1
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
2
|
Effects of endocannabinoid system modulation on social behaviour: A systematic review of animal studies. Neurosci Biobehav Rev 2022; 138:104680. [PMID: 35513169 DOI: 10.1016/j.neubiorev.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
Abstract
There is a clear link between psychiatric disorders and social behaviour, and evidence suggests the involvement of the endocannabinoid system (ECS). A systematic review of preclinical literature was conducted using MEDLINE (PubMed) and PsychINFO databases to examine whether pharmacological and/or genetic manipulations of the ECS alter social behaviours in wildtype (WT) animals or models of social impairment (SIM). Eighty studies were included. Risk of bias (RoB) was assessed using SYRCLE's RoB tool. While some variability was evident, studies most consistently found that direct cannabinoid receptor (CBR) agonism decreased social behaviours in WT animals, while indirect CBR activation via enzyme inhibition or gene-knockout increased social behaviours. Direct and, more consistently, indirect CBR activation reversed social deficits in SIM. These CBR-mediated effects were often sex- and developmental-phase-dependent and blocked by CBR antagonism. Overall, ECS enzyme inhibition may improve social behaviour in SIM, suggesting the potential usefulness of ECS enzyme inhibition as a therapeutic approach for social deficits. Future research should endeavour to elucidate ECS status in neuropsychiatric disorders characterized by social deficits.
Collapse
|
3
|
Coleman JR, Madularu D, Ortiz RJ, Athanassiou M, Knudsen A, Alkislar I, Cai X, Kulkarni PP, Cushing BS, Ferris CF. Changes in brain structure and function following chronic exposure to inhaled vaporised cannabis during periadolescence in female and male mice: A multimodal MRI study. Addict Biol 2022; 27:e13169. [PMID: 35470553 DOI: 10.1111/adb.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Social norms and legality surrounding the use of medical and recreational cannabis are changing rapidly. The prevalence of cannabis use in adolescence is increasing. The aim of this study was to assess any sex-based neurobiological effects of chronically inhaled, vaporised cannabis on adolescent female and male mice. METHODS Female and male mice were exposed daily to vaporised cannabis (10.3% Δ-9-tetrahydrocannabinol [THC] and 0.05% cannabidiol [CBD]) or placebo from postnatal day 23 to day 51. Following cessation of treatment, mice were examined for changes in brain structure and function using noninvasive multimodal magnetic resonance imaging (MRI). Data from voxel-based morphometry, diffusion weighted imaging and rest state functional connectivity were registered to and analysed with a 3D mouse atlas with 139 brain areas. Following imaging, mice were tested for their preference for a novel object. RESULTS The effects were sexually dimorphic with females showing a unique distribution and inverse correlation between measures of fractional anisotropy and apparent diffusion coefficient localised to the forebrain and hindbrain. In contrast males displayed significant increased functional coupling with the thalamus, hypothalamus and brainstem reticular activating system as compared with controls. Cannabis males also presented with altered hippocampal coupling and deficits in cognitive function. CONCLUSION Chronic exposure to inhaled vaporised cannabis had significant effects on brain structure and function in early adulthood corroborating much of the literature. Females presented with changes in grey matter microarchitecture, while males showed altered functional connectivity in hippocampal circuitry and deficits in object recognition.
Collapse
Affiliation(s)
- James R. Coleman
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Dan Madularu
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Richard J. Ortiz
- Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
| | - Maria Athanassiou
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal Montreal Québec Canada
| | - Alexa Knudsen
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Ilayda Alkislar
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Xuezhu Cai
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Praveen P. Kulkarni
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Bruce S. Cushing
- Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
| | - Craig F. Ferris
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| |
Collapse
|
4
|
A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sci 2020; 10:brainsci10020102. [PMID: 32069958 PMCID: PMC7071506 DOI: 10.3390/brainsci10020102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabis has been associated with deficits in memory performance. However, the neural correlates that may underpin impairments remain unclear. We carried out a systematic review of functional magnetic resonance imaging (fMRI) studies investigating brain functional alterations in cannabis users (CU) compared to nonusing controls while performing memory tasks, complemented with focused narrative reviews of relevant preclinical and human studies. Twelve studies employing fMRI were identified finding functional brain activation during memory tasks altered in CU. Memory performance studies showed CU performed worse particularly during verbal memory tasks. Longitudinal studies suggest that cannabis use may have a causal role in memory deficits. Preclinical studies have not provided conclusive evidence of memory deficits following cannabinoid exposure, although they have shown evidence of cannabinoid-induced structural and histological alteration. Memory performance deficits may be related to cannabis use, with lower performance possibly underpinned by altered functional activation. Memory impairments may be associated with the level of cannabis exposure and use of cannabis during developmentally sensitive periods, with possible improvement following cessation of cannabis use.
Collapse
|
5
|
Mira RG, Lira M, Tapia-Rojas C, Rebolledo DL, Quintanilla RA, Cerpa W. Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Front Behav Neurosci 2020; 13:288. [PMID: 32038190 PMCID: PMC6993074 DOI: 10.3389/fnbeh.2019.00288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Problematic alcohol drinking and alcohol dependence are an increasing health problem worldwide. Alcohol abuse is responsible for approximately 5% of the total deaths in the world, but addictive consumption of it has a substantial impact on neurological and memory disabilities throughout the population. One of the better-studied brain areas involved in cognitive functions is the hippocampus, which is also an essential brain region targeted by ethanol. Accumulated evidence in several rodent models has shown that ethanol treatment produces cognitive impairment in hippocampal-dependent tasks. These adverse effects may be related to the fact that ethanol impairs the cellular and synaptic plasticity mechanisms, including adverse changes in neuronal morphology, spine architecture, neuronal communication, and finally an increase in neuronal death. There is evidence that the damage that occurs in the different brain structures is varied according to the stage of development during which the subjects are exposed to ethanol, and even much earlier exposure to it would cause damage in the adult stage. Studies on the cellular and cognitive deficiencies produced by alcohol in the brain are needed in order to search for new strategies to reduce alcohol neuronal toxicity and to understand its consequences on memory and cognitive performance with emphasis on the crucial stages of development, including prenatal events to adulthood.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile
| | - Matias Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Escuela de Obstetricia y Puericultura and Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
6
|
Abela AR, Rahbarnia A, Wood S, Lê AD, Fletcher PJ. Adolescent exposure to Δ9-tetrahydrocannabinol delays acquisition of paired-associates learning in adulthood. Psychopharmacology (Berl) 2019; 236:1875-1886. [PMID: 30694374 DOI: 10.1007/s00213-019-5171-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
RATIONALE AND OBJECTIVES Adolescence is a sensitive period of brain development, during which there may be a heightened vulnerability to the effects of drug use. Despite this, the long-term effects of cannabis use during this developmental period on cognition are poorly understood. METHODS We exposed adolescent rats to escalating doses of Δ9-tetrahydrocannabinol (THC)-the primary psychoactive component of cannabis-or vehicle solution during postnatal days (PND) 35-45, a period of development that is analogous to human adolescence (THC doses: PND 35-37, 2.5 mg/kg; PND 38-41, 5 mg/kg; PND 42-45, 10 mg/kg). After a period of abstinence, in adulthood, rats were tested on an automated touchscreen version of a paired-associates learning (PAL) task to assess their ability to learn and recall object-location associations. Prepulse inhibition (PPI) of the startle response was also measured at three time points (5 days, 4 months, and 6 months after exposure) to assess sensorimotor gating, the ability to filter out insignificant sensory information from the environment. RESULTS Compared to rats exposed to vehicle alone, rats exposed to THC during adolescence took longer to learn the PAL task when tested in adulthood, even when trials contained visually identical stimuli that differed only in location. Despite this, no differences were observed later in testing, when trials contained visually distinct stimuli in different locations. Rats exposed to THC also displayed impairments in sensorimotor gating, as measured by prepulse inhibition of the startle response, though this deficit did appear to decrease over time. CONCLUSION Taken together, THC exposure during adolescence produces long-term deficits in associative learning and sensorimotor gating, though the impact of these deficits seems to diminish with time. Thus, adolescence may represent a period of neurocognitive development that is vulnerable to the harms of cannabis use, though the stability of such harms is uncertain.
Collapse
Affiliation(s)
- Andrew R Abela
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Neuroscience, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, M5T 1R8, Canada.
| | - Arya Rahbarnia
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Suzanne Wood
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Sarne Y. Beneficial and deleterious effects of cannabinoids in the brain: the case of ultra-low dose THC. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:551-562. [PMID: 30864864 DOI: 10.1080/00952990.2019.1578366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews the neurocognitive advantages and drawbacks of cannabinoid substances, and discusses the possible physiological mechanisms that underlie their dual activity. The article further reviews the neurocognitive effects of ultra-low doses of ∆9-tetrahydrocannabinol (THC; 3-4 orders of magnitude lower than the conventional doses) in mice, and proposes such low doses of THC as a possible remedy for various brain injuries and for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yosef Sarne
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Endocannabinoid System and Alcohol Abuse Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:89-127. [PMID: 31332736 DOI: 10.1007/978-3-030-21737-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC), the primary active component in Cannabis sativa preparations such as hashish and marijuana, signals by binding to cell surface receptors. Two types of receptors have been cloned and characterized as cannabinoid (CB) receptors. CB1 receptors (CB1R) are ubiquitously present in the central nervous system (CNS) and are present in both inhibitory interneurons and excitatory neurons at the presynaptic terminal. CB2 receptors (CB2R) are demonstrated in microglial cells, astrocytes, and several neuron subpopulations and are present in both pre- and postsynaptic terminals. The majority of studies on these receptors have been conducted in the past two and half decades after the identification of the molecular constituents of the endocannabinoid (eCB) system that started with the characterization of CB1R. Subsequently, the seminal discovery was made, which suggested that alcohol (ethanol) alters the eCB system, thus establishing the contribution of the eCB system in the motivation to consume ethanol. Several preclinical studies have provided evidence that CB1R significantly contributes to the motivational and reinforcing properties of ethanol and that the chronic consumption of ethanol alters eCB transmitters and CB1R expression in the brain nuclei associated with addiction pathways. Additionally, recent seminal studies have further established the role of the eCB system in the development of ethanol-induced developmental disorders, such as fetal alcohol spectrum disorders (FASD). These results are augmented by in vitro and ex vivo studies, showing that acute and chronic treatment with ethanol produces physiologically relevant alterations in the function of the eCB system during development and in the adult stage. This chapter provides a current and comprehensive review of the literature concerning the role of the eCB system in alcohol abuse disorders (AUD).
Collapse
|
9
|
Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. Neurobiol Aging 2018; 61:177-186. [DOI: 10.1016/j.neurobiolaging.2017.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 01/28/2023]
|
10
|
Madularu D, Yee JR, Kulkarni P, Ferris CF. System-specific activity in response to Δ 9 -tetrahydrocannabinol: a functional magnetic resonance imaging study in awake male rats. Eur J Neurosci 2017; 46:2893-2900. [PMID: 29057576 DOI: 10.1111/ejn.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/01/2023]
Abstract
The aim of this study was to assess the effects of two doses of Δ9 -tetrahydrocannabinol (THC, cannabis' main psychoactive agent) and vehicle on blood-oxygen-level dependent (BOLD) activity in drug-naïve, awake rats, in an effort to obtain a THC-specific map of activation in clinically-relevant regions and systems. Intraperitoneal injections of low dose of THC resulted in increased positive and negative BOLD signals compared to vehicle and high dose in areas rich in cannabinoid receptor 1, as well as throughout the pain and hippocampal neural systems. These results offer unique maps of activity, or 'fingerprints', associated with systemic THC administration, allowing for further comparisons with either additional doses or compounds, or between THC administration modalities (i.e. systemic vs. ingested vs. inhaled), which ultimately adds to the translatability assessment of THC-induced BOLD between animal and human studies.
Collapse
Affiliation(s)
- Dan Madularu
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, 6875 Lasalle Blvd., Montreal, QC, H4H 1R3, Canada.,Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Jason R Yee
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| |
Collapse
|
11
|
Levine A, Clemenza K, Rynn M, Lieberman J. Evidence for the Risks and Consequences of Adolescent Cannabis Exposure. J Am Acad Child Adolesc Psychiatry 2017; 56:214-225. [PMID: 28219487 DOI: 10.1016/j.jaac.2016.12.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This review of the scientific literature examines the potential adult sequelae of exposure to cannabis and related synthetic cannabinoids in adolescence. We examine the four neuropsychiatric outcomes that are likely most vulnerable to alteration by early cannabinoid use, as identified within both the clinical and preclinical research: cognition, emotional functioning, risk for psychosis, and addiction. METHOD A literature search was conducted through PubMed, PsychInfo, and Google Scholar with no publication date restrictions. The search terms used were "adolescent" and "adult," and either "cannabis," "marijuana," "delta-9-tetra-hydrocannabinol," or "cannabinoid," which was then crossed with one or more of the following terms: "deficit," "impairment," "alteration," "long-term," "persistent," "development," "maturation," and "pubescent." RESULTS The majority of the clinical and preclinical data point to a strong correlation between adolescent cannabinoid exposure and persistent, adverse neuropsychiatric outcomes in adulthood. Although the literature supports the hypothesis that adolescent cannabis use is connected to impaired cognition and mental health in adults, it does not conclusively demonstrate that cannabis consumption alone is sufficient to cause these deficits in humans. The animal literature, however, clearly indicates that adolescent-onset exposure to cannabinoids can catalyze molecular processes that lead to persistent functional deficits in adulthood, deficits that are not found to follow adult-onset exposure and that model some of the adverse outcomes reported in humans among adult populations of early-onset cannabis users. CONCLUSION Based on the data in the current literature, a strong association is found between early, frequent, and heavy adolescent cannabis exposure and poor cognitive and psychiatric outcomes in adulthood, yet definite conclusions cannot yet be made as to whether cannabis use alone has a negative impact on the human adolescent brain. Future research will require animal models and longitudinal studies to be carefully designed with a focus on integrating assessments of molecular, structural, and behavioral outcomes in order to elucidate the full range of potential adverse and long-term consequences of cannabinoid exposure in adolescence.
Collapse
Affiliation(s)
- Amir Levine
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY.
| | | | - Moira Rynn
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| | - Jeffrey Lieberman
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| |
Collapse
|
12
|
O’Shea M, Singh ME, McGregor IS, Mallet PE. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol 2016. [PMID: 15582916 DOI: 10.1177/0269881104047277] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although many studies have examined the acute behavioural effects of cannabinoids in rodents, few have examined the lasting effects of cannabinoids at different developmental ages. This study compared lasting effects of cannabinoid exposure occurring in adolescence to that occurring in early adulthood. Forty, 30-day old (adolescent) and 18, 56-day old (adult) female albino Wistar rats were injected with vehicle or incremental doses of the cannabinoid receptor agonist (-)- cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]- trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940) once per day for 21 consecutive days (150, 200 and 300 μg/kg i.p. for 3, 8 and 10 days, respectively). Following a 21-day drug-free period, working memory was assessed using an object recognition task. Locomotor activity was also measured in the object recognition apparatus via a ceiling-mounted passive infrared sensor. Three days later, anxiety was assessed using a social interaction test. In the object recognition task, significantly poorer working memory was observed in the adolescent but not adult CP 55,940-treated rats. Adolescent, but not adult CP 55,940-treated rats, also exhibited a significant decrease in social interaction with a novel conspecific. These results suggest that chronic exposure to a cannabinoid receptor agonist well after the immediate postnatal period, but before reaching sexual maturity, can lead to increased anxiety and a lasting impairment of working memory.
Collapse
Affiliation(s)
- Melanie O’Shea
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| | - Malini E. Singh
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| | - Iain S. McGregor
- School of Psychology, Sydney University, New South Wales, Australia
| | - Paul E. Mallet
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
13
|
Barbieri M, Ossato A, Canazza I, Trapella C, Borelli AC, Beggiato S, Rimondo C, Serpelloni G, Ferraro L, Marti M. Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair Novel Object Recognition in mice: Behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 2016; 109:254-269. [PMID: 27346209 DOI: 10.1016/j.neuropharm.2016.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 01/29/2023]
Abstract
It is well known that an impairment of learning and memory function is one of the major physiological effects caused by natural or synthetic cannabinoid consumption in rodents, nonhuman primates and in humans. JWH-018 and its halogenated derivatives (JWH-018-Cl and JWH-018-Br) are synthetic CB1/CB2 cannabinoid agonists, illegally marketed as "Spice" and "herbal blend" for their Cannabis-like psychoactive effects. In the present study the effects of acute exposure to JWH-018, JWH-018-Cl, JWH-018-Br (JWH-018-R compounds) and Δ(9)-THC (for comparison) on Novel Object Recognition test (NOR) has been investigated in mice. Moreover, to better characterize the effects of JWH-018-R compounds on memory function, in vitro electrophysiological and neurochemical studies in hippocampal preparations have been performed. JWH-018, JWH-018-Cl and JWH-018-Br dose-dependently impaired both short- and long-memory retention in mice (respectively 2 and 24 h after training session). Their effects resulted more potent respect to that evoked by Δ(9)-THC. Moreover, in vitro studies showed as JWH-018-R compounds negatively affected electrically evoked synaptic transmission, LTP and aminoacid (glutamate and GABA) release in hippocampal slices. Behavioral, electrophysiological and neurochemical effects were fully prevented by CB1 receptor antagonist AM251 pretreatment, suggesting a CB1 receptor involvement. These data support the hypothesis that synthetic JWH-018-R compounds, as Δ(9)-THC, impair cognitive function in mice by interfering with hippocampal synaptic transmission and memory mechanisms. This data outline the danger that the use and/or abuse of these synthetic cannabinoids may represent for the cognitive process in human consumer.
Collapse
Affiliation(s)
- M Barbieri
- Department of Medical Sciences, University of Ferrara, Italy
| | - A Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - I Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - C Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - A C Borelli
- Department of Medical Sciences, University of Ferrara, Italy
| | - S Beggiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - C Rimondo
- Department of Public Health and Community Medicine, University of Verona, Italy
| | - G Serpelloni
- U.R.I.To.N., Forensic Toxicology Unit, Department of Health Science, University of Florence, Florence, Italy
| | - L Ferraro
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - M Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy; Center for Neuroscience and Istituto Nazionale di Neuroscienze, Italy.
| |
Collapse
|
14
|
Rossi R, Pascolo PB. Long-term retention of a divided attention psycho-motor test combining choice reaction test and postural balance test: A preliminary study. ACCIDENT; ANALYSIS AND PREVENTION 2015; 82:126-133. [PMID: 26070019 DOI: 10.1016/j.aap.2015.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Driving in degraded psychophysical conditions, such as under the influence of alcohol or drugs but also in a state of fatigue or drowsiness, is a growing problem. The current roadside tests used for detecting drugs from drivers suffer various limitations, while impairment is subjective and does not necessarily correlate with drug metabolite concentration found in body fluids. This work is a validation step towards the study of feasibility of a novel test conceived to assess psychophysical conditions of individuals performing at-risk activities. Motor gestures, long-term retention and learning phase related to the protocol are analysed in unimpaired subjects. The protocol is a divided attention test, which combines a critical tracking test achieved with postural movements and a visual choice reaction test. Ten healthy subjects participated in a first set of trials and in a second set after about six months. Each session required the carrying out of the test for ten times in order to investigate learning effect and performance over repetitions. In the first set the subjects showed a learning trend up to the third trial, whilst in the second set of trials they showed motor retention. Nevertheless, the overall performance did not significantly improve. Gestures are probably retained due to the type of tasks and the way in which the instructions are conveyed to the subjects. Moreover, motor retention after a short training suggests that the protocol is easy to learn and understand. Implications for roadside test usage and comparison with current tests are also discussed.
Collapse
Affiliation(s)
- R Rossi
- University of Udine, 33100 Udine, Italy.
| | | |
Collapse
|
15
|
Winsauer PJ, Filipeanu CM, Weed PF, Sutton JL. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats. Front Pharmacol 2015; 6:133. [PMID: 26191005 PMCID: PMC4488627 DOI: 10.3389/fphar.2015.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022] Open
Abstract
The effects of hormone status and age on the development of tolerance to Δ(9)-THC were assessed in sham-operated (intact) or ovariectomized (OVX) female rats that received either intraperitoneal saline or 5.6 mg/kg of Δ(9)-THC daily from postnatal day (PD) 75-180 (early adulthood onward) or PD 35-140 (adolescence onward). During this time, the four groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC) were trained in a learning and performance procedure and dose-effect curves were established for Δ(9)-THC (0.56-56 mg/kg) and the cannabinoid type-1 receptor (CB1R) antagonist rimonabant (0.32-10 mg/kg). Despite the persistence of small rate-decreasing and error-increasing effects in intact and OVX females from both ages during chronic Δ(9)-THC, all of the Δ(9)-THC groups developed tolerance. However, the magnitude of tolerance, as well as the effect of hormone status, varied with the age at which chronic Δ(9)-THC was initiated. There was no evidence of dependence in any of the groups. Hippocampal protein expression of CB1R, AHA1 (a co-chaperone of CB1R) and HSP90β (a molecular chaperone modulated by AHA-1) was affected more by OVX than chronic Δ(9)-THC; striatal protein expression was not consistently affected by either manipulation. Hippocampal brain-derived neurotrophic factor expression varied with age, hormone status, and chronic treatment. Thus, hormonal status differentially affects the development of tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning and performance behavior in adolescent, but not adult, female rats. These factors and their interactions also differentially affect cannabinoid signaling proteins in the hippocampus and striatum, and ultimately, neural plasticity.
Collapse
Affiliation(s)
- Peter J. Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Catalin M. Filipeanu
- Department of Pharmacology, Howard University College of MedicineWashington, DC, USA
| | - Peter F. Weed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Jessie L. Sutton
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| |
Collapse
|
16
|
de Fátima Oliveira-Silva I, Pereira SRC, Fernandes PA, Ribeiro AF, Pires RGW, Ribeiro AM. Mild thiamine deficiency and chronic ethanol consumption modulate acetylcholinesterase activity change and spatial memory performance in a water maze task. J Mol Neurosci 2014; 55:217-226. [PMID: 24770900 DOI: 10.1007/s12031-014-0306-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022]
Abstract
Chronic thiamine deficiency may be responsible for pathologic changes in the brains of alcoholics, and subclinical episodes of this vitamin deficiency may cause cumulative brain damage. In the present work, the chronic effects of ethanol and its association to a mild thiamine deficiency episode (subclinical model) on neocortical and hippocampal acetylcholinesterase activity were assessed along with their possible association to spatial cognitive dysfunction. The results indicate that in the beginning of the neurodegenerative process, before the appearance of brain lesions, chronic ethanol consumption reverses the effects of mild thiamine deficiency on both spatial cognitive performance and acetylcholinesterase activity without having significant effects on any morphometric parameter.
Collapse
Affiliation(s)
- Ieda de Fátima Oliveira-Silva
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Silvia R Castanheira Pereira
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Paula A Fernandes
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Andrea F Ribeiro
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Rita G W Pires
- Departamento de Ciências Fisiológicas/Centro Biomédico-Laboratório de Neurobiologia Molecular e Comportamental, Universidade Federal do Espírito Santo, Vitória, 29043-910, Brazil
| | - Angela Maria Ribeiro
- Programa de Pós-graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-010, Brazil.
- Departamento de Bioquímica e Imunologia, Laboratório de Neurociências Comportamental e Molecular, LaNeC, Faculdade de Filosofia e Ciências Humanas, FaFiCH, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-010, Brazil.
| |
Collapse
|
17
|
Affiliation(s)
- Ainhoa Bilbao
- Institute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty of Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
18
|
Renard J, Krebs MO, Jay TM, Le Pen G. Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: a strain comparison. Psychopharmacology (Berl) 2013; 225:781-90. [PMID: 22983145 DOI: 10.1007/s00213-012-2865-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/28/2012] [Indexed: 12/15/2022]
Abstract
RATIONALE During cerebral development, adolescence is a critical phase in which the endocannabinoid system plays an important role in regulating various neurotransmitters. Moreover, evidence from both human and animal studies suggests that chronic cannabinoid exposure during this vulnerable period can induce persistent brain and behavioural alterations. OBJECTIVES The aim of this study was to compare the long-term cognitive consequences of chronic adolescence cannabinoid exposure between Lister Hooded rats and Wistar rats. METHODS Rats of both strains were injected daily throughout their adolescent or adult periods with vehicle or with incremental doses of the synthetic cannabinoid CB1 receptor agonist CP55,940 (CP). Short-term and spatial working memories were assessed using the object recognition and object location, tasks respectively. For both tasks, the effect of a 30- or 120-min delay between the learning and the testing phase was investigated. RESULTS In the object recognition task, adolescent CP exposure impaired short-term memory after both delays in both strains. In contrast, in the object location task, adolescent CP exposure impaired spatial working memory in the Wistar rats after a 30-min delay, whereas the Lister Hooded rats exhibited a similar effect only after a 120-min delay. In these tests, no long-term deleterious effects were found following adult CP exposure in either strain. CONCLUSIONS Our results confirm that adolescence is a critical period for the deleterious effects of cannabinoids on cognition and that these deleterious effects on spatial working memory are more strain-dependent than the effects observed on short-term memory.
Collapse
Affiliation(s)
- Justine Renard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Paris, France
| | | | | | | |
Collapse
|
19
|
Long-term behavioral and biochemical effects of an ultra-low dose of Δ9-tetrahydrocannabinol (THC): neuroprotection and ERK signaling. Exp Brain Res 2012; 221:437-48. [DOI: 10.1007/s00221-012-3186-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
20
|
Winsauer PJ, Filipeanu CM, Bailey EM, Hulst JL, Sutton JL. Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Δ⁹-THC) in adult female rats. Pharmacol Biochem Behav 2012; 102:442-9. [PMID: 22705493 DOI: 10.1016/j.pbb.2012.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/12/2012] [Accepted: 06/09/2012] [Indexed: 02/04/2023]
Abstract
Marijuana abuse during adolescence may alter its abuse liability during adulthood by modifying the interoceptive (discriminative) stimuli produced, especially in females due to an interaction with ovarian hormones. To examine this possibility, either gonadally intact or ovariectomized (OVX) female rats received 40 intraperitoneal injections of saline or 5.6 mg/kg of Δ⁹-THC daily during adolescence, yielding 4 experimental groups (intact/saline, intact/Δ⁹-THC, OVX/saline, and OVX/Δ⁹-THC). These groups were then trained to discriminate Δ⁹-THC (0.32-3.2 mg/kg) from saline under a fixed-ratio (FR) 20 schedule of food presentation. After a training dose was established for the subjects in each group, varying doses of Δ⁹-THC were substituted for the training dose to obtain dose-effect (generalization) curves for drug-lever responding and response rate. The results showed that: 1) the OVX/saline group had a substantially higher mean response rate under control conditions than the other three groups, 2) both OVX groups had higher percentages of THC-lever responding than the intact groups at doses of Δ⁹-THC lower than the training dose, and 3) the OVX/Δ⁹-THC group was significantly less sensitive to the rate-decreasing effects of Δ⁹-THC compared to other groups. Furthermore, at sacrifice, western blot analyses indicated that chronic Δ⁹-THC in OVX and intact females decreased cannabinoid type-1 receptor (CB1R) levels in the striatum, and decreased phosphorylation of cyclic adenosine monophosphate response element binding protein (p-CREB) in the hippocampus. In contrast to the hippocampus, chronic Δ⁹-THC selectively increased p-CREB in the OVX/saline group in the striatum. Extracellular signal-regulated kinase (ERK) was not significantly affected by either hormone status or chronic Δ⁹-THC. In summary, these data in female rats suggest that cannabinoid abuse by adolescent human females could alter their subsequent responsiveness to cannabinoids as adults and have serious consequences for brain development.
Collapse
Affiliation(s)
- Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
21
|
Pava MJ, Woodward JJ. A review of the interactions between alcohol and the endocannabinoid system: implications for alcohol dependence and future directions for research. Alcohol 2012; 46:185-204. [PMID: 22459871 PMCID: PMC3327810 DOI: 10.1016/j.alcohol.2012.01.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 12/17/2022]
Abstract
Over the past fifty years a significant body of evidence has been compiled suggesting an interaction between the endocannabinoid (EC) system and alcohol dependence. However, much of this work has been conducted only in the past two decades following the elucidation of the molecular constituents of the EC system that began with the serendipitous discovery of the cannabinoid 1 receptor (CB1). Since then, novel pharmacological and genetic tools have enabled researchers to manipulate select components of the EC system, to determine their contribution to the motivation to consume ethanol. From these preclinical studies, it is evident that CB1 contributes the motivational and reinforcing properties of ethanol, and chronic consumption of ethanol alters EC transmitter levels and CB1 expression in brain nuclei associated with addiction pathways. These results are augmented by in vitro and ex vivo studies showing that acute and chronic treatment with ethanol produces physiologically relevant alterations in the function of the EC system. This report provides a current and comprehensive review of the literature regarding the interactions between ethanol and the EC system. We begin be reviewing the studies published prior to the discovery of the EC system that compared the behavioral and physiological effects of cannabinoids with ethanol in addition to cross-tolerance between these drugs. Next, a brief overview of the molecular constituents of the EC system is provided as context for the subsequent review of more recent studies examining the interaction of ethanol with the EC system. These results are compiled into a summary providing a scheme for the known changes to the components of the EC system in different stages of alcohol dependence. Finally, future directions for research are discussed.
Collapse
Affiliation(s)
- Matthew J. Pava
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29403, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29403, USA
| | - John J. Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29403, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29403, USA
| |
Collapse
|
22
|
Sarne Y, Asaf F, Fishbein M, Gafni M, Keren O. The dual neuroprotective-neurotoxic profile of cannabinoid drugs. Br J Pharmacol 2012; 163:1391-401. [PMID: 21323910 DOI: 10.1111/j.1476-5381.2011.01280.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Extensive in vitro and in vivo studies have shown that cannabinoid drugs have neuroprotective properties and suggested that the endocannabinoid system may be involved in endogenous neuroprotective mechanisms. On the other hand, neurotoxic effects of cannabinoids in vitro and in vivo were also described. Several possible explanations for these dual, opposite effects of cannabinoids on cellular fate were suggested, and it is conceivable that various factors may determine the final outcome of the cannabinoid effect in vivo. In the current review, we focus on one of the possible reasons for the dual neuroprotective/neurotoxic effects of cannabinoids in vivo, namely, the opposite effects of low versus high doses of cannabinoids. While many studies reported neuroprotective effects of the conventional doses of cannabinoids in various experimental models for acute brain injuries, we have shown that a single administration of an extremely low dose of Δ(9) -tetrahydrocannabinol (THC) (3-4 orders of magnitude lower than the conventional doses) to mice induced long-lasting mild cognitive deficits that affected various aspects of memory and learning. These findings led to the idea that this low dose of THC, which induces minor damage to the brain, may activate preconditioning and/or postconditioning mechanisms and thus will protect the brain from more severe insults. Indeed, our recent findings support this assumption and show that a pre- or a postconditioning treatment with extremely low doses of THC, several days before or after brain injury, provides effective long-term cognitive neuroprotection. The future therapeutical potential of these findings is discussed.
Collapse
Affiliation(s)
- Yosef Sarne
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
23
|
Ramezani A, Goudarzi I, Lashkarbolouki T, Ghorbanian MT, Salmani ME, Abrari K. Neuroprotective effects of the 17β-estradiol against ethanol-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological and behavioral changes. Pharmacol Biochem Behav 2011; 100:144-51. [PMID: 21851833 DOI: 10.1016/j.pbb.2011.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/06/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
During particular periods of central nervous system (CNS) development, exposure to ethanol can decrease regional brain growth and can result in selective loss of neurons. Unfortunately, there are few effective means of attenuating damage in the immature brain. In this study, the possible antioxidant and neuroprotective properties of 17β-estradiol against ethanol-induced neurotoxicity was investigated. 17β-estradiol (600 μg/kg) was injected subcutaneously in postnatal day (PD) 4 and 5, 30 min prior to intraperitoneal injection of ethanol (6g/kg) in rat pups. Ninety minutes after injection of ethanol, the activities of several antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) in vermis of cerebellum were assayed. Thiobarbituric acid reactive substance (TBARS) levels were also measured as a marker of lipid peroxidation. Behavioral studies, including rotarod and locomotor activity tests were performed in PD 21-23 and histological study was performed after completion of behavioral measurements in postnatal day 23. The results of the present work demonstrated that ethanol could induce lipid peroxidation, increase TBARS levels and decrease glutathione peroxidase levels in pup cerebellum. We also observed that ethanol impaired performance on the rotarod and locomotor activities of rat pups. However, treatment with 17β-estradiol significantly attenuated motoric impairment, the lipid peroxidation process and restored the levels of antioxidants. Histological analysis also indicated that ethanol could decrease vermis Purkinje cell count and 17β-estradiol prevented this toxic effect. These results suggest that ethanol may induce lipid peroxidation in the rat pups cerebellum while treatment with 17β-estradiol improves motor deficits by protecting the cerebellum against ethanol toxicity.
Collapse
Affiliation(s)
- Azam Ramezani
- Faculty of Biology, Damghan University, Damghan, Iran
| | | | | | | | | | | |
Collapse
|
24
|
Rodrigues LCDM, Conti CL, Nakamura-Palacios EM. Clozapine and SCH 23390 prevent the spatial working memory disruption induced by Δ9-THC administration into the medial prefrontal cortex. Brain Res 2011; 1382:230-7. [PMID: 21281616 DOI: 10.1016/j.brainres.2011.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 01/07/2023]
Abstract
Marijuana (Cannabis sativa) is one of the most widely used illicit drugs in the world. Its use is associated with impairments in cognitive function. We previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the primary psychoactive component of marijuana, impaired spatial working memory in the radial maze task when injected intracortically (IC) into the medial prefrontal cortex (mPFC) of rats. Here, we used this paradigm to evaluate the involvement of prefrontal dopamine receptors in working memory disruption induced by Δ(9)-THC. Intracortical pre-treatment of animals with either the D(1)- or D(2)-like dopamine receptor antagonists SCH 23390 or clozapine, respectively, significantly reduced the number of errors rats made in the radial maze following treatment with Δ(9)-THC also administered intracortically. These results were obtained in the absence of locomotor impairment, as evidenced by the time spent in each arm a rat visited. Our findings suggest that prefrontal dopamine receptors are involved in Δ(9)-THC-induced disruption of spatial working memory. This interaction between the cannabinoid system and dopamine release in the PFC contributes to new directions in research and to treatments for cognitive dysfunctions associated with drug abuse and dependence.
Collapse
|
25
|
Winsauer PJ, Daniel JM, Filipeanu CM, Leonard ST, Hulst JL, Rodgers SP, Lassen-Greene CL, Sutton JL. Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status. Addict Biol 2011; 16:64-81. [PMID: 21158010 DOI: 10.1111/j.1369-1600.2010.00227.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abuse of Δ⁹-THC by females during adolescence may produce long-term deficits in complex behavioral processes such as learning, and these deficits may be affected by the presence of ovarian hormones. To assess this possibility, 40 injections of saline or 5.6 mg/kg of Δ⁹-THC were administered i.p. daily during adolescence to gonadally intact or ovariectomized (OVX) female rats, yielding four treatment groups (intact/saline, intact/THC, OVX/saline, and OVX/ THC). Δ⁹-THC (0.56-10 mg/kg) was then re-administered to each of the four groups during adulthood to examine their sensitivity to its disruptive effects. The behavioral task required adult subjects to both learn (acquisition component) different response sequences and repeat a known response sequence (performance component) daily. During baseline (no injection) and control (saline injection) sessions, OVX subjects had significantly higher response rates and lower percentages of error in both behavioral components than the intact groups irrespective of saline or Δ⁹-THC administration during adolescence; the intact group that received Δ⁹-THC had the lowest response rates in each component. Upon re-administration of Δ⁹-THC, the groups that received adolescent ovariectomy alone, adolescent Δ⁹-THC administration alone, or both treatments were found to be less sensitive to the rate-decreasing effects, and more sensitive to the error-increasing effects of Δ⁹-THC than the control group (i.e. intact subjects that received saline during adolescence). Neurochemical analyses of the brains from each adolescent-treated group indicated that there were also persistent effects on cannabinoid type-1 (CB-1) receptor levels in the hippocampus and striatum that depended on the brain region and the presence of ovarian hormones. In addition, autoradiographic analyses of the brains from adolescent-treated, but behaviorally naïve, subjects indicated that ovariectomy and Δ⁹-THC administration produced effects on receptor coupling in some of the same brain regions. In summary, chronic administration of Δ⁹-THC during adolescence in female rats produced long-term effects on operant learning and performance tasks and on the cannabinoid system that were mediated by the presence of ovarian hormones, and that altered their sensitivity to Δ⁹-THC as adults.
Collapse
MESH Headings
- Age Factors
- Animals
- Association Learning/drug effects
- Association Learning/physiology
- Autoradiography
- Brain/drug effects
- Brain/physiopathology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dronabinol/toxicity
- Estrogens/physiology
- Female
- Hallucinogens/toxicity
- Hippocampus/drug effects
- Hippocampus/metabolism
- Injections, Intraperitoneal
- Marijuana Abuse/physiopathology
- Ovariectomy
- Progesterone/physiology
- Psychomotor Performance/drug effects
- Psychomotor Performance/physiology
- Rats
- Rats, Long-Evans
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Reinforcement Schedule
- Reinforcement, Psychology
- Retention, Psychology/drug effects
- Retention, Psychology/physiology
Collapse
Affiliation(s)
- Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bossong MG, Niesink RJM. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol 2010; 92:370-85. [PMID: 20624444 DOI: 10.1016/j.pneurobio.2010.06.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/15/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022]
Abstract
Cannabis use during adolescence increases the risk of developing psychotic disorders later in life. However, the neurobiological processes underlying this relationship are unknown. This review reports the results of a literature search comprising various neurobiological disciplines, ultimately converging into a model that might explain the neurobiology of cannabis-induced schizophrenia. The article briefly reviews current insights into brain development during adolescence. In particular, the role of the excitatory neurotransmitter glutamate in experience-dependent maturation of specific cortical circuitries is examined. The review also covers recent hypotheses regarding disturbances in strengthening and pruning of synaptic connections in the prefrontal cortex, and the link with latent psychotic disorders. In the present model, cannabis-induced schizophrenia is considered to be a distortion of normal late postnatal brain maturation. Distortion of glutamatergic transmission during critical periods may disturb prefrontal neurocircuitry in specific brain areas. Our model postulates that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the primary psychoactive substance in cannabis, transiently disturbs physiological control of the endogenous cannabinoid system over glutamate and GABA release. As a result, THC may adversely affect adolescent experience-dependent maturation of neural circuitries within prefrontal cortical areas. Depending on dose, exact time window and duration of exposure, this may ultimately lead to the development of psychosis or schizophrenia. The proposed model provides testable hypotheses which can be addressed in future studies, including animal experiments, reanalysis of existing epidemiological data, and prospective epidemiological studies in which the role of the dose-time-effect relationship should be central.
Collapse
Affiliation(s)
- Matthijs G Bossong
- Rudolf Magnus Institute of Neuroscience, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
27
|
Amal H, Fridman-Rozevich L, Senn R, Strelnikov A, Gafni M, Keren O, Sarne Y. Long-term consequences of a single treatment of mice with an ultra-low dose of Delta9-tetrahydrocannabinol (THC). Behav Brain Res 2009; 206:245-53. [PMID: 19766676 DOI: 10.1016/j.bbr.2009.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/07/2009] [Accepted: 09/11/2009] [Indexed: 01/01/2023]
Abstract
A single administration of an extremely low dose (0.002 mg/kg) of Delta9-tetrahydrocannabinol (THC; the psychoactive ingredient of marijuana) to ICR mice induced long-term cognitive deficits that lasted for at least 5 months. The behavioral deficits were detected by several tests that evaluated different aspects of memory and learning, including spatial navigation and spatial and non-spatial recognition. Our findings point to possible deficits in attention or motivation that represent a common upstream cognitive process that may affect the performance of the mice in the different behavioral assays. Similar ultra-low doses of THC (3-4 orders of magnitude lower than doses that are known to evoke the acute effects of THC) also induced sustained activation of extracellular-regulated kinase (ERK1/2) in the cerebellum, indicating that a single injection of such low doses of the cannabinoid drug can stimulate neuronal regulatory mechanisms. The relevance of these findings to the behavioral consequences of chronic exposure to marijuana is discussed.
Collapse
Affiliation(s)
- Haitham Amal
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The relationships between executive processes, associative learning and different aspects of real world memory functioning were explored in a sample of cannabis users and nonusers. Measures of executive component processes, associative learning, everyday memory, prospective memory, and cognitive failures were administered. Relative to nonusers, cannabis users were found to be impaired in several aspects of real world memory functioning. No other group differences were apparent. The absence of cannabis related deficits in those executive component processes and aspects of learning that are believed to support real world memory processes is surprising given that cannabis related deficits were obtained in real world memory. The present results are discussed within the context of neuroimaging evidence which suggests that cannabis users may exhibit different patterns of neural activation when performing executive tasks while not always exhibiting deficits on these tasks.
Collapse
Affiliation(s)
- J E Fisk
- Department of Psychology, University of Central Lancashire, UK.
| | | |
Collapse
|
29
|
Cha YM, Jones KH, Kuhn CM, Wilson WA, Swartzwelder HS. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav Pharmacol 2007; 18:563-9. [PMID: 17762524 DOI: 10.1097/fbp.0b013e3282ee7b7e] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Like other recreational drugs, cannabinoids may produce different effects in men and women. In this study we measured the effects of delta9-tetrahydrocannabinol (THC) on spatial learning in two groups that are underrepresented in drug research--females and adolescents. In the first experiment, adolescent (postnatal day 30) and adult (postnatal day 70) rats of both sexes were treated subchronically with 5.0 mg/kg THC or vehicle for five consecutive days. Thirty minutes after each daily injection, they were tested on the spatial version of the Morris water maze task. In the second experiment, a separate group of adolescent and adult rats of both sexes was treated with 5.0 mg/kg THC or vehicle daily for 21 days and tested, 4 weeks later, on the spatial version of the water maze. Subchronic THC impaired spatial learning, and this effect was dependent upon both the age and sex of the animals tested. Prior exposure to chronic THC, however, did not cause any long-lasting spatial learning deficits. On the basis of our previous studies in male rats the third experiment assessed the dose-response relationship for the effects of THC on spatial learning and memory in female animals. We found that subchronic THC treatment (2.5, 5.0, or 10.0 mg/kg, intraperitoneally) disrupted learning in both adolescents and adults, but with greater effects at higher doses in adolescents compared with adults. The developmental sensitivity to subchronic THC confirms previous work carried out in our laboratory, and the sex-dependent effects highlight the importance of including females in drug abuse and addiction research.
Collapse
Affiliation(s)
- Young May Cha
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
30
|
O'Shea M, McGregor IS, Mallet PE. Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol 2006; 20:611-21. [PMID: 16714325 DOI: 10.1177/0269881106065188] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is mounting evidence that chronic cannabis use might result in lasting neurobehavioural changes, although it remains unclear whether vulnerability diminishes with age. The current study compared the effects of cannabinoid exposure at three developmental periods on subsequent measures of memory and anxiety. Male rats aged 4 days (perinatal), 30 days (adolescent) and 56 days (young adult) were injected with vehicle or incremental doses of the cannabinoid receptor agonist CP 55940, daily for 21 consecutive days (0.15, 0.20 or 0.30 mg/kg for 7 days per dose, respectively). Following a 28-day drug-free period, working memory was assessed in an object recognition task. One week later, social anxiety was assessed in a social interaction test. Two days later, generalized anxiety was assessed in an emergence test. Results revealed that CP 55940 impaired working memory and social interaction similarly at all three ages. CP 55940 had no effects in five of six emergence test measures, but a modest but significant reduction in anxiety was noted in one measure following adolescent exposure. We conclude that chronic cannabinoid exposure leads to long-term memory impairments and increased anxiety, irrespective of the age at which drug exposure occurrs.
Collapse
Affiliation(s)
- Melanie O'Shea
- School of Psychology, University of New England, Armidale, NSW, Australia
| | | | | |
Collapse
|
31
|
Fisk JE, Montgomery C, Wareing M, Murphy PN. The effects of concurrent cannabis use among ecstasy users: neuroprotective or neurotoxic? Hum Psychopharmacol 2006; 21:355-66. [PMID: 16915582 DOI: 10.1002/hup.777] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The research evidence regarding the potential effects of ecstasy suggests that it may be neurotoxic and that its use is associated with cognitive impairment. In recent years evidence has emerged suggesting that cannabinoids, the active ingredients in cannabis, can be neuroprotective under certain conditions. Given that many ecstasy users also consume cannabis at the same time, the possibility emerges that these individuals might be less susceptible to ecstasy-related impairment. The present paper reanalyses the data from a number of previous studies, contrasting the performance of those individuals who generally consume cannabis and ecstasy at the same time with those who generally consume ecstasy on its own. The two ecstasy-using groups are compared with non-ecstasy users on a range of measures including processing speed, random letter generation, verbal and visuo-spatial working memory span, reasoning and associative learning. The two ecstasy user groups did not differ significantly from each other on any of the measures. Both user groups were significantly worse than non-ecstasy users on measures of associative learning, verbal and visuo-spatial working memory and reasoning. The results suggest that consuming cannabis at the same time as ecstasy does not reduce the likelihood of cognitive impairment.
Collapse
Affiliation(s)
- John E Fisk
- University of Central Lancashire, Preston PR1 2HE, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Cha YM, White AM, Kuhn CM, Wilson WA, Swartzwelder HS. Differential effects of delta9-THC on learning in adolescent and adult rats. Pharmacol Biochem Behav 2006; 83:448-55. [PMID: 16631921 DOI: 10.1016/j.pbb.2006.03.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 02/24/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
Marijuana use remains strikingly high among young users in the U.S., and yet few studies have assessed the effects of delta9-tetrahydrocannabinol (THC) in adolescents compared to adults. This study measured the effects of THC on male adolescent and adult rats in the Morris water maze. In Experiment 1, adolescent (PD=30-32) and adult (PD=65-70) rats were treated acutely with 5.0 mg/kg THC or vehicle while trained on the spatial version of the water maze on five consecutive days. In Experiment 2, adolescent and adult rats were treated acutely with 2.5 or 10.0 mg/kg THC or vehicle while trained on either the spatial and non-spatial versions of the water maze. In Experiment 3, adolescent and adult rats were treated with 5.0 mg/kg THC or vehicle daily for 21 days, and were trained on the spatial and then the non-spatial versions of the water maze task four weeks later in the absence of THC. THC impaired both spatial and nonspatial learning more in adolescents than in adults at all doses tested. However, there were no long-lasting significant effects on either spatial or non-spatial learning in rats that had been previously exposed to THC for 21 days. This developmental sensitivity is analogous to the effects of ethanol, another commonly used recreational drug.
Collapse
Affiliation(s)
- Young May Cha
- Department of Psychiatry, Duke University Medical Center, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Cannabis is one of the most commonly used illicit drugs during pregnancy, but little is known about the lasting effects of early-life exposure to this drug. In this study, male Wistar rat pups were treated daily with (-)-delta9-tetrahydrocannabinol (THC; 5 mg/kg, s.c.) or its vehicle between postnatal days (PND) 4 and 14. Drug administration during this early postnatal period in rats is analogous to the third trimester of gestation in humans, which is a major period of synaptogenesis. Rats were subsequently tested drug-free during young adulthood (PND 56) using a two-component food-motivated double Y-maze test. Each trial included distinct spatial discrimination and delayed alternation components, which permitted the simultaneous assessment of reference memory and working memory. Rats were tested for 30 trials/day, 5 days/week for 5 weeks. Results revealed no significant differences between THC- and vehicle-treated rats in the spatial discrimination task. However, compared to vehicle-treated rats, THC-treated rats committed significantly more errors, and required significantly longer to obtain 80% correct over two consecutive days in the delayed alternation task. Results suggest that neonatal THC exposure leads to a specific and lasting deficit in learning in adulthood, which is likely due to impaired working memory function.
Collapse
Affiliation(s)
- M O'Shea
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| | | |
Collapse
|
34
|
Silva de Melo LC, Cruz AP, Rios Valentim SJ, Marinho AR, Mendonça JB, Nakamura-Palacios EM. Delta(9)-THC administered into the medial prefrontal cortex disrupts the spatial working memory. Psychopharmacology (Berl) 2005; 183:54-64. [PMID: 16163518 DOI: 10.1007/s00213-005-0141-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Delta(9)-Tetrahydrocannabinol (Delta(9)-THC) disrupts working memory. The prefrontal cortex (PFC) is involved in the processing of working memory, and its medial portion (mPFC) is part of a brain reward circuit as constituted by the mesocorticolimbic dopaminergic system. OBJECTIVE This study examined the involvement of the mPFC in the effects of Delta(9)-THC on spatial working memory. METHODS Ten male Wistar rats well-trained in a radial arm maze and with bilateral cannula implanted in the mPFC received Delta(9)-THC intra-cortically (Delta(9)-THC IC) at doses of 0 (VEH), 32, 100 or 180 microg, 5 min before a 5-s or a 1-h delayed task in order to measure a short- or long-term spatial working memory, respectively. By contrast, 11 other animals received Delta(9)-THC intraperitoneally (Delta(9)-THC IP) at doses of 0 (VEH), 0.32, 1 or 1.8 mg/kg, 30 min before a 5-s or a 1-h delayed task. Additionally, after a 15-day washout, the effect of an IP or IC pre-exposure of Delta(9)-THC was examined by repeating both dose-effect curves in a crossover order for the routes of administration. RESULTS Delta(9)-THC IP produced significantly larger number of errors at doses of 0.32 or 1 mg/kg as compared to VEH in the 1-h post-delay performance. Delta(9)-THC 100 microg IC also produced significantly larger number of errors as compared to VEH and also to the other doses (32 or 180 microg) IC in the 1-h post-delay performance. Previous exposure to Delta(9)-THC IP or IC did not significantly affect the disruptive effect of this cannabinoid. CONCLUSIONS Delta(9)-THC administered directly in the mPFC impaired 1-h delayed task in the radial arm maze in a manner similar to that observed for its systemic administration, suggesting that the mPFC is involved in the disruptive effects of Delta(9)-THC on spatial working memory.
Collapse
Affiliation(s)
- Lívia Carla Silva de Melo
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, B. Maruípe, 29042-755 Vitória, ES, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
O'Shea M, Singh ME, McGregor IS, Mallet PE. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol 2004; 18:502-8. [PMID: 15582916 DOI: 10.1177/026988110401800407] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although many studies have examined the acute behavioural effects of cannabinoids in rodents, few have examined the lasting effects of cannabinoids at different developmental ages. This study compared lasting effects of cannabinoid exposure occurring in adolescence to that occurring in early adulthood. Forty, 30-day old (adolescent) and 18, 56-day old (adult) female albino Wistar rats were injected with vehicle or incremental doses of the cannabinoid receptor agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940) once per day for 21 consecutive days (150, 200 and 300 microg/kg i.p. for 3, 8 and 10 days, respectively). Following a 21-day drug-free period, working memory was assessed using an object recognition task. Locomotor activity was also measured in the object recognition apparatus via a ceiling-mounted passive infrared sensor. Three days later, anxiety was assessed using a social interaction test. In the object recognition task, significantly poorer working memory was observed in the adolescent but not adult CP 55,940-treated rats. Adolescent, but not adult CP 55,940-treated rats, also exhibited a significant decrease in social interaction with a novel conspecific. These results suggest that chronic exposure to a cannabinoid receptor agonist well after the immediate postnatal period, but before reaching sexual maturity, can lead to increased anxiety and a lasting impairment of working memory.
Collapse
Affiliation(s)
- Melanie O'Shea
- School of Psychology, University of New England, Armidale, New South Wales 2351, Australia
| | | | | | | |
Collapse
|
36
|
Sarne Y, Keren O. Are cannabinoid drugs neurotoxic or neuroprotective? Med Hypotheses 2004; 63:187-92. [PMID: 15236773 DOI: 10.1016/j.mehy.2004.02.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 02/09/2004] [Indexed: 11/25/2022]
Abstract
Chronic exposure to cannabinoids was shown to induce long lasting impairment of learning and memory, which was accompanied by morphological damage to the brain. On the other hand, several studies have shown that cannabinoids can protect from various brain traumas. This enigmatic dualism is explained herein by a comprehensive hypothesis, which is based on our recent in vitro studies and on pharmacokinetic in vivo considerations. The hypothesis predicts that low concentrations of cannabinoids will be neurotoxic while high concentrations of the drugs will protect from neuronal damage, and suggests that chronic administration of cannabinoids will induce neuronal death, while their acute administration will protect the brain. We further propose straight forward experiments, both in vivo (animal models for brain damage) and in vitro (cell death in neuronal cultures) to verify this hypothesis. The outcome of these experiments may have practical applications when considering the use of cannabinoids as therapeutic agents and in evaluating the consequences of their use as recreational drugs.
Collapse
Affiliation(s)
- Y Sarne
- The Mauerberger Chair in Neuropharmacology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
37
|
Rewal M, Jung ME, Wen Y, Brun-Zinkernagel AM, Simpkins JW. Role of the GABAA system in behavioral, motoric, and cerebellar protection by estrogen during ethanol withdrawal. Alcohol 2003; 31:49-61. [PMID: 14615011 DOI: 10.1016/j.alcohol.2003.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Results of studies from our laboratory have shown that administration of 17beta-estradiol (E(2)) reduces cerebellar neuronal damage during ethanol withdrawal (EW). In the current study, we investigated whether the GABAergic system is involved in the protective effects of E(2) against the EW syndrome. To test this hypothesis, we examined the effects of GABAergic drugs, with and without E(2), on EW sign scores, motoric capacity, and caspase activation. Ovariectomized rats implanted with an E(2) or an oil pellet received liquid ethanol [7.5% weight/volume (wt./vol.)] for 5 weeks or dextrin diet, followed by 2 weeks of EW. A gamma-aminobutyric acid type A (GABA(A)) agonist, muscimol (0.125 or 0.25 mg/kg), and antagonist, bicuculline (1.25 mg/kg), were administered (intraperitoneally; three times a day for 4 days) starting 1 day before the onset of EW. On termination of chronic administration of ethanol diet, rats were tested for overt withdrawal signs and latency to fall from a rotarod. The initial latency was measured separately to assess motoric capacity before learning occurred. Cerebelli were subsequently collected for immunohistochemistry to detect caspase activation. Results showed that treatment with E(2) lowered EW sign scores and improved initial as well as subsequent rotarod latencies compared with findings without treatment with E(2) (control group). These effects of E(2) were enhanced by combined treatment with muscimol and diminished by bicuculline. Results also showed that ethanol-withdrawn rats had more caspase-3-positive cells than observed for the dextrin diet-fed group in a manner reversed by E(2) and exacerbated by bicuculline. Bicuculline also caused partial antagonism of the protective effect of E(2). These findings support the suggestion that GABA(A) agonists ameliorate, and GABA(A) antagonists exacerbate, EW signs, cerebellar neuronal damage, and motoric impairment in ethanol-withdrawn rats. Also, results of the current study provide indirect evidence that the GABAergic system is involved in protective effects of E(2) against the EW syndrome.
Collapse
Affiliation(s)
- Mridula Rewal
- Department of Pharmacology and Neuroscience, University of North Texas HSC at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| | | | | | | | | |
Collapse
|
38
|
Liu P, Bilkey DK, Darlington CL, Smith PF. Cannabinoid CB1 receptor protein expression in the rat hippocampus and entorhinal, perirhinal, postrhinal and temporal cortices: regional variations and age-related changes. Brain Res 2003; 979:235-9. [PMID: 12850592 DOI: 10.1016/s0006-8993(03)02872-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cannabinoids have been shown to disrupt memory processes and these effects occur primarily through cannabinoid CB1 receptors in the brain. The present study investigates, for the first time, the regional variations and age-related changes in CB1 protein expression in the hippocampus and its neighbouring entorhinal, perirhinal, postrhinal and temporal cortices using Western blotting. In young adult rats, CB1 protein was highly expressed in the hippocampus and within the hippocampus, the greatest density of CB1 protein was located in CA1. When a comparison was made between young (4-month-old) and aged (24-month-old) rats, CB1 protein expression was significantly increased in the aged entorhinal and temporal cortices and was significantly decreased in the aged postrhinal cortex. The present study demonstrates region-specific changes in CB1 protein expression during ageing and further suggests that cannabinoid CB1 receptors may contribute to the aging process.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
39
|
Ciccocioppo R, Antonelli L, Biondini M, Perfumi M, Pompei P, Massi M. Memory impairment following combined exposure to delta(9)-tetrahydrocannabinol and ethanol in rats. Eur J Pharmacol 2002; 449:245-52. [PMID: 12167466 DOI: 10.1016/s0014-2999(02)01999-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cannabis derivatives and alcohol are widely co-abused, particularly among adolescents. Since both ethanol and cannabinoids are known to impair learning and memory, the present study investigated in rats the effects of combined exposure to ethanol and delta(9)-tetrahydrocannabinol (THC) in a memory task, the object recognition test. The results of the present study provide evidence that ethanol, voluntarily ingested in alcohol-preferring rats, and THC, given by intraperitoneal injection, have a synergic action to impair object recognition, when a 15-min interval was adopted between the sample phase and the choice phase of the test. Neither voluntary ethanol ingestion nor 2 or 5 mg/kg of THC were able per se to modify object recognition in these experimental conditions, but when voluntary ethanol ingestion was combined with administration of these doses of THC object recognition was markedly impaired. THC impaired object recognition only at the dose of 10 mg/kg, when its administration was not combined with that of ethanol. The selective cannabinoid CB(1) receptor antagonist SR 141716A (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1(2, 4-dichloro-phenyl)-4-methyl-1H-pyrazole carboxamide.HCl) at the dose of 1 mg/kg reversed the amnesic effect of THC, 10 mg/kg, suggesting that the effect is mediated by this receptor subtype. The synergism of ethanol and THC was not detected when an inter-trial interval of 1 min was adopted. The present findings are in keeping with the notion that Cannabis derivatives impair memory processes and provide evidence for a synergic action of THC and ethanol, thus emphasizing the risks consequent to their co-administration.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Via Sealzino 5, 62032 Camerino (MC), Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Jung ME, Yang SH, Brun-Zinkernagel AM, Simpkins JW. Estradiol protects against cerebellar damage and motor deficit in ethanol-withdrawn rats. Alcohol 2002; 26:83-93. [PMID: 12007583 DOI: 10.1016/s0741-8329(01)00199-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On the basis of findings obtained from this study, we hypothesize that the female sex steroid 17beta-estradiol (E(2)) protects against cerebellar neuronal damage and behavioral deficit in rats withdrawn from chronic ethanol exposure. Ovariectomized rats implanted with E(2) or an oil pellet received liquid ethanol (7.5% [wt./vol.]) or dextrin diet for 5 weeks, followed by 2 weeks of ethanol withdrawal. On termination of diet administration, rats were tested for both overt withdrawal signs and latency (seconds) to fall from an accelerating rotarod in six consecutive sessions (the longer the latency, the better the performance). The initial latency was measured separately to assess motoric capacity before learning occurred. Rats were then killed, and cerebella were prepared for accessing of Purkinje cell damage. The study revealed three specific findings. (1) In the absence of E(2), the ethanol withdrawal group showed higher total ethanol withdrawal sign scores than those for the dextrin group, whereas the score for the ethanol withdrawal group was lower in the presence of E(2). (2) In the absence of E(2), the ethanol withdrawal group showed shorter rotarod latency than that for the dextrin group, whereas the latency for the ethanol withdrawal group increased in the E(2)-treated group. In ethanol withdrawal groups, E(2) treatment also resulted in a longer latency than that observed with oil treatment in the initial session and in subsequent sessions. (3) Purkinje cell numbers in the ethanol withdrawal group without E(2) were lower than those in dextrin groups and in the ethanol withdrawal group with E(2) treatment. These findings support the suggestion that E(2) exerts protective effects against withdrawal signs, cerebellar neuronal damage, and motoric impairment in subjects exposed to, and withdrawn from, chronic ethanol exposure.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas HSC at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.
| | | | | | | |
Collapse
|
41
|
Nakamura-Palacios EM, Winsauer PJ, Moerschbaecher JM. Effects of the cannabinoid ligand SR 141716A alone or in combination with delta9-tetrahydrocannabinol or scopolamine on learning in squirrel monkeys. Behav Pharmacol 2000; 11:377-86. [PMID: 11103889 DOI: 10.1097/00008877-200008000-00003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the effects of the cannabinoids on learning and on scopolamine-induced disruptions in learning, delta9-tetrahydrocannabinol (delta9-THC), SR 141716A (an antagonist at CB1 receptors) and scopolamine were administered to squirrel monkeys responding in a repeated-acquisition task. In this task, monkeys acquired a different three-response sequence each session and responding was maintained by food presentation under a second-order fixed-ratio 5 schedule. When either delta9-THC (0.1-0.56 mg/kg, i.m.) or SR 141716A (1-10 mg/kg, i.m.) was administered alone, 60 and 75 min before the session, respectively, both cannabinoid ligands dose-dependently decreased the overall rate of responding and increased the overall percentage of errors. However, at a dose that had little or no effect alone (i.e. 1 mg/kg), SR 141716A antagonized the disruptive effects of delta9-THC (0.18-1.8 mg/kg) on acquisition, shifting the dose-effect curves for rate of responding and percentage of errors at least 1/2 log unit to the right. Finally, when either delta9-THC (0.001-1 mg/kg) or SR 141716A (0.32-10 mg/kg) was administered with scopolamine (0.01 or 0.032 mg/kg, 15 min before the session), greater rate-decreasing and error-increasing effects were obtained than with scopolamine alone. These results suggest that while low doses of SR 141716A can antagonize the effects of delta9-THC in squirrel monkeys, high doses can also disrupt acquisition when administered alone and potentiate the disruptive effects of scopolamine on acquisition.
Collapse
Affiliation(s)
- E M Nakamura-Palacios
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil.
| | | | | |
Collapse
|
42
|
Abstract
Marijuana consumption elicits diverse physiological and psychological effects in humans, including memory loss. Here we report that Delta9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is toxic for hippocampal neurons. Treatment of cultured neurons or hippocampal slices with THC caused shrinkage of neuronal cell bodies and nuclei as well as genomic DNA strand breaks, hallmarks of neuronal apoptosis. Neuron death induced by THC was inhibited by nonsteroidal anti-inflammatory drugs, including indomethacin and aspirin, as well as vitamin E and other antioxidants. Furthermore, treatment of neurons with THC stimulated a significant increase in the release of arachidonic acid. We hypothesize that THC neurotoxicity is attributable to activation of the prostanoid synthesis pathway and generation of free radicals by cyclooxygenase. These data suggest that some of the memory deficits caused by cannabinoids may be caused by THC neurotoxicity.
Collapse
|
43
|
Steigerwald ES, Miller MW. Performance by Adult Rats in Sensory-Mediated Radial Arm Maze Tasks Is Not Impaired and May Be Transiently Enhanced by Chronic Exposure to Ethanol. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb04489.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Franke H, Kittner H, Berger P, Wirkner K, Schramek J. The reaction of astrocytes and neurons in the hippocampus of adult rats during chronic ethanol treatment and correlations to behavioral impairments. Alcohol 1997; 14:445-54. [PMID: 9305459 DOI: 10.1016/s0741-8329(96)00209-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic ethanol treatment of Wistar rats to 10% (v/v) ethanol over a period of 4, 12, and 36 weeks produced distinct alterations of the glial fibrillary acidic protein immunoreactivity (GFAP-IR) of dorsal hippocampal astrocytes. Ethanol consumption over a period of 4 weeks caused an increase in the total GFAP-IR of the astrocytes. Down-regulation of the total GFAP-IR was measured in all examined brain regions after 36 weeks of ethanol treatment. Prolonged ethanol treatment induced a significant loss of the total number of hippocampal pyramidal and dentate gyrus granule cells. Regional differences in the vulnerability to the neurotoxic effects of chronic ethanol intake over 36 weeks were found: CA3 > CA1 + CA2 > > CA4 > GD. In agreement with the degree of neuronal cell loss, ethanol-induced behavioral impairments were found. The acquisition of maze performance using a complex elevated labyrinth was deteriorated after 36 weeks of ethanol treatment, suggesting a deficit in learning and memory. These findings illustrate the importance of time-response analysis when determining the structural and functional changes produced by chronic ethanol treatment.
Collapse
Affiliation(s)
- H Franke
- Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
45
|
Rothberg BS, Hunter BE, Walker DW, Anderson JF, Anderson KJ. Long-term effects of chronic ethanol on muscarinic receptor binding in rat brain. Alcohol Clin Exp Res 1996; 20:1613-7. [PMID: 8986212 DOI: 10.1111/j.1530-0277.1996.tb01706.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effects of chronic ethanol treatment (CET) on muscarinic acetylcholine receptor (mAChR) binding properties were investigated via quantitative autoradiography in rats maintained on an ethanol-containing liquid diet for 28 weeks and withdrawn from ethanol for 8 weeks before harvesting of tissues. Controls received an identical diet in which sucrose was substituted isocalorically for ethanol. Maximal binding of the radiolabeled mAChR antagonist quinuclidinyl benzilate ([3H]QNB) was not reduced in hippocampal area CA1, dentate gyrus, neocortex, striatum, or thalamus, suggesting that CET results in no significant mAChR loss in these regions. Binding affinities of the cholinergic agonist carbachol to mAChRs were unaffected by CET in each of these regions, as determined by competitive displacement of [3H]QNB labeling. These results suggest that CET-induced functional deficits in brain cholinergic responses are not due to direct effects of CET on mAChR binding properties.
Collapse
Affiliation(s)
- B S Rothberg
- Department of Neuroscience, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
46
|
Miyamoto A, Yamamoto T, Watanabe S. Effect of repeated administration of delta 9-tetrahydrocannabinol on delayed matching-to-sample performance in rats. Neurosci Lett 1995; 201:139-42. [PMID: 8848237 DOI: 10.1016/0304-3940(95)12189-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study we examined the effect of repeated exposure to delta 9-tetrahydrocannabinol (THC) at a dose of 10 mg/kg (once a day for 4 days) 24 h after administration, on delayed matching-to-sample (DMTS) performance in rats using a three-lever operant apparatus. Although DMTS performance was not changed on the 1st day, it was impaired on the 2nd day. The impairment was potentiated in dependence of repeated administration. After withdrawal of THC, the impairment of DMTS performance gradually disappeared. On the 10th day after withdrawal, readministration of 10 mg/kg THC resulted in marked impairment of DMTS performance at 24 h after administration. Furthermore, a single administration of 1.0 mg/kg THC 30 min prior to the session, the dose at which a single administration did not cause impairment of DMTS performance in vehicle-treated rats, significantly decreased the number of reinforcements in the test trial. In conclusion, the present study demonstrated that repeated THC administration impaired DMTS performance under the condition of 24 h after administration, and that behavioral sensitization to this impairment developed. Furthermore, the suppressive state of lever-pressing induced by repeated THC administration may be a useful animal model for amotivational syndrome in humans.
Collapse
Affiliation(s)
- A Miyamoto
- Department of Pharmacology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
47
|
Abstract
Several laboratories have reported that chronic exposure to delta-9-tetrahydrocannabinol (THC) or marijuana extracts persistently altered the structure and function of the rat hippocampus, a paleocortical brain region involved with learning and memory processes in both rats and humans. Certain choices must be made in designing experiments to evaluate cannabis neurotoxicity, such as dose, route of administration, duration of exposure, age at onset of exposure, species of subjects, whether or how long to allow withdrawal, and which endpoints or biomarkers of neurotoxicity to measure. A review of the literature suggests that both age during exposure and duration of exposure may be critical determinants of neurotoxicity. Cannabinoid administration for at least three months (8-10% of a rat's lifespan) was required to produce neurotoxic effects in peripubertal rodents, which would be comparable to about three years exposure in rhesus monkeys and seven to ten years in humans. Studies of monkeys after up to 12 months of daily exposure have not consistently reported neurotoxicity, and the results of longer exposures have not yet been studied.
Collapse
Affiliation(s)
- A C Scallet
- Division of Reproductive and Developmental Toxicology, National Center for Toxicological Research, Jefferson, AR 72079
| |
Collapse
|
48
|
Nakamura EM, da Silva EA, Concilio GV, Wilkinson DA, Masur J. Reversible effects of acute and long-term administration of delta-9-tetrahydrocannabinol (THC) on memory in the rat. Drug Alcohol Depend 1991; 28:167-75. [PMID: 1657563 DOI: 10.1016/0376-8716(91)90072-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A study was designed to develop a measure of both acute and chronic effects of THC administration on memory in the rat. Errors in an 8-arm radial maze, before and after two delay intervals (5 s and 1 h, introduced between the fourth and the fifth arm choice), constituted the principal dependent measures. The first experiment involved testing the animals shortly after administration of 1.25 mg/kg THC. The drug did not affect performance in the pre-delay tests, although a significant effect was observed after the 5-s delay but not after 1-h delay. In the second experiment, 5 mg/kg THC or saline were administered 6 days/week for 90 days. Testing was conducted 18 h after each drug administration. During chronic administration the pre-delay performance did not differ between groups but the post-delay performance of the THC group deteriorated in a gradual manner, relative to their controls, in both the 5-s and 1-h delay conditions. After discontinuation of drug administration, the differences between groups reversed only after 30 days. The results provided evidence that both acute and chronic administration of THC affected working-memory in the radial arm maze test, although it did not interfere with the general cues of the task (reference memory). Chronic drug effects on memory were reversible after prolonged abstinence. Thus, the 8-arm radial maze task proved to be a useful measure of THC effects on memory and could be further used to investigate more thoroughly the mechanisms involved in such drug effects.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E M Nakamura
- Departamento de Psicobiologia, Escola Paulista de Medicina, São Paulo, Brasil
| | | | | | | | | |
Collapse
|
49
|
Kempf E, Kempf J, Ebel A. Alcohol withdrawal-induced changes in brain biogenic amines in mice: influence of the genotype. Neurochem Res 1990; 15:69-75. [PMID: 2325826 DOI: 10.1007/bf00969186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alterations in striatal and hippocampal dopamine (DA) and serotonin (5HT) activities were investigated in two inbred strains of mice (C57B1 and Balb/c) after 3 withdrawal periods following 5 months chronic ethanol administration. Two groups of animals with different levels of ethanol administration (15% and 30%, v/v) were examined. A striking strain dependency has been noted. Striatal dopaminergic mechanisms of the Balb/c strain are profoundly disturbed in both groups. In contrast no changes were noted for either transmitter activities in C57B1 mice at any withdrawal time studied. Strain dependency has also been noted for hippocampal serotonin neurotransmission, since only Balb/c mice showed a progressive decrease in 5HT levels. These impairments observed in striatum and hippocampus could be involved in motor incoordinations and convulsions often associated with the withdrawal syndrome. The differences in withdrawal effects we noted between the two strains may be linked to the specific chemical neuroanatomy of the strains. Such specificities could be implied in the well known variability of withdrawal induced behavior in man.
Collapse
Affiliation(s)
- E Kempf
- Centre de Neurochimie du CNRS, Strasbourg, France
| | | | | |
Collapse
|
50
|
File SE, Mabbutt PS. Long-lasting effects on habituation and passive avoidance performance of a period of chronic ethanol administration in the rat. Behav Brain Res 1990; 36:171-8. [PMID: 2302317 DOI: 10.1016/0166-4328(90)90171-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rats were fed a liquid diet to which an increasing concentration of ethanol was added over a period of 3 weeks; a concentration of 10% ethanol was then maintained for a further 4 weeks. The rats were then returned to a normal ad libitum diet of rat pellets. In order to assess the long-term effects of this ethanol diet, the performance of different groups of rats was assessed 3 and 5 months after the normal diet was resumed. At both times, the ex-ethanol-treated rats showed significantly impaired between-day habituation of exploratory head-dipping at holes that were empty, but normal between-day habituation of head-dipping at the hole with the same object underneath on all 3 days. The ex-ethanol-treated rats also showed a reduced response to the introduction of an object at a previously empty hole and, following this, a subsequent disruption of between-day habituation of head-dipping at this hole. Within-session habituation of head-dipping was unimpaired. There were no deficits in the acquisition or short-term retention of a passive avoidance response, but on retention testing 24 h after training the ex-ethanol-treated rats showed a decreased latency to enter the shocked compartment. On the trials 24 h and 48 h after training the rats tested 5 months after their ethanol treatment showed impaired extinction of the passive avoidance response.
Collapse
Affiliation(s)
- S E File
- UMDS Division of Pharmacology, University of London, Guy's Hospital, U.K
| | | |
Collapse
|