1
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Chen X, He Y, Tian Y, Wang Y, Wu Z, Lan T, Wang H, Cheng K, Xie P. Different Serotypes of Adeno-Associated Virus Vector- and Lentivirus-Mediated Tropism in Choroid Plexus by Intracerebroventricular Delivery. Hum Gene Ther 2020; 31:440-447. [PMID: 32056463 DOI: 10.1089/hum.2019.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene expression by viral vectors is an effective method for researchers to explore the function of gene products in a target tissue. The choroid plexus (CP) is an important target for gene therapy of neuropsychiatric diseases such as Alzheimer's disease and major depressive disorder. However, viral tropism in CP has not been well studied as a result of limited viral vector applications. To identify CP-specific viral vectors, we intracerebroventricularly administered six different serotypes of adeno-associated virus (AAV) vectors (AAV2/1, AAV2/5, AAV2/8, AAV2/9, AAV2-BR1, and AAV2-PHP.eB) and lentivirus in adult mice. Tropism in CP was compared among these viruses. We found that AAV2/5 and AAV2/8 displayed remarkable infections in CP, while AAV2/1 infected both ependymal cells and cells in the CP. Except for the low infection intensity of AAV2/9 and lentivirus in the CP, no infection intensity was found for CP tissues injected with AAV2-BR1 or AAV2-PHP.eB. Green fluorescence protein expression in the CP after AAV2/5 infection was confirmed by Western blotting. AAV2/5-mediated tropism in epithelial cells of the CP was verified by immunostaining with transthyretin. In this study, we identified for the first time that serotype-specific AAVs 5 and 8 may be robust research tools for intracerebroventricular gene delivery.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Yong He
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Yu Tian
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,College of Biomedical Engineering
| | - Zhonghao Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,College of Biomedical Engineering
| | - Tianlan Lan
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,College of Biomedical Engineering
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Ke Cheng
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Basic Medical College; Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|