way. By intrinsic dynamics herein, we principally refer to the vibrational signature of a protein molecule popularly obtained from normal modes or essential modes. For normal modes, one often considers that the molecule under investigation is a collection of springs in a solvent-free or implicit-solvent medium. In the context of a protein-binding partner, the analysis of vibration of the target protein is often complicated due to molecular interaction within the complex. Generally, it is assumed that the isolated bound conformation of the target protein captures the implicit effect of the binding partner on the intrinsic dynamics, therefore suggesting that any influence of the partner molecule is also already integrated. Such an assumption allows large-scale studies of the conservation of protein flexibility. However, in cases where a partner protein directly influences the vibration of the target via critical contacts at the protein-protein interface, the above assumption falls short of providing a detailed view. In this review article, we discuss the implications of considering the dynamics of a protein in a protein-protein complex, as modelled implicitly and explicitly with methods dependent on elastic network models. We further propose how such an explicit consideration can be applied to understand critical protein-protein contacts that can be targeted in future studies.
Collapse
Affiliation(s)
- Bhaskar Dasgupta
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8904 Japan
| | - Sandhya P. Tiwari
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-3-1 Kagamiyama, Hiroshima, 739-8526 Japan
- Present Address: Institute of Protein Research, Osaka University, 3-2 Yamadaoka, Suita-Shi, Osaka, 565-0871 Japan
| |
Collapse
|
9
|
Li Y, Zhang R, Wang C, Forouhar F, Clarke OB, Vorobiev S, Singh S, Montelione GT, Szyperski T, Xu Y, Hunt JF. Oligomeric interactions maintain active-site structure in a noncooperative enzyme family. EMBO J 2022; 41:e108368. [PMID: 35801308 DOI: 10.15252/embj.2021108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022] Open
Abstract
The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chi Wang
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Cryo-Electron Microscopy Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Farhad Forouhar
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics and Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Vorobiev
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Shikha Singh
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Chemistry & Chemical Biology and Center for Biotechnology & Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - John F Hunt
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Brissos V, Borges P, Núñez-Franco R, Lucas MF, Frazão C, Monza E, Masgrau L, Cordeiro TN, Martins LO. Distal Mutations Shape Substrate-Binding Sites during Evolution of a Metallo-Oxidase into a Laccase. ACS Catal 2022; 12:5022-5035. [PMID: 36567772 PMCID: PMC9775220 DOI: 10.1021/acscatal.2c00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Laccases are in increasing demand as innovative solutions in the biorefinery fields. Here, we combine mutagenesis with structural, kinetic, and in silico analyses to characterize the molecular features that cause the evolution of a hyperthermostable metallo-oxidase from the multicopper oxidase family into a laccase (k cat 273 s-1 for a bulky aromatic substrate). We show that six mutations scattered across the enzyme collectively modulate dynamics to improve the binding and catalysis of a bulky aromatic substrate. The replacement of residues during the early stages of evolution is a stepping stone for altering the shape and size of substrate-binding sites. Binding sites are then fine-tuned through high-order epistasis interactions by inserting distal mutations during later stages of evolution. Allosterically coupled, long-range dynamic networks favor catalytically competent conformational states that are more suitable for recognizing and stabilizing the aromatic substrate. This work provides mechanistic insight into enzymatic and evolutionary molecular mechanisms and spots the importance of iterative experimental and computational analyses to understand local-to-global changes.
Collapse
Affiliation(s)
- Vânia Brissos
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Patrícia
T. Borges
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | | | | | - Carlos Frazão
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Emanuele Monza
- Zymvol
Biomodeling, Carrer Roc
Boronat, 117, 08018 Barcelona, Spain
| | - Laura Masgrau
- Zymvol
Biomodeling, Carrer Roc
Boronat, 117, 08018 Barcelona, Spain,Department
of Chemistry, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Tiago N. Cordeiro
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
11
|
Kiss-Szemán AJ, Stráner P, Jákli I, Hosogi N, Harmat V, Menyhárd DK, Perczel A. Cryo-EM structure of acylpeptide hydrolase reveals substrate selection by multimerization and a multi-state serine-protease triad. Chem Sci 2022; 13:7132-7142. [PMID: 35799812 PMCID: PMC9214879 DOI: 10.1039/d2sc02276a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
The first structure of tetrameric mammalian acylaminoacyl peptidase, an enzyme that functions as an upstream regulator of the proteasome through the removal of terminal N-acetylated residues from its protein substrates, was determined by cryo-EM and further elucidated by MD simulations. Self-association results in a toroid-shaped quaternary structure, guided by an amyloidogenic β-edge and unique inserts. With a Pro introduced into its central β-sheet, sufficient conformational freedom is awarded to the segment containing the catalytic Ser587 that the serine protease catalytic triad alternates between active and latent states. Active site flexibility suggests that the dual function of catalysis and substrate selection are fulfilled by a novel mechanism: substrate entrance is regulated by flexible loops creating a double-gated channel system, while binding of the substrate to the active site is required for stabilization of the catalytic apparatus – as a second filter before hydrolysis. The structure not only underlines that within the family of S9 proteases homo-multimerization acts as a crucial tool for substrate selection, but it will also allow drug design targeting of the ubiquitin-proteasome system. The structure of tetrameric mammalian acylaminoacyl peptidase – a key upstream regulator of the proteasome – was determined by cryo-EM (and elucidated by MD), showing a “shutters-and-channels” substrate selection apparatus created by oligomerization.![]()
Collapse
Affiliation(s)
- Anna J. Kiss-Szemán
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
| | - Pál Stráner
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - Imre Jákli
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - Naoki Hosogi
- EM Application Department, EM Business Unit, JEOL Ltd, Tokyo 196-8556, Japan
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| |
Collapse
|
12
|
Echave J. Evolutionary coupling range varies widely among enzymes depending on selection pressure. Biophys J 2021; 120:4320-4324. [PMID: 34480927 DOI: 10.1016/j.bpj.2021.08.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022] Open
Abstract
Recent studies proposed that enzyme-active sites induce evolutionary constraints at long distances. The physical origin of such long-range evolutionary coupling is unknown. Here, I use a recent biophysical model of evolution to study the relationship between physical and evolutionary couplings on a diverse data set of monomeric enzymes. I show that evolutionary coupling is not universally long-range. Rather, range varies widely among enzymes, from 2 to 20 Å. Furthermore, the evolutionary coupling range of an enzyme does not inform on the underlying physical coupling, which is short range for all enzymes. Rather, evolutionary coupling range is determined by functional selection pressure.
Collapse
Affiliation(s)
- Julian Echave
- Instituto de Ciencias Físicas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Copley SD. Setting the stage for evolution of a new enzyme. Curr Opin Struct Biol 2021; 69:41-49. [PMID: 33865035 DOI: 10.1016/j.sbi.2021.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
The evolution of novel enzymes has fueled the diversification of life on earth for billions of years. Insights into events that set the stage for the evolution of a new enzyme can be obtained from ancestral reconstruction and laboratory evolution. Ancestral reconstruction can reveal the emergence of a promiscuous activity in a pre-existing protein and the impact of subsequent mutations that enhance a new activity. Laboratory evolution provides a more holistic view by revealing mutations elsewhere in the genome that indirectly enhance the level of a newly important enzymatic activity. This review will highlight recent studies that probe the early stages of the evolution of a new enzyme from these complementary points of view.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology, The Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
14
|
Boyko KM, Kryukova MV, Petrovskaya LE, Kryukova EA, Nikolaeva AY, Korzhenevsky DA, Lomakina GY, Novototskaya-Vlasova KA, Rivkina EM, Dolgikh DA, Kirpichnikov MP, Popov VO. Structural and Biochemical Characterization of a Cold-Active PMGL3 Esterase with Unusual Oligomeric Structure. Biomolecules 2021; 11:biom11010057. [PMID: 33466452 PMCID: PMC7824956 DOI: 10.3390/biom11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/23/2022] Open
Abstract
The gene coding for a novel cold-active esterase PMGL3 was previously obtained from a Siberian permafrost metagenomic DNA library and expressed in Escherichia coli. We elucidated the 3D structure of the enzyme which belongs to the hormone-sensitive lipase (HSL) family. Similar to other bacterial HSLs, PMGL3 shares a canonical α/β hydrolase fold and is presumably a dimer in solution but, in addition to the dimer, it forms a tetrameric structure in a crystal and upon prolonged incubation at 4 °C. Detailed analysis demonstrated that the crystal tetramer of PMGL3 has a unique architecture compared to other known tetramers of the bacterial HSLs. To study the role of the specific residues comprising the tetramerization interface of PMGL3, several mutant variants were constructed. Size exclusion chromatography (SEC) analysis of D7N, E47Q, and K67A mutants demonstrated that they still contained a portion of tetrameric form after heat treatment, although its amount was significantly lower in D7N and K67A compared to the wild type. Moreover, the D7N and K67A mutants demonstrated a 40 and 60% increase in the half-life at 40 °C in comparison with the wild type protein. Km values of these mutants were similar to that of the wt PMGL3. However, the catalytic constants of the E47Q and K67A mutants were reduced by ~40%.
Collapse
Affiliation(s)
- Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Correspondence: (K.M.B.); (L.E.P.)
| | - Mariya V. Kryukova
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Lada E. Petrovskaya
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Correspondence: (K.M.B.); (L.E.P.)
| | - Elena A. Kryukova
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
| | - Alena Y. Nikolaeva
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Dmitry A. Korzhenevsky
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Galina Yu. Lomakina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Ksenia A. Novototskaya-Vlasova
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.N.-V.); (E.M.R.)
| | - Elizaveta M. Rivkina
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.N.-V.); (E.M.R.)
| | - Dmitry A. Dolgikh
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| |
Collapse
|
15
|
Exploring the therapeutic potential of modern and ancestral phenylalanine/tyrosine ammonia-lyases as supplementary treatment of hereditary tyrosinemia. Sci Rep 2020; 10:1315. [PMID: 31992763 PMCID: PMC6987202 DOI: 10.1038/s41598-020-57913-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/07/2020] [Indexed: 12/01/2022] Open
Abstract
Phenylalanine/tyrosine ammonia-lyases (PAL/TALs) have been approved by the FDA for treatment of phenylketonuria and may harbour potential for complementary treatment of hereditary tyrosinemia Type I. Herein, we explore ancestral sequence reconstruction as an enzyme engineering tool to enhance the therapeutic potential of PAL/TALs. We reconstructed putative ancestors from fungi and compared their catalytic activity and stability to two modern fungal PAL/TALs. Surprisingly, most putative ancestors could be expressed as functional tetramers in Escherichia coli and thus retained their ability to oligomerize. All ancestral enzymes displayed increased thermostability compared to both modern enzymes, however, the increase in thermostability was accompanied by a loss in catalytic turnover. One reconstructed ancestral enzyme in particular could be interesting for further drug development, as its ratio of specific activities is more favourable towards tyrosine and it is more thermostable than both modern enzymes. Moreover, long-term stability assessment showed that this variant retained substantially more activity after prolonged incubation at 25 °C and 37 °C, as well as an increased resistance to incubation at 60 °C. Both of these factors are indicative of an extended shelf-life of biopharmaceuticals. We believe that ancestral sequence reconstruction has potential for enhancing the properties of enzyme therapeutics, especially with respect to stability. This work further illustrates that resurrection of putative ancestral oligomeric proteins is feasible and provides insight into the extent of conservation of a functional oligomerization surface area from ancestor to modern enzyme.
Collapse
|
16
|
Katava M, Marchi M, Madern D, Sztucki M, Maccarini M, Sterpone F. Temperature Unmasks Allosteric Propensity in a Thermophilic Malate Dehydrogenase via Dewetting and Collapse. J Phys Chem B 2020; 124:1001-1008. [DOI: 10.1021/acs.jpcb.9b10776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M. Katava
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - M. Marchi
- Centre d’Etudes de Saclay, Commissariat à l’Energie Atomique DRF/Joliot/SB2SM, 91191 Gif sur Yvette Cedex, France
| | - D. Madern
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - M. Sztucki
- ESRF - The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M. Maccarini
- Laboratoire TIMC/IMAG UMR CNRS 5525, Université Grenoble Alpes, 38000 Grenoble, France
| | - F. Sterpone
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
17
|
Zhang S, Li H, Krieger JM, Bahar I. Shared Signature Dynamics Tempered by Local Fluctuations Enables Fold Adaptability and Specificity. Mol Biol Evol 2020; 36:2053-2068. [PMID: 31028708 PMCID: PMC6736388 DOI: 10.1093/molbev/msz102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have drawn attention to the evolution of protein dynamics, in addition to sequence and structure, based on the premise structure-encodes-dynamics-encodes-function. Of interest is to understand how functional differentiation is accomplished while maintaining the fold, or how intrinsic dynamics plays out in the evolution of structural variations and functional specificity. We performed a systematic computational analysis of 26,899 proteins belonging to 116 CATH superfamilies. Characterizing cooperative mechanisms and convergent/divergent features that underlie the shared/differentiated dynamics of family members required a methodology that lends itself to efficient analyses of large ensembles of proteins. We therefore introduced, SignDy, an integrated pipeline for evaluating the signature dynamics of families based on elastic network models. Our analysis confirmed that family members share conserved, highly cooperative (global) modes of motion. Importantly, our analysis discloses a subset of motions that sharply distinguishes subfamilies, which lie in a low-to-intermediate frequency regime of the mode spectrum. This regime has maximal impact on functional differentiation of families into subfamilies, while being evolutionarily conserved among subfamily members. Notably, the high-frequency end of the spectrum also reveals evolutionary conserved features across and within subfamilies; but in sharp contrast to global motions, high-frequency modes are minimally collective. Modulation of robust/conserved global dynamics by low-to-intermediate frequency fluctuations thus emerges as a versatile mechanism ensuring the adaptability of selected folds and the specificity of their subfamilies. SignDy further allows for dynamics-based categorization as a new layer of information relevant to distinctive mechanisms of action of subfamilies, beyond sequence or structural classifications.
Collapse
Affiliation(s)
- She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - James M Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
18
|
Prosser RS. Tailor-made GPCRs. Nat Chem Biol 2019; 16:5-6. [PMID: 31844305 DOI: 10.1038/s41589-019-0427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R Scott Prosser
- Departments of Chemistry and Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Chen KYM, Keri D, Barth P. Computational design of G Protein-Coupled Receptor allosteric signal transductions. Nat Chem Biol 2019; 16:77-86. [PMID: 31792443 DOI: 10.1038/s41589-019-0407-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Membrane receptors sense and transduce extracellular stimuli into intracellular signaling responses but the molecular underpinnings remain poorly understood. We report a computational approach for designing protein allosteric signaling functions. By combining molecular dynamics simulations and design calculations, the method engineers amino-acid 'microswitches' at allosteric sites that modulate receptor stability or long-range coupling, to reprogram specific signaling properties. We designed 36 dopamine D2 receptor variants, whose constitutive and ligand-induced signaling agreed well with our predictions, repurposed the D2 receptor into a serotonin biosensor and predicted the signaling effects of more than 100 known G-protein-coupled receptor (GPCR) mutations. Our results reveal the existence of distinct classes of allosteric microswitches and pathways that define an unforeseen molecular mechanism of regulation and evolution of GPCR signaling. Our approach enables the rational design of allosteric receptors with enhanced stability and function to facilitate structural characterization, and reprogram cellular signaling in synthetic biology and cell engineering applications.
Collapse
Affiliation(s)
- Kuang-Yui Michael Chen
- Swiss Federal Institute of Technology (EPFL), Institute of Bioengineering, Lausanne, Switzerland.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, USA
| | - Daniel Keri
- Swiss Federal Institute of Technology (EPFL), Institute of Bioengineering, Lausanne, Switzerland
| | - Patrick Barth
- Swiss Federal Institute of Technology (EPFL), Institute of Bioengineering, Lausanne, Switzerland. .,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA. .,Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Zhang Y, Doruker P, Kaynak B, Zhang S, Krieger J, Li H, Bahar I. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Curr Opin Struct Biol 2019; 62:14-21. [PMID: 31785465 DOI: 10.1016/j.sbi.2019.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Allosteric behavior is central to the function of many proteins, enabling molecular machinery, metabolism, signaling and regulation. Recent years have shown that the intrinsic dynamics of allosteric proteins defined by their 3-dimensional architecture or by the topology of inter-residue contacts favors cooperative motions that bear close similarity to structural changes they undergo during their allosteric actions. These conformational motions are usually driven by energetically favorable or soft modes at the low frequency end of the mode spectrum, and they are evolutionarily conserved among orthologs. These observations brought into light evolutionary adaptation mechanisms that help maintain, optimize or regulate allosteric behavior as the evolution from bacterial to higher organisms introduces sequential heterogeneities and structural complexities.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Burak Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
21
|
Abrusán G, Marsh JA. Ligand Binding Site Structure Shapes Folding, Assembly and Degradation of Homomeric Protein Complexes. J Mol Biol 2019; 431:3871-3888. [PMID: 31306664 PMCID: PMC6739599 DOI: 10.1016/j.jmb.2019.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Ligand binding site structure has profound consequences for the evolution of function of protein complexes, particularly in homomers—complexes comprising multiple copies of the same protein. Previously, we have shown that homomers with multichain binding sites (MBSs) are characterized by more conserved binding sites and quaternary structure, and qualitatively different allosteric pathways than homomers with single-chain binding sites (SBSs) or monomers. Here, using computational methods, we show that the folds of single-domain MBS and SBS homomers are different, and SBS homomers are likely to be folded cotranslationally, while MBS homomers are more likely to form post-translationally and rely on more advanced folding-assistance and quality control mechanisms, which include chaperonins. In addition, our findings demonstrate that MBS homomers are qualitatively different from monomers, while SBS homomers are much less distinct, supporting the hypothesis that the evolution of quaternary structure in SBS homomers is significantly influenced by stochastic processes.
Collapse
Affiliation(s)
- György Abrusán
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
22
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Ansammlungen gefalteter Proteine im Kontext von Evolution, Krankheiten und Proteinentwicklung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
23
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Angew Chem Int Ed Engl 2019; 58:5514-5531. [PMID: 30133878 PMCID: PMC6471489 DOI: 10.1002/anie.201806092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Mutations and changes in a protein's environment are well known for their potential to induce misfolding and aggregation, including amyloid formation. Alternatively, such perturbations can trigger new interactions that lead to the polymerization of folded proteins. In contrast to aggregation, this process does not require misfolding and, to highlight this difference, we refer to it as agglomeration. This term encompasses the amorphous assembly of folded proteins as well as the polymerization in one, two, or three dimensions. We stress the remarkable potential of symmetric homo-oligomers to agglomerate even by single surface point mutations, and we review the double-edged nature of this potential: how aberrant assemblies resulting from agglomeration can lead to disease, but also how agglomeration can serve in cellular adaptation and be exploited for the rational design of novel biomaterials.
Collapse
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
24
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
25
|
Pham B, Lindsay RJ, Shen T. Effector-Binding-Directed Dimerization and Dynamic Communication between Allosteric Sites of Ribonucleotide Reductase. Biochemistry 2019; 58:697-705. [PMID: 30571104 DOI: 10.1021/acs.biochem.8b01131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins forming dimers or larger complexes can be strongly influenced by their effector-binding status. We investigated how the effector-binding event is coupled with interface formation via computer simulations, and we quantified the correlation of two types of contact interactions: between the effector and its binding pocket and between protein monomers. This was achieved by connecting the protein dynamics at the monomeric level with the oligomer interface information. We applied this method to ribonucleotide reductase (RNR), an essential enzyme for de novo DNA synthesis. RNR contains two important allosteric sites, the s-site (specificity site) and the a-site (activity site), which bind different effectors. We studied these different binding states with atomistic simulation and used their coarse-grained contact information to analyze the protein dynamics. The results reveal that the effector-protein dynamics at the s-site and dimer interface formation are positively coupled. We further quantify the resonance level between these two events, which can be applied to other similar systems. At the a-site, different effector-binding states (ATP vs dATP) drastically alter the protein dynamics and affect the activity of the enzyme. On the basis of these results, we propose a new mechanism of how the a-site regulates enzyme activation.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Richard J Lindsay
- UT-ORNL Graduate School of Genome Science and Technology , Knoxville , Tennessee 37996 , United States
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
26
|
Abstract
Many proteins assemble into homomultimeric structures, with a number of subunits that can vary substantially among phylogenetic lineages. As protein-protein interactions require productive encounters among subunits, such variation might partially be explained by variation in cellular protein abundance. Protein abundance in turn depends on the intrinsic rates of production and decay of mRNA and protein molecules, as well as rates of cell growth and division. Using a stochastic framework for prediction of the multimeric state of a protein as a function of these processes and the free energy associated with interface-interface binding, we demonstrate agreement with a wide class of proteins using E. coli proteome data. As such, this platform, which links protein quaternary structure with biochemical rates governing gene expression, protein association and dissociation, and cell growth and division, can be extended to evolutionary models for the emergence and diversification of multimers. While it is tempting to think of multimerization as adaptive, the diversity of multimeric states raises the question of its functional role and impact on fitness. As a force driving selection, we consider the possible increase in enzymatic activity of proteins arising strictly as a consequence of interface-interface binding-namely, enhanced stability to degradation, substrate binding affinity, or catalytic rate of multimers with respect to monomers without invoking further conformational changes, as in allostery. For fixed cost of protein production, we find a benefit conferred by multimers that is dependent on context and can therefore become different in diverging lineages.
Collapse
Affiliation(s)
- Kyle Hagner
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Sima Setayeshgar
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
27
|
Sajib AA, Islam T, Paul N, Yeasmin S. Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis. J Genet Eng Biotechnol 2018; 16:769-775. [PMID: 30733798 PMCID: PMC6353654 DOI: 10.1016/j.jgeb.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 02/08/2023]
Abstract
Metformin is one of the first-line and most widely prescribed drugs to treat type 2 diabetes (T2D). Its clearance from circulation is mostly facilitated by SLC22A2 (OCT2) in the renal cells. SLC22A2 is a polyspecific organic cation transporter and mediate transport of structurally unrelated endogenous and exogenous compounds including many drugs. rs316019 (p.270A > S) is the most common variant of SLC22A2 with a frequency as high as 15% or more in many populations. The 270S form of SLC22A2 clears metformin from circulation at much reduced level compared to the 270A form. If accumulated, metformin increases plasma lactate level in a concentration-dependent manner which can lead to a condition known as metformin-associated lactic acidosis (MALA). MALA is a potentially life-threatening complication with a mortality rate of 30-50%. Pre-existing clinical conditions, such as renal impairment, sepsis, anoxia, etc may make individuals more prone to MALA. In this study, we used computational approaches to investigate the effect of 270A > S change in SLC22A2 on interaction with metformin and other drugs. Based on the structural models, all substrates bind to the same pocket of SLC22A2. The substrates fit better to the binding site of 270A form of SLC22A2. The binding site has a few core interacting residues, among which SER358 appears to be the most important. It is an in silico prediction that the T2D patients, who are under metformin regimen, should be cautious in taking ranitidine (an over-the-counter sold drug) on a regular basis as it may lead to metformin associated lactate accumulation in blood.
Collapse
Affiliation(s)
- Abu Ashfaqur Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | | |
Collapse
|
28
|
Álvarez-Cao ME, González R, Pernas MA, Rúa ML. Contribution of the Oligomeric State to the Thermostability of Isoenzyme 3 from Candida rugosa. Microorganisms 2018; 6:E108. [PMID: 30347699 PMCID: PMC6313406 DOI: 10.3390/microorganisms6040108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
Thermophilic proteins have evolved different strategies to maintain structure and function at high temperatures; they have large, hydrophobic cores, and feature increased electrostatic interactions, with disulfide bonds, salt-bridging, and surface charges. Oligomerization is also recognized as a mechanism for protein stabilization to confer a thermophilic adaptation. Mesophilic proteins are less thermostable than their thermophilic homologs, but oligomerization plays an important role in biological processes on a wide variety of mesophilic enzymes, including thermostabilization. The mesophilic yeast Candida rugosa contains a complex family of highly related lipase isoenzymes. Lip3 has been purified and characterized in two oligomeric states, monomer (mLip3) and dimer (dLip3), and crystallized in a dimeric conformation, providing a perfect model for studying the effects of homodimerization on mesophilic enzymes. We studied kinetics and stability at different pHs and temperatures, using the response surface methodology to compare both forms. At the kinetic level, homodimerization expanded Lip3 specificity (serving as a better catalyst on soluble substrates). Indeed, dimerization increased its thermostability by more than 15 °C (maximum temperature for dLip3 was out of the experimental range; >50 °C), and increased the pH stability by nearly one pH unit, demonstrating that oligomerization is a viable strategy for the stabilization of mesophilic enzymes.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - Roberto González
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María A Pernas
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María Luisa Rúa
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
29
|
Tiwari SP, Reuter N. Conservation of intrinsic dynamics in proteins — what have computational models taught us? Curr Opin Struct Biol 2018; 50:75-81. [DOI: 10.1016/j.sbi.2017.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
30
|
Bianchetti L, Wassmer B, Defosset A, Smertina A, Tiberti ML, Stote RH, Dejaegere A. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain. Biochim Biophys Acta Gen Subj 2018; 1862:1810-1825. [PMID: 29723544 DOI: 10.1016/j.bbagen.2018.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. METHODS We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. RESULTS Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. CONCLUSIONS Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. GENERAL SIGNIFICANCE This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research.
Collapse
Affiliation(s)
- Laurent Bianchetti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Bianca Wassmer
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Audrey Defosset
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Anna Smertina
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marion L Tiberti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Roland H Stote
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Annick Dejaegere
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France.
| |
Collapse
|
31
|
Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 2018; 359:930-935. [PMID: 29472485 PMCID: PMC6587588 DOI: 10.1126/science.aam7229] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
Oligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs. A hierarchy of assembly, involving intermediates that are populated only fleetingly at equilibrium, ensures selective oligomerization. Conformational flexibility at noninterfacial regions in the monomers prevents coassembly, allowing interfaces to remain largely conserved. Homomeric oligomers must overcome the entropic benefit of coassembly and, accordingly, homomeric paralogs comprise fewer subunits than homomers that have no paralogs.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dale A Shepherd
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Erik G Marklund
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Indu Santhanagoplan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Matteo T Degiacomi
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Arthur Laganowsky
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Timothy M Allison
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Eman Basha
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael T Marty
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Martin R Galpin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Andrew J Baldwin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
32
|
Dey S, Levy ED. Inferring and Using Protein Quaternary Structure Information from Crystallographic Data. Methods Mol Biol 2018; 1764:357-375. [PMID: 29605927 DOI: 10.1007/978-1-4939-7759-8_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A precise knowledge of the quaternary structure of proteins is essential to illuminate both their function and their evolution. The major part of our knowledge on quaternary structure is inferred from X-ray crystallography data, but this inference process is hard and error-prone. The difficulty lies in discriminating fortuitous protein contacts, which make up the lattice of protein crystals, from biological protein contacts that exist in the native cellular environment. Here, we review methods devised to discriminate between both types of contacts and describe resources for downloading protein quaternary structure information and identifying high-confidence quaternary structures. The use of high-confidence datasets of quaternary structures will be critical for the analysis of structural, functional, and evolutionary properties of proteins.
Collapse
Affiliation(s)
- Sucharita Dey
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Protein interaction perturbation profiling at amino-acid resolution. Nat Methods 2017; 14:1213-1221. [PMID: 29039417 DOI: 10.1038/nmeth.4464] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
The identification of genomic variants in healthy and diseased individuals continues to rapidly outpace our ability to functionally annotate these variants. Techniques that both systematically assay the functional consequences of nucleotide-resolution variation and can scale to hundreds of genes are urgently required. We designed a sensitive yeast two-hybrid-based 'off switch' for positive selection of interaction-disruptive variants from complex genetic libraries. Combined with massively parallel programmed mutagenesis and a sequencing readout, this method enables systematic profiling of protein-interaction determinants at amino-acid resolution. We defined >1,000 interaction-disrupting amino acid mutations across eight subunits of the BBSome, the major human cilia protein complex associated with the pleiotropic genetic disorder Bardet-Biedl syndrome. These high-resolution interaction-perturbation profiles provide a framework for interpreting patient-derived mutations across the entire protein complex and thus highlight how the impact of disease variation on interactome networks can be systematically assessed.
Collapse
|
34
|
Swint-Kruse L. Using Evolution to Guide Protein Engineering: The Devil IS in the Details. Biophys J 2017; 111:10-8. [PMID: 27410729 DOI: 10.1016/j.bpj.2016.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/18/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022] Open
Abstract
For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall, protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence (i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis, and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) challenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally important, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a protein's amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
35
|
Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering. Biochem J 2017; 474:1-19. [PMID: 28008088 DOI: 10.1042/bcj20160507] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
A central goal in molecular evolution is to understand the ways in which genes and proteins evolve in response to changing environments. In the absence of intact DNA from fossils, ancestral sequence reconstruction (ASR) can be used to infer the evolutionary precursors of extant proteins. To date, ancestral proteins belonging to eubacteria, archaea, yeast and vertebrates have been inferred that have been hypothesized to date from between several million to over 3 billion years ago. ASR has yielded insights into the early history of life on Earth and the evolution of proteins and macromolecular complexes. Recently, however, ASR has developed from a tool for testing hypotheses about protein evolution to a useful means for designing novel proteins. The strength of this approach lies in the ability to infer ancestral sequences encoding proteins that have desirable properties compared with contemporary forms, particularly thermostability and broad substrate range, making them good starting points for laboratory evolution. Developments in technologies for DNA sequencing and synthesis and computational phylogenetic analysis have led to an escalation in the number of ancient proteins resurrected in the last decade and greatly facilitated the use of ASR in the burgeoning field of synthetic biology. However, the primary challenge of ASR remains in accurately inferring ancestral states, despite the uncertainty arising from evolutionary models, incomplete sequences and limited phylogenetic trees. This review will focus, firstly, on the use of ASR to uncover links between sequence and phenotype and, secondly, on the practical application of ASR in protein engineering.
Collapse
|
36
|
Abstract
A central goal in biochemistry is to explain the causes of protein sequence, structure, and function. Mainstream approaches seek to rationalize sequence and structure in terms of their effects on function and to identify function's underlying determinants by comparing related proteins to each other. Although productive, both strategies suffer from intrinsic limitations that have left important aspects of many proteins unexplained. These limits can be overcome by reconstructing ancient proteins, experimentally characterizing their properties, and retracing their evolution through time. This approach has proven to be a powerful means for discovering how historical changes in sequence produced the functions, structures, and other physical/chemical characteristics of modern proteins. It has also illuminated whether protein features evolved because of functional optimization, historical constraint, or blind chance. Here we review recent studies employing ancestral protein reconstruction and show how they have produced new knowledge not only of molecular evolutionary processes but also of the underlying determinants of modern proteins' physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
- Department of Human Genetics, University of Chicago, Illinois 60637
| |
Collapse
|
37
|
Holinski A, Heyn K, Merkl R, Sterner R. Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins 2017; 85:312-321. [PMID: 27936490 DOI: 10.1002/prot.25225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
Abstract
It is important to identify hotspot residues that determine protein-protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA-HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA-HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site-directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high-affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312-321. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra Holinski
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Kristina Heyn
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| |
Collapse
|
38
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
39
|
Rivalta I, Lisi GP, Snoeberger NS, Manley G, Loria JP, Batista VS. Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein-Protein Interface. Biochemistry 2016; 55:6484-6494. [PMID: 27797506 DOI: 10.1021/acs.biochem.6b00859] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and allosteric sites, without competing with endogenous ligands. Noncompetitive allosteric inhibitors disrupted allostery in the imidazole glycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima as evidenced by nuclear magnetic resonance, microsecond time-scale molecular dynamics simulations, isothermal titration calorimetry, and kinetic assays. The findings are particularly relevant for the development of allosteric antibiotics, herbicides, and antifungal compounds because IGPS is absent in mammals but provides an entry point to fundamental biosynthetic pathways in plants, fungi, and bacteria.
Collapse
Affiliation(s)
- Ivan Rivalta
- Univ Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1 , Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | | | | | | | | | | |
Collapse
|
40
|
Yang G, Hong N, Baier F, Jackson CJ, Tokuriki N. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects. Biochemistry 2016; 55:4583-93. [PMID: 27444875 DOI: 10.1021/acs.biochem.6b00561] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.
Collapse
Affiliation(s)
- Gloria Yang
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Nansook Hong
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Florian Baier
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
41
|
Galindo A, Soler N, McLaughlin SH, Yu M, Williams RL, Munro S. Structural Insights into Arl1-Mediated Targeting of the Arf-GEF BIG1 to the trans-Golgi. Cell Rep 2016; 16:839-50. [PMID: 27373159 PMCID: PMC4956616 DOI: 10.1016/j.celrep.2016.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/09/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022] Open
Abstract
The GTPase Arf1 is the major regulator of vesicle traffic at both the cis- and trans-Golgi. Arf1 is activated at the cis-Golgi by the guanine nucleotide exchange factor (GEF) GBF1 and at the trans-Golgi by the related GEF BIG1 or its paralog, BIG2. The trans-Golgi-specific targeting of BIG1 and BIG2 depends on the Arf-like GTPase Arl1. We find that Arl1 binds to the dimerization and cyclophilin binding (DCB) domain in BIG1 and report a crystal structure of human Arl1 bound to this domain. Residues in the DCB domain that bind Arl1 are required for BIG1 to locate to the Golgi in vivo. DCB domain-binding residues in Arl1 have a distinct conformation from those in known Arl1-effector complexes, and this plasticity allows Arl1 to interact with different effectors of unrelated structure. The findings provide structural insight into how Arf1 GEFs, and hence active Arf1, achieve their correct subcellular distribution.
Collapse
Affiliation(s)
- Antonio Galindo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nicolas Soler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Minmin Yu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
42
|
Fraser NJ, Liu JW, Mabbitt PD, Correy GJ, Coppin CW, Lethier M, Perugini MA, Murphy JM, Oakeshott JG, Weik M, Jackson CJ. Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability. J Mol Biol 2016; 428:2359-2371. [DOI: 10.1016/j.jmb.2016.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
43
|
Sudha G, Srinivasan N. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications. Proteins 2016; 84:1190-202. [PMID: 27177429 DOI: 10.1002/prot.25065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 11/08/2022]
Abstract
A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
44
|
Karmakar T, Roy S, Balaram H, Balasubramanian S. Structural and dynamical correlations in PfHGXPRT oligomers: A molecular dynamics simulation study. J Biomol Struct Dyn 2016; 34:1590-605. [PMID: 26441001 DOI: 10.1080/07391102.2015.1085441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PfHGXPRT is a key enzyme involved in purine nucleotide salvage pathway of the malarial parasite, Plasmodium falciparum. Atomistic molecular dynamics simulations have been performed on two types of PfHGXPRT dimers (D1 and D3) and its tetramer in their apo and ligand-bound states. A significant event in the catalytic cycle is the dynamics of a gate that provides access for the ligand molecules to the reaction center. The gate is formed by loops II and IV, the former being the most flexible. Large amplitude conformational changes have been observed in active site loop II. Upon complete occupancy of the active site, loop II gets stabilized due to specific interactions between its residues and the ligand molecules. Remote loop, X, is seen to be less fluxional in the D3 dimer than in D1 which is rationalized as due to the greater number of inter-subunit contacts in the former. The presence of ligand molecules in subunits of the tetramer further reduces the flexibility of loop X epitomizing a communication between this region and the active sites in the tetramer. These observations are in accordance with the outcomes of several experimental investigations. Participation of loop X in the oligomerization process has also been discerned. Between the two types of dimers in solution, D1 tetramerizes readily and thus would not be present as free dimers. We conjecture an equilibrium to exist between D3 and the tetramer in solution; upon binding of the ligand molecules to the D3 dimer, this equilibrium shifts toward the tetramer.
Collapse
Affiliation(s)
- Tarak Karmakar
- a Chemistry and Physics of Materials Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore , 560 064 India
| | - Sourav Roy
- b Molecular Biology and Genetics Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore , 560 064 India
| | - Hemalatha Balaram
- b Molecular Biology and Genetics Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore , 560 064 India
| | - Sundaram Balasubramanian
- a Chemistry and Physics of Materials Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore , 560 064 India
| |
Collapse
|
45
|
Tiwari SP, Reuter N. Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes. PLoS Comput Biol 2016; 12:e1004834. [PMID: 27015412 PMCID: PMC4807811 DOI: 10.1371/journal.pcbi.1004834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 11/19/2022] Open
Abstract
The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 β-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the β-barrel core is highly rigid, while the α-helices that flank the β-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design.
Collapse
Affiliation(s)
- Sandhya P. Tiwari
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
- * E-mail:
| |
Collapse
|
46
|
Mack KL, Shorter J. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Front Mol Biosci 2016; 3:8. [PMID: 27014702 PMCID: PMC4791398 DOI: 10.3389/fmolb.2016.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
47
|
Allosteric switch regulates protein-protein binding through collective motion. Proc Natl Acad Sci U S A 2016; 113:3269-74. [PMID: 26961002 DOI: 10.1073/pnas.1519609113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many biological processes depend on allosteric communication between different parts of a protein, but the role of internal protein motion in propagating signals through the structure remains largely unknown. Through an experimental and computational analysis of the ground state dynamics in ubiquitin, we identify a collective global motion that is specifically linked to a conformational switch distant from the binding interface. This allosteric coupling is also present in crystal structures and is found to facilitate multispecificity, particularly binding to the ubiquitin-specific protease (USP) family of deubiquitinases. The collective motion that enables this allosteric communication does not affect binding through localized changes but, instead, depends on expansion and contraction of the entire protein domain. The characterization of these collective motions represents a promising avenue for finding and manipulating allosteric networks.
Collapse
|
48
|
Miton CM, Tokuriki N. How mutational epistasis impairs predictability in protein evolution and design. Protein Sci 2016; 25:1260-72. [PMID: 26757214 DOI: 10.1002/pro.2876] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/05/2023]
Abstract
There has been much debate about the extent to which mutational epistasis, that is, the dependence of the outcome of a mutation on the genetic background, constrains evolutionary trajectories. The degree of unpredictability introduced by epistasis, due to the non-additivity of functional effects, strongly hinders the strategies developed in protein design and engineering. While many studies have addressed this issue through systematic characterization of evolutionary trajectories within individual enzymes, the field lacks a consensus view on this matter. In this work, we performed a comprehensive analysis of epistasis by analyzing the mutational effects from nine adaptive trajectories toward new enzymatic functions. We quantified epistasis by comparing the effect of mutations occurring between two genetic backgrounds: the starting enzyme (for example, wild type) and the intermediate variant on which the mutation occurred during the trajectory. We found that most trajectories exhibit positive epistasis, in which the mutational effect is more beneficial when it occurs later in the evolutionary trajectory. Approximately half (49%) of functional mutations were neutral or negative on the wild-type background, but became beneficial at a later stage in the trajectory, indicating that these functional mutations were not predictable from the initial starting point. While some cases of strong epistasis were associated with direct interaction between residues, many others were caused by long-range indirect interactions between mutations. Our work highlights the prevalence of epistasis in enzyme adaptive evolution, in particular positive epistasis, and suggests the necessity of incorporating mutational epistasis in protein engineering and design to create highly efficient catalysts.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
49
|
Sethi A, Clarke D, Chen J, Kumar S, Galeev TR, Regan L, Gerstein M. Reads meet rotamers: structural biology in the age of deep sequencing. Curr Opin Struct Biol 2015; 35:125-34. [PMID: 26658741 DOI: 10.1016/j.sbi.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/07/2023]
Abstract
Structure has traditionally been interrelated with sequence, usually in the framework of comparing sequences across species sharing a common fold. However, the nature of information within the sequence and structure databases is evolving, changing the type of comparisons possible. In particular, we now have a vast amount of personal genome sequences from human populations and a greater fraction of new structures contain interacting proteins within large complexes. Consequently, we have to recast our conception of sequence conservation and its relation to structure-for example, focusing more on selection within the human population. Moreover, within structural biology there is less emphasis on the discovery of novel folds and more on relating structures to networks of protein interactions. We cover this changing mindset here.
Collapse
Affiliation(s)
- Anurag Sethi
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Declan Clarke
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jieming Chen
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Sushant Kumar
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Timur R Galeev
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Lynne Regan
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States
| | - Mark Gerstein
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.
| |
Collapse
|
50
|
Rubio MÁ, Napolitano M, Ochoa de Alda JAG, Santamaría-Gómez J, Patterson CJ, Foster AW, Bru-Martínez R, Robinson NJ, Luque I. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress. Nucleic Acids Res 2015; 43:9905-17. [PMID: 26464444 PMCID: PMC4787780 DOI: 10.1093/nar/gkv1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.
Collapse
Affiliation(s)
- Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Mauro Napolitano
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Jesús A G Ochoa de Alda
- Facultad de Formación del Profesorado. Universidad de Extremadura, Avda de la Universidad s/n. E-10003, Cáceres, Spain
| | - Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, E-03080, Spain
| | | | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| |
Collapse
|