1
|
Moss CF, Ortiz ST, Wahlberg M. Adaptive echolocation behavior of bats and toothed whales in dynamic soundscapes. J Exp Biol 2023; 226:jeb245450. [PMID: 37161774 PMCID: PMC10184770 DOI: 10.1242/jeb.245450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
Collapse
Affiliation(s)
- Cynthia F. Moss
- Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sara Torres Ortiz
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|
2
|
Predator-Prey Relationship between Urban Bats and Insects Impacted by Both Artificial Light at Night and Spatial Clutter. BIOLOGY 2022; 11:biology11060829. [PMID: 35741350 PMCID: PMC9219930 DOI: 10.3390/biology11060829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Predators respond to the increase of prey by aggregation in space or foraging more often. However, foraging habitat suitability limits predators' responses. For nocturnal insectivorous bats, artificial light at night (ALAN) can trigger insect prey aggregation. It is not clear how ALAN might affect predator-prey relationships in the urban setting, where urban bats could have adapted to the city, and novel spatial complexity introduced by man-made objects might alter foraging habitat suitability. We strategically selected sites to represent different levels of ALAN and spatial complexity. We recorded bat commuting and foraging activities and collected aerial insects to examine how ALAN and spatial complexity affected bat-insect relationships. We found that insect biomass was positively correlated with ALAN, but was not affected by spatial complexity. Large-sized big brown bats and hoary bats positively responded to change of prey in open sites whereas small-sized eastern red bats and silver-haired bats positively responded in cluttered sites, suggesting that the impact of ALAN could vary when ALAN is coupled with urban spatial complexity. Our study demonstrates that foraging habitat suitability can alter which species might benefit from ALAN. Predator-prey relationships in cities are complex, but general ecological principles still apply in novel urban ecosystems.
Collapse
|
3
|
Corcoran AJ. Sing or Jam? Density-Dependent Food Competition Strategies in Mexican Free-Tailed Bats (Tadarida brasiliensis). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.877579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organisms compete for food in many ways, but it is often difficult to know why they use certain competition strategies over others. Bats compete for food either through aggression coupled with food-claiming signals or by actively interfering with a competitor’s sensory processing during prey pursuit (i.e., jamming). It is not known why these different behaviors are exhibited. I studied food competition between Mexican free-tailed bats (Tadarida brasiliensis) at foraging sites in Arizona and New Mexico using passive acoustic recording, insect sampling and 3-D infrared videography with or without supplemental lighting that concentrated prey. Bat activity was quantified by the number of recorded echolocation calls, while feeding behavior was indicated by feeding buzzes. Two competitive behaviors were observed—song, which was produced by bats chasing conspecifics, and sinFM calls, which jam echolocation of competitors pursuing prey. Song production was most common when few bats were present and feeding at low rates. In contrast, jamming signals were most common with many bats present and feeding at high rates. Supplemental lighting increased the numbers of bats, feeding buzzes and sinFM calls, but not song. These results indicate that bats employ different strategies—singing and chasing competitors at low bat densities but jamming competitors at high bat densities. Food claiming signals (song) may only be effective with few competitors present, whereas jamming can be effective with many bats at a foraging site. Multiple competition strategies appear to have evolved in bats that are used under different densities of competitors.
Collapse
|
4
|
Pedersen MB, Uebel AS, Beedholm K, Foskolos I, Stidsholt L, Madsen PT. Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task. J Exp Biol 2022; 225:274668. [PMID: 35262171 DOI: 10.1242/jeb.243917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022]
Abstract
Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. Like for electrical fish that display clear spectral jamming avoidance responses (JAR), some studies have reported that bats mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratios (ENR). Here we test the hypothesis that FM bats employ a spectral JAR in response to six masking noise-bands ranging from 15-90kHz, by measuring the -3dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared to silent controls (all P>0.05, 60.73±0.96 kHz) (mean±s.e.m.), and -3dB endpoints decreased in noise irrespective of treatment-type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent ranging from 0.05 [0.04-0.06 mean±95% CI] dB/dB noise for the most narrowband (15-30 kHz) to 0.17 [0.16-0.18] dB/dB noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth dependent Lombard response.
Collapse
Affiliation(s)
- Michael Bjerre Pedersen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Astrid Særmark Uebel
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Kristian Beedholm
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Ilias Foskolos
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Laura Stidsholt
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Peter Teglberg Madsen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
5
|
Darras KFA, Yusti E, Huang JC, Zemp D, Kartono AP, Wanger TC. Bat point counts: A novel sampling method shines light on flying bat communities. Ecol Evol 2021; 11:17179-17190. [PMID: 34938501 PMCID: PMC8668732 DOI: 10.1002/ece3.8356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Emerging technologies based on the detection of electro-magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts-a novel method to sample flying bats-to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near-infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist-netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time-efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near-infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture-based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture-based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non-invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.
Collapse
Affiliation(s)
- Kevin Felix Arno Darras
- AgroecologyDepartment of Crop SciencesUniversity of GöttingenGöttingenGermany
- Sustainable Agriculture & Technology LabSchool of EngineeringWestlake UniversityHangzhouChina
| | | | | | - Delphine‐Clara Zemp
- Biodiversity, Macroecology and BiogeographyUniversity of GöttingenGöttingenGermany
- Laboratory of Conservation BiologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Agus Priyono Kartono
- Department of Forest Resources Conservation and EcotourismFaculty of ForestryIPB UniversityBogorIndonesia
| | - Thomas Cherico Wanger
- Sustainable Agriculture & Technology LabSchool of EngineeringWestlake UniversityHangzhouChina
- Key Laboratory of Coastal Environment and Resources of Zhejiang ProvinceWestlake UniversityHangzhouChina
- GlobalAgroforestryNetwork.orgChina
| |
Collapse
|
6
|
Jones TK, Allen KM, Moss CF. Communication with self, friends and foes in active-sensing animals. J Exp Biol 2021; 224:273391. [PMID: 34752625 DOI: 10.1242/jeb.242637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals that rely on electrolocation and echolocation for navigation and prey detection benefit from sensory systems that can operate in the dark, allowing them to exploit sensory niches with few competitors. Active sensing has been characterized as a highly specialized form of communication, whereby an echolocating or electrolocating animal serves as both the sender and receiver of sensory information. This characterization inspires a framework to explore the functions of sensory channels that communicate information with the self and with others. Overlapping communication functions create challenges for signal privacy and fidelity by leaving active-sensing animals vulnerable to eavesdropping, jamming and masking. Here, we present an overview of active-sensing systems used by weakly electric fish, bats and odontocetes, and consider their susceptibility to heterospecific and conspecific jamming signals and eavesdropping. Susceptibility to interference from signals produced by both conspecifics and prey animals reduces the fidelity of electrolocation and echolocation for prey capture and foraging. Likewise, active-sensing signals may be eavesdropped, increasing the risk of alerting prey to the threat of predation or the risk of predation to the sender, or drawing competition to productive foraging sites. The evolutionary success of electrolocating and echolocating animals suggests that they effectively counter the costs of active sensing through rich and diverse adaptive behaviors that allow them to mitigate the effects of competition for signal space and the exploitation of their signals.
Collapse
Affiliation(s)
- Te K Jones
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kathryne M Allen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Novella‐Fernandez R, Juste J, Ibáñez C, Rebelo H, Russo D, Alberdi A, Kiefer A, Graham L, Paul H, Doncaster CP, Razgour O. Broad‐scale patterns of geographic avoidance between species emerge in the absence of fine‐scale mechanisms of coexistence. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Roberto Novella‐Fernandez
- School of Biological Sciences University of Southampton Southampton UK
- Terrestrial Ecology Research Group Technical University of Munich Freising Germany
| | - Javier Juste
- Estación Biológica de Doñana (CSIC) Sevilla Spain
- CIBER Epidemiology and Public Health (CIBERESP) Madrid Spain
| | | | - Hugo Rebelo
- CIBIO/Inbio University of Porto Vairão Portugal
| | - Danilo Russo
- Wildlife Research Unit Dipartimento di Agraria Università degli Studi di Napoli Federico II Portici Italy
| | - Antton Alberdi
- GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Andreas Kiefer
- Department of Biogeography Trier University Trier Germany
- NABU (Nature and Biodiversity Conservation Union) Berlin Germany
| | - Laura Graham
- Geography, Earth & Environmental Sciences University of Birmingham Birmingham UK
- Biodiversity, Ecology & Conservation Group International Institute for Applied Systems Analysis Laxenburg Austria
| | - Hynek Paul
- School of Physics and Astronomy University of Southampton Southampton UK
| | | | - Orly Razgour
- School of Biological Sciences University of Southampton Southampton UK
- Biosciences University of Exeter Exeter UK
| |
Collapse
|
8
|
Crisp RJ, Brent LJN, Carter GG. Social dominance and cooperation in female vampire bats. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210266. [PMID: 34295524 PMCID: PMC8261227 DOI: 10.1098/rsos.210266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
When group-living animals develop individualized social relationships, they often regulate cooperation and conflict through a dominance hierarchy. Female common vampire bats have been an experimental system for studying cooperative relationships, yet surprisingly little is known about female conflict. Here, we recorded the outcomes of 1023 competitive interactions over food provided ad libitum in a captive colony of 33 vampire bats (24 adult females and their young). We found a weakly linear dominance hierarchy using three common metrics (Landau's h' measure of linearity, triangle transitivity and directional consistency). However, patterns of female dominance were less structured than in many other group-living mammals. Female social rank was not clearly predicted by body size, age, nor reproductive status, and competitive interactions were not correlated with kinship, grooming nor food sharing. We therefore found no evidence that females groomed or shared food up a hierarchy or that differences in rank explained asymmetries in grooming or food sharing. A possible explanation for such apparently egalitarian relationships among female vampire bats is the scale of competition. Female vampire bats that are frequent roostmates might not often directly compete for food in the wild.
Collapse
Affiliation(s)
- Rachel J. Crisp
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Gerald G. Carter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Anderson HL, Perkes A, Gottfried JS, Davies HB, White DJ, Schmidt MF. Female signal jamming in a socially monogamous brood parasite. Anim Behav 2021; 172:155-169. [DOI: 10.1016/j.anbehav.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Guo D, Ding J, Liu H, Zhou L, Feng J, Luo B, Liu Y. Social calls influence the foraging behavior in wild big-footed myotis. Front Zool 2021; 18:3. [PMID: 33413435 PMCID: PMC7791762 DOI: 10.1186/s12983-020-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Why a variety of social animals emit foraging-associated calls during group foraging remains an open question. These vocalizations may be used to recruit conspecifics to food patches (i.e. food advertisement hypothesis) or defend food resources against competitors (food defence hypothesis), presumably depending on food availability. Insectivorous bats rely heavily on vocalizations for navigation, foraging, and social interactions. In this study, we used free-ranging big-footed myotis (Myotis macrodactylus Temminck, 1840) to test whether social calls produced in a foraging context serve to advertise food patches or to ward off food competitors. Using a combination of acoustic recordings, playback experiments with adult females and dietary monitoring (light trapping and DNA metabarcoding techniques), we investigated the relationship between insect availability and social vocalizations in foraging bats. RESULTS The big-footed myotis uttered low-frequency social calls composed of 7 syllable types during foraging interactions. Although the dietary composition of bats varied across different sampling periods, Diptera, Lepidoptera, and Trichoptera were the most common prey consumed. The number of social vocalizations was primarily predicted by insect abundance, insect species composition, and echolocation vocalizations from conspecifics. The number of conspecific echolocation pulses tended to decrease following the emission of most social calls. Feeding bats consistently decreased foraging attempts and food consumption during playbacks of social calls with distinctive structures compared to control trials. The duration of flight decreased 1.29-1.96 fold in the presence of social calls versus controls. CONCLUSIONS These results support the food defence hypothesis, suggesting that foraging bats employ social calls to engage in intraspecific food competition. This study provides correlative evidence for the role of insect abundance and diversity in influencing the emission of social calls in insectivorous bats. Our findings add to the current knowledge of the function of social calls in echolocating bats.
Collapse
Affiliation(s)
- Dongge Guo
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jianan Ding
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Heng Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Lin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Bo Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, 637002, China.
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| |
Collapse
|
11
|
Mazar O, Yovel Y. A sensorimotor model shows why a spectral jamming avoidance response does not help bats deal with jamming. eLife 2020; 9:55539. [PMID: 32718437 PMCID: PMC7406351 DOI: 10.7554/elife.55539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/21/2020] [Indexed: 12/05/2022] Open
Abstract
For decades, researchers have speculated how echolocating bats deal with masking by conspecific calls when flying in aggregations. To date, only a few attempts have been made to mathematically quantify the probability of jamming, or its effects. We developed a comprehensive sensorimotor predator-prey simulation, modeling numerous bats foraging in proximity. We used this model to examine the effectiveness of a spectral Jamming Avoidance Response (JAR) as a solution for the masking problem. We found that foraging performance deteriorates when bats forage near conspecifics, however, applying a JAR does not improve insect sensing or capture. Because bats constantly adjust their echolocation to the performed task (even when flying alone), further shifting the signals' frequencies does not mitigate jamming. Our simulations explain how bats can hunt successfully in a group despite competition and despite potential masking. This research demonstrates the advantages of a modeling approach when examining a complex biological system.
Collapse
Affiliation(s)
- Omer Mazar
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Diebold CA, Salles A, Moss CF. Adaptive Echolocation and Flight Behaviors in Bats Can Inspire Technology Innovations for Sonar Tracking and Interception. SENSORS 2020; 20:s20102958. [PMID: 32456142 PMCID: PMC7285367 DOI: 10.3390/s20102958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
Target tracking and interception in a dynamic world proves to be a fundamental challenge faced by both animals and artificial systems. To track moving objects under natural conditions, agents must employ strategies to mitigate interference and conditions of uncertainty. Animal studies of prey tracking and capture reveal biological solutions, which can inspire new technologies, particularly for operations in complex and noisy environments. By reviewing research on target tracking and interception by echolocating bats, we aim to highlight biological solutions that could inform new approaches to artificial sonar tracking and navigation systems. Most bat species use wideband echolocation signals to navigate dense forests and hunt for evasive insects in the dark. Importantly, bats exhibit rapid adaptations in flight trajectory, sonar beam aim, and echolocation signal design, which appear to be key to the success of these animals in a variety of tasks. The rich suite of adaptive behaviors of echolocating bats could be leveraged in new sonar tracking technologies by implementing dynamic sensorimotor feedback control of wideband sonar signal design, head, and ear movements.
Collapse
|
13
|
Roeleke M, Blohm T, Hoffmeister U, Marggraf L, Schlägel UE, Teige T, Voigt CC. Landscape structure influences the use of social information in an insectivorous bat. OIKOS 2020. [DOI: 10.1111/oik.07158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Roeleke
- Leibniz Inst. for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
- Plant Ecology and Nature Conservation, Univ. Potsdam Am Mühlenweg 3 DE‐14467 Potsdam Germany
| | - Torsten Blohm
- Honorary bat conservationist Prenzlau OT Schönwerder Germany
| | - Uwe Hoffmeister
- Natura Büro für Zoologische und Botanische Fachgutachten Schulzendorf Germany
| | - Lara Marggraf
- Leibniz Inst. for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
| | - Ulrike E. Schlägel
- Plant Ecology and Nature Conservation, Univ. Potsdam Am Mühlenweg 3 DE‐14467 Potsdam Germany
| | - Tobias Teige
- Büro für Faunistisch‐Ökologische Fachgutachten Berlin Germany
| | - Christian C. Voigt
- Leibniz Inst. for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
- Inst. of Biology, Freie Univ. Berlin Berlin Germany
| |
Collapse
|
14
|
Springall BT, Li H, Kalcounis-Rueppell MC. The In-Flight Social Calls of Insectivorous Bats: Species Specific Behaviors and Contexts of Social Call Production. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Affiliation(s)
- Francesco Ferretti
- Research Unit of Behavioural Ecology, Ethology and Wildlife Management, Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, Siena 53100, Italy
| | - Emiliano Mori
- Research Unit of Behavioural Ecology, Ethology and Wildlife Management, Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, Siena 53100, Italy
| |
Collapse
|
16
|
Alien war: ectoparasite load, diet and temporal niche partitioning in a multi-species assembly of small rodents. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02048-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Adams AM, Patricio A, Manohar R, Smotherman M. Influence of signal direction on sonar interference. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Guo D, Luo B, Zhang K, Liu M, Metzner W, Liu Y, Feng J. Social vocalizations of big-footed myotis (Myotis macrodactylus) during foraging. Integr Zool 2019; 14:446-459. [PMID: 30585415 DOI: 10.1111/1749-4877.12367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acoustic signals play a crucial role in transmitting information and maintaining social stability in gregarious animals, especially in echolocating bats, which rely primarily on biological sonar for navigating in the dark. In the context of foraging without relying on tactile, visual or olfactory cues, acoustic signals convey information not only on food but also on ownership and defense of resources. However, studies on such information remain fragmentary. In the present study, we aim to document the social vocal repertoire of Myotis macrodactylus at natural foraging sites. Multiple acoustic analyses and spectrographic classification revealed a rich foraging vocal repertoire comprising 6 simple syllables and 2 composites. Discriminant function analyses associated with a subset-validation procedure provided an optimal method to spectrographically classify all recorded sounds into different syllable types. Multidimensional scaling of median values of multiple parameters further confirmed notable differences among these syllables in a 3-D space. In addition, Euclidean distance analysis showed that there were some spectral similarities between specific social vocal syllables and feeding buzzes, which implied a potential jamming role. Altogether, the data indicate that bats at foraging sites under natural conditions used variant social vocalizations with different functions in addition to echolocation calls, providing supporting evidence for further work on the function and vocal mechanisms of acoustic communication in mammals.
Collapse
Affiliation(s)
- Dongge Guo
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Bo Luo
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong, China
| | - Kangkang Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Muxun Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Walter Metzner
- Department of Integrative Biology & Physiology, University of California, Los Angeles, California, USA
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
19
|
Geipel I, Steckel J, Tschapka M, Vanderelst D, Schnitzler HU, Kalko EK, Peremans H, Simon R. Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey. Curr Biol 2019; 29:2731-2736.e3. [DOI: 10.1016/j.cub.2019.06.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
|
20
|
Jones TK, Conner WE. The jamming avoidance response in echolocating bats. Commun Integr Biol 2019; 12:10-13. [PMID: 30891113 PMCID: PMC6419628 DOI: 10.1080/19420889.2019.1568818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/09/2019] [Indexed: 10/29/2022] Open
Abstract
Bats face many sources of acoustic interference in their natural environments, including other bats and potential prey items that affect their ability to interpret the returning echoes of their biosonar signals. To be able to navigate and forage successfully, bats must be able to counteract this interference and one of the ways they achieve this is by altering the various parameters of their echolocation. We describe these changes in signal design within the context of a modified definition of the jamming avoidance response originally applied to the signal changes of weakly electric fish. Both of these groups use active sensory systems that exhibit similarities in function but we take this opportunity to highlight major differences each groups' response to signal interference. These discrepancies form the basis of our need for an expanded description of the jamming avoidance response in echolocating bats.
Collapse
Affiliation(s)
- Te K Jones
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - William E Conner
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
21
|
Greif S, Yovel Y. Using on-board sound recordings to infer behaviour of free-moving wild animals. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb184689. [PMID: 30728226 DOI: 10.1242/jeb.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Technological advances in the last 20 years have enabled researchers to develop increasingly sophisticated miniature devices (tags) that record an animal's behaviour not from an observational, external viewpoint, but directly on the animals themselves. So far, behavioural research with these tags has mostly been conducted using movement or acceleration data. But on-board audio recordings have become more and more common following pioneering work in marine mammal research. The first questions that come to mind when recording sound on-board animals concern their vocal behaviour. When are they calling? How do they adjust their behaviour? What acoustic parameters do they change and how? However, other topics like foraging behaviour, social interactions or environmental acoustics can now be addressed as well and offer detailed insight into the animals' daily life. In this Review, we discuss the possibilities, advantages and limitations of on-board acoustic recordings. We focus primarily on bats as their active-sensing, echolocating lifestyle allows many approaches to a multi-faceted acoustic assessment of their behaviour. The general ideas and concepts, however, are applicable to many animals and hopefully will demonstrate the versatility of on-board acoustic recordings and stimulate new research.
Collapse
Affiliation(s)
- Stefan Greif
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
O'Mara MT, Wikelski M, Kranstauber B, Dechmann DKN. Common noctules exploit low levels of the aerosphere. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181942. [PMID: 30891300 PMCID: PMC6408413 DOI: 10.1098/rsos.181942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Aerial habitats present a challenge to find food across a large potential search volume, particularly for insectivorous bats that rely on echolocation calls with limited detection range and may forage at heights over 1000 m. To understand how bats use vertical space, we tracked one to five foraging flights of eight common noctules (Nyctalus noctula). Bats were tracked for their full foraging session (87.27 ± 24 min) using high-resolution atmospheric pressure radio transmitters that allowed us to calculate height and wingbeat frequency. Bats used diverse flight strategies, but generally flew lower than 40 m, with scouting flights to 100 m and a maximum of 300 m. We found no influence of weather on height, and high-altitude ascents were not preceded by an increase in foraging effort. Wingbeat frequency was independent from climbing or descending flight, and bats skipped wingbeats or glided in 10% of all observations. Wingbeat frequency was positively related to capture mass, and wingbeat frequency was positively related to time of night, indicating an effect of load increase over a foraging bout. Overall, individuals used a wide range of airspace including altitudes that put them at increased risk from human-made structures. Further work is needed to test the context of these flight decisions, particularly as individuals migrate throughout Europe.
Collapse
Affiliation(s)
- M. Teague O'Mara
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| | - Bart Kranstauber
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Dina K. N. Dechmann
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| |
Collapse
|
23
|
Extracting Interactions between Flying Bat Pairs Using Model-Free Methods. ENTROPY 2019; 21:e21010042. [PMID: 33266758 PMCID: PMC7514148 DOI: 10.3390/e21010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/15/2018] [Accepted: 01/03/2019] [Indexed: 12/03/2022]
Abstract
Social animals exhibit collective behavior whereby they negotiate to reach an agreement, such as the coordination of group motion. Bats are unique among most social animals, since they use active sensory echolocation by emitting ultrasonic waves and sensing echoes to navigate. Bats’ use of active sensing may result in acoustic interference from peers, driving different behavior when they fly together rather than alone. The present study explores quantitative methods that can be used to understand whether bats flying in pairs move independently of each other or interact. The study used field data from bats in flight and is based on the assumption that interactions between two bats are evidenced in their flight patterns. To quantify pairwise interaction, we defined the strength of coupling using model-free methods from dynamical systems and information theory. We used a control condition to eliminate similarities in flight path due to environmental geometry. Our research question is whether these data-driven methods identify directed coupling between bats from their flight paths and, if so, whether the results are consistent between methods. Results demonstrate evidence of information exchange between flying bat pairs, and, in particular, we find significant evidence of rear-to-front coupling in bats’ turning behavior when they fly in the absence of obstacles.
Collapse
|
24
|
Affiliation(s)
- Yann Gager
- Department of Migration and Immuno‐ecologyMax Planck Institute for Ornithology Am Obstberg 1 Radolfzell 78315 Germany
- Department of BiologyUniversity of Konstanz Konstanz 78457 Germany
- International Max Planck Research School for Organismal BiologyUniversity of Konstanz Konstanz 78457 Germany
| |
Collapse
|
25
|
Zeale MRK, Stone EL, Zeale E, Browne WJ, Harris S, Jones G. Experimentally manipulating light spectra reveals the importance of dark corridors for commuting bats. GLOBAL CHANGE BIOLOGY 2018; 24:5909-5918. [PMID: 30288876 DOI: 10.1111/gcb.14462] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The rapid global spread of artificial light at night is causing unprecedented disruption to ecosystems. In otherwise dark environments, street lights restrict the use of major flight routes by some bats, including the threatened lesser horseshoe bat Rhinolophus hipposideros, and may disrupt foraging. Using radio tracking, we examined the response of individual female R. hipposideros to experimental street lights placed on hedgerows used as major flight routes. Hedgerows were illuminated on one side over four nights using lights with different emission spectra, while the opposite side of the hedge was not illuminated. Automated bat detectors were used to examine changes in overall bat activity by R. hipposideros and other bat species present. R. hipposideros activity reduced significantly under all light types, including red light, challenging a previously held assumption that red light is safe for bats. Despite this, R. hipposideros rapidly adapted to the presence of lights by switching their flight paths to the dark side of the hedgerow, enabling them to reach foraging sites without restriction. Red light had no effect on the activity of the other species present. Slow-flying Myotis spp. avoided orange, white and green light, while more agile Pipistrellus spp. were significantly more active at these light types compared to dark controls, most probably in response to accumulations of insect prey. No effect of any light type was found for Nyctalus or Eptesicus spp. Our findings demonstrate that caution must be used when promoting forms of lighting that are thought to be safe for wildlife before they are tested more widely. We argue that it is essential to preserve dark corridors to mitigate the impacts of artificial light at night on bat activity and movements.
Collapse
Affiliation(s)
- Matt R K Zeale
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emma L Stone
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emma Zeale
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Stephen Harris
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
Breviglieri CPB, Romero GQ. Prey stimuli trigger trophic interception across ecosystems. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Crasso Paulo B. Breviglieri
- Department of Animal Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo 13083-970 Brazil
| | - Gustavo Q. Romero
- Department of Animal Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo 13083-970 Brazil
| |
Collapse
|
27
|
Jones TK, Wohlgemuth MJ, Conner WE. Active acoustic interference elicits echolocation changes in heterospecific bats. ACTA ACUST UNITED AC 2018; 221:jeb.176511. [PMID: 29950451 DOI: 10.1242/jeb.176511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Echolocating bats often forage in the presence of both conspecific and heterospecific individuals, which have the potential to produce acoustic interference. Recent studies have shown that at least one bat species, the Brazilian free-tailed bat (Tadarida brasiliensis), produces specialized social signals that disrupt the sonar of conspecific competitors. We herein discuss the differences between passive and active jamming signals and test whether heterospecific jamming occurs in species overlapping spatiotemporally, as well as whether such interference elicits a jamming avoidance response. We compare the capture rates of tethered moths and the echolocation parameters of big brown bats (Eptesicus fuscus) challenged with the playback of the jamming signal normally produced by Brazilian free-tailed bats and playback of deconstructed versions of this signal. There were no differences in the capture rates of targets with and without the jamming signal, although significant changes in both spectral and temporal features of the bats' echolocation were observed. These changes are consistent with improvements of the signal-to-noise ratio in the presence of acoustic interference. Accordingly, we propose to expand the traditional definition of the jamming avoidance response, stating that echolocation changes in response to interference should decrease similarity between the two signals, to include any change that increases the ability to separate returning echoes from active jamming stimuli originating from conspecific and heterospecific organisms. Flexibility in echolocation is an important characteristic for overcoming various forms of acoustic interference and may serve a purpose in interspecific interactions as well as intraspecific ones.
Collapse
Affiliation(s)
- Te K Jones
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Melville J Wohlgemuth
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William E Conner
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
28
|
Bohn K, Gillam E. In-flight social calls: a primer for biologists and managers studying echolocation. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent technological advances have permitted collection of immense data sets through automated recordings that are primarily aimed at capturing bat echolocation. Analyses of echolocation calls are used to identify species, relative abundance, and some aspects of behaviour, such as foraging or commuting. Here we propose that social calls recorded in flight are also valuable tools for understanding bat ecology and behaviour. First, we examine how and why the acoustic structure of social calls differ from echolocation. Differences in form make social calls often, but not always, easy to identify. We then use a case study on in-flight song in Brazilian free-tailed bat (Tadarida brasiliensis (I. Geoffroy, 1824)) to show that what may appear as echolocation may instead be predominantly used for social communication. Next, we review three basic functions of in-flight social calls, including examples of each, and develop a framework for testing these alternative functions using automated recordings. In a second case study, we use automated recordings of the endangered Florida bonneted bat (Eumops floridanus (G.M. Allen, 1932)) to illustrate how behavioural information can be gleaned by examining patterns of social call production. Finally, we discuss why and how social calls provide novel information that can be crucial for conservation and management efforts.
Collapse
Affiliation(s)
- K.M. Bohn
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21211, USA
| | - E.H. Gillam
- Department of Biological Sciences, North Dakota State University, 218 Stevens Hall, Fargo, ND 58102, USA
| |
Collapse
|
29
|
Roeleke M, Johannsen L, Voigt CC. How Bats Escape the Competitive Exclusion Principle—Seasonal Shift From Intraspecific to Interspecific Competition Drives Space Use in a Bat Ensemble. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Fu Y, Kloepper LN. A systematic method for isolating, tracking and discriminating time-frequency components of bat echolocation calls. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:716. [PMID: 29495687 DOI: 10.1121/1.5023205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Echolocating bats can rapidly modify frequency modulation (FM) curvatures of their calls when facing challenging echolocation tasks. Frequency parameters, such as start/end/peak frequency, have often been extracted from the time-frequency domain to study the call variation. Even though this kind of signal investigation method reveals important findings, these approaches to analyze bat echolocation calls use bulk parameters, which hide subtleties in the call structure that may be important to the bat. In some cases, calls can have the same start and end frequencies but have different FM curvatures, and subsequently may influence the sensory task performance. In the present study, the authors demonstrate an algorithm using a combination of digital filters, power limited time-frequency information, derivative dynamic time warping, and agglomerative hierarchical clustering to extract and categorize the time-frequency components (TFCs) of 21 calls from Brazilian free-tailed bat (Tadarida brasiliensis) to quantitatively compare FM curvatures. The detailed curvature analysis shows an alternative perspective to look into the TFCs and hence serves as the preliminary step to understand the adaptive call design of bats.
Collapse
Affiliation(s)
- Yanqing Fu
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| | - Laura N Kloepper
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| |
Collapse
|
31
|
Corcoran AJ, Moss CF. Sensing in a noisy world: lessons from auditory specialists, echolocating bats. J Exp Biol 2017; 220:4554-4566. [DOI: 10.1242/jeb.163063] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
All animals face the essential task of extracting biologically meaningful sensory information from the ‘noisy’ backdrop of their environments. Here, we examine mechanisms used by echolocating bats to localize objects, track small prey and communicate in complex and noisy acoustic environments. Bats actively control and coordinate both the emission and reception of sound stimuli through integrated sensory and motor mechanisms that have evolved together over tens of millions of years. We discuss how bats behave in different ecological scenarios, including detecting and discriminating target echoes from background objects, minimizing acoustic interference from competing conspecifics and overcoming insect noise. Bats tackle these problems by deploying a remarkable array of auditory behaviors, sometimes in combination with the use of other senses. Behavioral strategies such as ceasing sonar call production and active jamming of the signals of competitors provide further insight into the capabilities and limitations of echolocation. We relate these findings to the broader topic of how animals extract relevant sensory information in noisy environments. While bats have highly refined abilities for operating under noisy conditions, they face the same challenges encountered by many other species. We propose that the specialized sensory mechanisms identified in bats are likely to occur in analogous systems across the animal kingdom.
Collapse
Affiliation(s)
- Aaron J. Corcoran
- Department of Biology, Wake Forest University, Box 7325 Reynolda Station, Winston-Salem, NC 27109, USA
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Perkins ML, Frank HK, Pauly JM, Hadly EA. Frequency shifting reduces but does not eliminate acoustic interference between echolocating bats: A theoretical analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2133. [PMID: 29092549 DOI: 10.1121/1.5006928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bats have been observed to shift the frequency of their echolocation calls in the presence of other echolocating bats, ostensibly as a way to reduce acoustic interference. Few studies, however, have examined the theoretical efficacy of such jamming avoidance responses. The present study uses the wideband ambiguity function to analyze the effects of acoustic interference from conspecifics and congeneric heterospecifics on the target acquisition ability of Myotis californicus and Myotis yumanensis, specifically whether unilateral or bilateral frequency shifts reduce the effects of such interference. Model results suggest that in conspecific interactions, M. yumanensis recovers its target acquisition ability more completely and with less absolute frequency shift than does M. californicus, but that alternative methods of jamming avoidance may be easier to implement. The optimal strategy for reducing heterospecific interference is for M. californicus to downshift its call and M. yumanensis to upshift its call, which exaggerates a preexisting difference in mean frequency between the calls of the two species. Further empirical research would elucidate whether these species do in practice actively employ frequency shifting or other means for jamming avoidance, as well as illuminate the role of acoustic interference in niche partitioning.
Collapse
Affiliation(s)
- Melinda L Perkins
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Hannah K Frank
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - John M Pauly
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
33
|
Predator counteradaptations: stealth echolocation overcomes insect sonar-jamming and evasive-manoeuvring defences. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Jiang T, Long Z, Ran X, Zhao X, Xu F, Qiu F, Kanwal JS, Feng J. Using sounds for making decisions: greater tube-nosed bats prefer antagonistic calls over non-communicative sounds when feeding. Biol Open 2016; 5:1864-1868. [PMID: 27815241 PMCID: PMC5200914 DOI: 10.1242/bio.021865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bats vocalize extensively within different social contexts. The type and extent of information conveyed via their vocalizations and their perceptual significance, however, remains controversial and difficult to assess. Greater tube-nosed bats, Murina leucogaster, emit calls consisting of long rectangular broadband noise burst (rBNBl) syllables during aggression between males. To experimentally test the behavioral impact of these sounds for feeding, we deployed an approach and place-preference paradigm. Two food trays were placed on opposite sides and within different acoustic microenvironments, created by sound playback, within a specially constructed tent. Specifically, we tested whether the presence of rBNBl sounds at a food source effectively deters the approach of male bats in comparison to echolocation sounds and white noise. In each case, contrary to our expectation, males preferred to feed at a location where rBNBl sounds were present. We propose that the species-specific rBNBl provides contextual information, not present within non-communicative sounds, to facilitate approach towards a food source.
Collapse
Affiliation(s)
- Tinglei Jiang
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China.,Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China
| | - Zhenyu Long
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China
| | - Xin Ran
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China
| | - Xue Zhao
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China
| | - Fei Xu
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China
| | - Fuyuan Qiu
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China
| | - Jagmeet S Kanwal
- Department of Neurology, Georgetown University, Washington, DC 20057, USA
| | - Jiang Feng
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China .,Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Jingyue St 2555, Changchun 130117, People's Republic of China
| |
Collapse
|
35
|
The origins and diversity of bat songs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:535-54. [DOI: 10.1007/s00359-016-1105-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023]
|
36
|
Wilson DR, Ratcliffe LM, Mennill DJ. Black-capped chickadees, Poecile atricapillus, avoid song overlapping: evidence for the acoustic interference hypothesis. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
'Compromise' in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus). PLoS One 2016; 11:e0151382. [PMID: 27029005 PMCID: PMC4814132 DOI: 10.1371/journal.pone.0151382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
Each animal population has its own acoustic signature which facilitates identification, communication and reproduction. The sonar signals of bats can convey social information, such as species identity and contextual information. The goal of this study was to determine whether bats adjust their echolocation call structures to mutually recognize and communicate when they encounter the bats from different colonies. We used the intermediate leaf-nosed bats (Hipposideros larvatus) as a case study to investigate the variations of echolocation calls when bats from one colony were introduced singly into the home cage of a new colony or two bats from different colonies were cohabitated together for one month. Our experiments showed that the single bat individual altered its peak frequency of echolocation calls to approach the call of new colony members and two bats from different colonies adjusted their call frequencies toward each other to a similar frequency after being chronically cohabitated. These results indicate that the 'compromise' in echolocation calls might be used to ensure effective mutual communication among bats.
Collapse
|
38
|
Lin Y, Abaid N. Modeling perspectives on echolocation strategies inspired by bats flying in groups. J Theor Biol 2015; 387:46-53. [PMID: 26386143 DOI: 10.1016/j.jtbi.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/18/2015] [Accepted: 09/09/2015] [Indexed: 11/28/2022]
Abstract
Bats navigating with echolocation - which is a type of active sensing achieved by interpreting echoes resulting from self-generated ultrasonic pulses - exhibit unique behaviors during group flight. While bats may benefit from eavesdropping on their peers׳ echolocation, they also potentially suffer from confusion between their own and peers׳ pulses, caused by an effect called frequency jamming. This hardship of group flight is supported by experimental observations of bats simplifying their sound-scape by shifting their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and varying pulse emission rate from a modeling perspective to understand these behaviors׳ potential benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eavesdropping can reduce collisions compared to those neglecting information from peers. In large populations, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases; conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information generated per bat. These strategies offer benefits for both biological and engineered systems, since frequency jamming is a concern in systems using active sensing.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States.
| | - Nicole Abaid
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States.
| |
Collapse
|
39
|
Wang T. A hypothesis on the biological origins and social evolution of music and dance. Front Neurosci 2015; 9:30. [PMID: 25741232 PMCID: PMC4332322 DOI: 10.3389/fnins.2015.00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
The origins of music and musical emotions is still an enigma, here I propose a comprehensive hypothesis on the origins and evolution of music, dance, and speech from a biological and sociological perspective. I suggest that every pitch interval between neighboring notes in music represents corresponding movement pattern through interpreting the Doppler effect of sound, which not only provides a possible explanation for the transposition invariance of music, but also integrates music and dance into a common form—rhythmic movements. Accordingly, investigating the origins of music poses the question: why do humans appreciate rhythmic movements? I suggest that human appreciation of rhythmic movements and rhythmic events developed from the natural selection of organisms adapting to the internal and external rhythmic environments. The perception and production of, as well as synchronization with external and internal rhythms are so vital for an organism's survival and reproduction, that animals have a rhythm-related reward and emotion (RRRE) system. The RRRE system enables the appreciation of rhythmic movements and events, and is integral to the origination of music, dance and speech. The first type of rewards and emotions (rhythm-related rewards and emotions, RRREs) are evoked by music and dance, and have biological and social functions, which in turn, promote the evolution of music, dance and speech. These functions also evoke a second type of rewards and emotions, which I name society-related rewards and emotions (SRREs). The neural circuits of RRREs and SRREs develop in species formation and personal growth, with congenital and acquired characteristics, respectively, namely music is the combination of nature and culture. This hypothesis provides probable selection pressures and outlines the evolution of music, dance, and speech. The links between the Doppler effect and the RRREs and SRREs can be empirically tested, making the current hypothesis scientifically concrete.
Collapse
Affiliation(s)
- Tianyan Wang
- School of Life Science, Tsinghua University Beijing, China ; Ocean Science and Technology Division, Graduate School at Shenzhen, Tsinghua University Shenzhen, China ; Gene and Cell Engineering Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| |
Collapse
|
40
|
Merzendorfer H. Bat's jamming sonar tricks echolocation in rivals. J Exp Biol 2015. [DOI: 10.1242/jeb.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
|