1
|
Wang SY, Zhang LJ, Chen GJ, Ni QQ, Huang Y, Zhang D, Han FY, He WF, He LL, Ding YQ, Jiao HL, Ye YP. COPA A-to-I RNA editing hijacks endoplasmic reticulum stress to promote metastasis in colorectal cancer. Cancer Lett 2023; 553:215995. [PMID: 36336148 DOI: 10.1016/j.canlet.2022.215995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
RNA editing is among the most common RNA level modifications for generating amino acid changes. We identified a COPA A-to-I RNA editing event in CRC metastasis. Our results showed that the COPA A-to-I RNA editing rate was significantly increased in metastatic CRC tissues and was closely associated with aggressive tumors in the T and N stages. The COPA I164V protein damaged the Golgi-ER reverse transport function, induced ER stress, promoted the translocation of the transcription factors ATF6, XBP1 and ATF4 into the nucleus, and activated the expression of MALAT1, MET, ZEB1, and lead to CRC cell invasion and metastasis. Moreover, the COPA A-to-I RNA editing rate was positively correlated with the immune infiltration score. Collectively, the COPA I164V protein hijacked ER stress to promote the metastasis of CRC, and the COPA A-to-I RNA editing rate may be a potential predictor for patient response to immune checkpoint inhibitor (ICIs) treatment.
Collapse
Affiliation(s)
- Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Guo-Jun Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Qi-Qi Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Yuan Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Fang-Yi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Wen-Feng He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Li-Ling He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| | - Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| |
Collapse
|
2
|
Ma J, Yang X, Fan W, Zhao C, Li W, Zhou D, Jiang S. Cloning and sequence analysis of a serine protease gene from Rhizoctonia solani Kühn AG5. Biotechnol Appl Biochem 2022; 69:2466-2474. [PMID: 34877711 DOI: 10.1002/bab.2296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
The present study aimed to identify the subtilisin-like proteases (SLPs) of Rhizoctonia solani Kühn potentially involved in the virulence of this phytopathogenic fungus, which has 14 anastomosis groups (AGs) responsible for many crop diseases. Through mycelial microscope observation and strain identification of pathogenic fungus MS-3, it was determined to be R. solani AG-5. Both 5' and 3' rapid amplification of cDNA ends were used to clone the serine protease gene RsSLP from R. solani AG-5. The full-length obtained for RsSLP was 1714 bp with an open reading frame of 1587 bp, encoding a protein of 528 amino acids with a molecular mass of 55.8 kDa. This protein contained a predicted signal peptide for secretion but lacked a transmembrane domain or membrane anchor site. Bioinformatics analysis identified this protein as a serine protease with the Peptidase_S8 and Inhibitor_I9 characteristic domains of SLPs. Phylogenetic analysis suggested that frequent gene duplications of the SLPs occurred in R. solani (RsSLP), and RsSLP shares characteristic sequence features with virulence factors of other phytopathogenic fungi. Because the secretory serine protease RsSLP from R. solani AG5 is similar to the virulence factors of other phytopathogenic fungi, its identification will be helpful in studies considering the roles of these proteases in pathogen virulence.
Collapse
Affiliation(s)
- Jing Ma
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xiling Yang
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wenyan Fan
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Changjiang Zhao
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wenshuai Li
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Di Zhou
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shujun Jiang
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
3
|
Corona-Sanchez EG, Martínez-García EA, Lujano-Benítez AV, Pizano-Martinez O, Guerra-Durán IA, Chavarria-Avila E, Aguilar-Vazquez A, Martín-Márquez BT, Arellano-Arteaga KJ, Armendariz-Borunda J, Perez-Vazquez F, García-De la Torre I, Llamas-García A, Palacios-Zárate BL, Toriz-González G, Vazquez-Del Mercado M. Autoantibodies in the pathogenesis of idiopathic inflammatory myopathies: Does the endoplasmic reticulum stress response have a role? Front Immunol 2022; 13:940122. [PMID: 36189221 PMCID: PMC9520918 DOI: 10.3389/fimmu.2022.940122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of rare, acquired autoimmune diseases characterized by profound muscle weakness and immune cell invasion into non-necrotic muscle. They are related to the presence of antibodies known as myositis-specific antibodies and myositis-associated antibodies, which are associated with various IIM phenotypes and the clinical prognosis. The possibility of the participation of other pathological mechanisms involved in the inflammatory response in IIM has been proposed. Such mechanisms include the overexpression of major histocompatibility complex class I in myofibers, which correlates with the activation of stress responses of the endoplasmic reticulum (ER). Taking into account the importance of the ER for the maintenance of homeostasis of the musculoskeletal system in the regulation of proteins, there is probably a relationship between immunological and non-immunological processes and autoimmunity, and an example of this might be IIM. We propose that ER stress and its relief mechanisms could be related to inflammatory mechanisms triggering a humoral response in IIM, suggesting that ER stress might be related to the triggering of IIMs and their auto-antibodies’ production.
Collapse
Affiliation(s)
- Esther Guadalupe Corona-Sanchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oscar Pizano-Martinez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivette Alejandra Guerra-Durán
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Aguilar-Vazquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Kevin Javier Arellano-Arteaga
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Especialidad de Medicina Interna, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Zapopan, Mexico
| | - Felipe Perez-Vazquez
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ignacio García-De la Torre
- Departamento de Inmunología y Reumatología, Hospital General de Occidente y Universidad de Guadalajara, Guadalajara, Mexico
| | - Arcelia Llamas-García
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Brenda Lucía Palacios-Zárate
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Guillermo Toriz-González
- Instituto Transdisciplinar de Investigación y Servicios (ITRANS), Universidad de Guadalajara, Zapopan, Mexico
| | - Monica Vazquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
- *Correspondence: Monica Vazquez-Del Mercado,
| |
Collapse
|
4
|
Zhang Y, Wang Y, Feng X, Zhang S, Xu X, Li L, Niu S, Bo Y, Wang C, Li Z, Xia G, Zhang H. Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice. Nat Commun 2021; 12:2523. [PMID: 33953177 PMCID: PMC8100162 DOI: 10.1038/s41467-021-22829-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/19/2023] Open
Abstract
Crosstalk between oocytes and surrounding somatic cells is crucial for mammalian oogenesis, but the structural mechanisms on oocytes to control female reproduction remain unknown. Here we combine endogenous-fluorescent tracing mouse models with a high-resolution live-cell imaging system to characterize oocyte-derived mushroom-like microvilli (Oo-Mvi), which mediate germ-somatic communication in mice. We perform 3D live-cell imaging to show that Oo-Mvi exhibit cellular characteristics that fit an exocrine function for signaling communication. We find that deletion of the microvilli-forming gene Radixin in oocytes leads to the loss of Oo-Mvi in ovaries, and causes a series of abnormalities in ovarian development, resulting in shortened reproductive lifespan in females. Mechanistically, we find that Oo-Mvi enrich oocyte-secreted factors and control their release, resulting in optimal selection of ovarian follicles. Taken together, our data show that the Oo-Mvi system controls the female reproductive lifespan by governing the fate of follicles. How structural features on oocytes regulate mammalian female reproduction is unclear. Here, the authors provide imaging and physiological evidence (for example on Radixin knockout) to identify oocyte-derived mushroom-like microvilli that control the female reproductive lifespan by governing the fate of follicles.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ye Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xie'an Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingnan Bo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Yousafi Q, Sarfaraz A, Saad Khan M, Saleem S, Shahzad U, Abbas Khan A, Sadiq M, Ditta Abid A, Sohail Shahzad M, ul Hassan N. In silico annotation of unreviewed acetylcholinesterase (AChE) in some lepidopteran insect pest species reveals the causes of insecticide resistance. Saudi J Biol Sci 2021; 28:2197-2209. [PMID: 33911936 PMCID: PMC8071828 DOI: 10.1016/j.sjbs.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Lepidoptera is the second most diverse insect order outnumbered only by the Coeleptera. Acetylcholinesterase (AChE) is the major target site for insecticides. Extensive use of insecticides, to inhibit the function of this enzyme, have resulted in the development of insecticide resistance. Complete knowledge of the target proteins is very important to know the cause of resistance. Computational annotation of insect acetylcholinesterase can be helpful for the characterization of this important protein. Acetylcholinesterase of fourteen lepidopteran insect pest species was annotated by using different bioinformatics tools. AChE in all the species was hydrophilic and thermostable. All the species showed lower values for instability index except L. orbonalis, S. exigua and T. absoluta. Highest percentage of Arg, Asp, Asn, Gln and Cys were recorded in P. rapae. High percentage of Cys and Gln might be reason for insecticide resistance development in P. rapae. Phylogenetic analysis revealed the AChE in T. absoluta, L. orbonalis and S. exigua are closely related and emerged from same primary branch. Three functional motifs were predicted in eleven species while only two were found in L. orbonalis, S. exigua and T. absoluta. AChE in eleven species followed secretory pathway and have signal peptides. No signal peptides were predicted for S. exigua, L. orbonalis and T. absoluta and follow non secretory pathway. Arginine methylation and cysteine palmotylation was found in all species except S. exigua, L. orbonalis and T. absoluta. Glycosylphosphatidylinositol (GPI) anchor was predicted in only nine species.
Collapse
Affiliation(s)
- Qudsia Yousafi
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
- Corresponding author.
| | - Ayesha Sarfaraz
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | | | - Shahzad Saleem
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | - Umbreen Shahzad
- College of Agriculture, Bahauddin Zakariya University, Bahadur Campus, Layyah, Pakistan
| | - Azhar Abbas Khan
- College of Agriculture, Bahauddin Zakariya University, Bahadur Campus, Layyah, Pakistan
| | - Mazhar Sadiq
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | | | | | | |
Collapse
|
6
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Suleimanova A, Bulmakova D, Sharipova M. Heterologous Expression of Histidine Acid Phytase From Pantoea sp. 3.5.1 in Methylotrophic Yeast Pichia Pastoris. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objective:The major storage form of phosphorus in plant-derived feed is presented by phytates and not digested by animals. Phytases are able to hydrolyze phytates and successfully used as feed additives. Nevertheless, nowadays, there is a constant search of new phytases and expression systems for better production of these enzymes. In this study, we describe cloning and expression of gene encoding histidine acid phytase fromPantoeasp. 3.5.1 using methylotrophic yeastPichia pastorisas the host.Methods:The phytase gene was placed under the control of the methanol-inducible AOX1 promoter and expressed inP. pastoris. Experiments of small-scale phytase expression and activity assays were used to test recombinant colonies. Four different signal peptides were screened for better secretion of phytase byP. pastoris. After 36 h of methanol induction in shake flasks, the maximum extracellular phytase activity (3.2 U/ml) was observed inP. pastorisstrain with integrated construct based on pPINK-HC vector andKluyveromyces maxianusinulinase gene signal sequence. This phytase was isolated and purified using affinity chromatography.Results:Recombinant phytase was a glycosylated protein, had a molecular weight of around 90 kDa and showed maximum activity at pH 4.0 and at 50°C. Recombinant phytase had excellent thermal stability – it retained high residual activity (100% ± 2%) after 1 hour of heat treatment at 70°C.Conclusion:The enhanced thermostability of the recombinant phytase, its expression provided by strong inducible promotor and the effectively designed expression cassette, the simple purification procedure of the secreted enzyme, and the possibility of large-scale expression make the foundation for further production of this bacterial phytase inP. pastorisat an industrial scale.
Collapse
|
8
|
Lee D, Lee S, Shin Y, Song Y, Kang SW. Thiol-disulfide status regulates quality control of prion protein at the plasma membrane. FASEB J 2019; 33:11567-11578. [PMID: 31331210 DOI: 10.1096/fj.201901052r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rapid endoplasmic reticulum (ER) stress-induced export (RESET) is undoubtedly beneficial in that it eliminates misfolded prion protein (PrP) from a stressed ER. Considering that RESET induces rapid endocytosis of misfolded PrP for degradation, it is questionable whether RESET is beneficial when its product amount overwhelms the capacity of subsequent clearance pathways. We require a strategy to monitor the endocytic flux rate of misfolded PrPs. Here, we stabilized misfolded PrPs by inserting red fluorescent protein (RFP) and indirectly determined this rate by monitoring the lysosomal free RFP. We discovered a surveillance mechanism that limits endocytosis of misfolded PrPs through plasma membrane quality control (pmQC). pmQC was regulated by the thiol-disulfide status of misfolded PrPs and consequently accumulates nonpathogenic PrP variants at the plasma membrane. This variant alleviated prion proteotoxicity induced by persistent RESET. Thus, PrP endocytosis is regulated by pmQC to ensure the safety of endolysosomal pathway from persistent internalization of misfolded PrP.-Lee, D., Lee, S., Shin, Y., Song, Y., Kang, S.-W. Thiol-disulfide status regulates quality control of prion protein at the plasma membrane.
Collapse
Affiliation(s)
- Duri Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sohee Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yejin Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute of Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute of Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
9
|
Calderan-Rodrigues MJ, Guimarães Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA. Plant Cell Wall Proteomics: A Focus on Monocot Species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci 2019; 20:E1975. [PMID: 31018495 PMCID: PMC6514655 DOI: 10.3390/ijms20081975] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Fabrício Edgar de Moraes
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Laís Vaz Setem
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Amanda Carmanhanis Begossi
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Carlos Alberto Labate
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| |
Collapse
|
10
|
Hoffman AM, Chen Q, Zheng T, Nicchitta CV. Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis. J Biol Chem 2019; 294:8942-8958. [PMID: 31004035 DOI: 10.1074/jbc.ra119.007996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a nexus for mRNA localization and translation, and recent studies have demonstrated that ER-bound ribosomes also play a transcriptome-wide role in regulating proteome composition. The Sec61 translocon (SEC61) serves as the receptor for ribosomes that translate secretory/integral membrane protein-encoding mRNAs, but whether SEC61 also serves as a translation site for cytosolic protein-encoding mRNAs remains unknown. Here, using a BioID proximity-labeling approach in HEK293T Flp-In cell lines, we examined interactions between ER-resident proteins and ribosomes in vivo Using in vitro analyses, we further focused on bona fide ribosome interactors (i.e. SEC61) and ER proteins (ribophorin I, leucine-rich repeat-containing 59 (LRRC59), and SEC62) previously implicated in associating with ribosomes. We observed labeling of ER-bound ribosomes with the SEC61β and LRRC59 BioID reporters, comparatively modest labeling with the ribophorin I reporter, and no labeling with the SEC62 reporter. A biotin pulse-chase/subcellular fractionation approach to examine ribosome exchange at the SEC61β and LRRC59 sites revealed that, at steady state, ribosomes at these sites comprise both rapid- and slow-exchanging pools. Global translational initiation arrest elicited by the inhibitor harringtonine accelerated SEC61β reporter-labeled ribosome exchange. RNA-Seq analyses of the mRNAs associated with SEC61β- and LRRC59-labeled ribosomes revealed both site-enriched and shared mRNAs and further established that the ER has a transcriptome-wide role in regulating proteome composition. These results provide evidence that ribosomes interact with the ER membrane via multiple modes and suggest regulatory mechanisms that control global proteome composition via ER membrane-bound ribosomes.
Collapse
Affiliation(s)
| | - Qiang Chen
- Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Tianli Zheng
- Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Christopher V Nicchitta
- From the Departments of Biochemistry and .,Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
11
|
Zhang Y, Xia D, Zhao Q, Zhang G, Zhang Y, Qiu Z, Shen D, Lu C. Label-free proteomic analysis of silkworm midgut infected by Bombyx mori nuclear polyhedrosis virus. J Proteomics 2019; 200:40-50. [PMID: 30904731 DOI: 10.1016/j.jprot.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Bombyx mori nuclear polyhedrosis virus (BmNPV) is the most damaging virus for the production of silkworm cocoons. Antivirus research continues to be an important aspect of the silkworm industry. Two-dimensional electrophoresis and mass spectrometry have been applied for analyzing the midgut proteome of BmNPV-infected silkworms. In recent years, the isobaric tags for relative and absolute quantitation (iTRAQ) method has frequently been used when studying interaction between BmNPV and Bombyx mori, and useful information has been obtained. In this study, midgut proteins of BmNPV-infected silkworms were extracted from silkworm variety NIL·LVR with anti-BmNPV activity at 48 h, and proteome analysis was carried out using the label-free method. 2196 proteins were identified. Among them, there were 85 differentially expressed proteins, 45 upregulated proteins (immune-activated proteins), 28 downregulated proteins, and six proteins were specific for the BmNPV group and another six specific for control group. Many of the immune-activated proteins have been reported to have innate immune functions, and the downregulated proteins are involved in apoptosis or abnormal cell viability. In conclusion, this study provides evidence for host defense against BmNPV infection by both innate immunity and apoptosis, revealing the potential function of the midgut after oral infection of BmNPV in Bombyx mori. SIGNIFICANCE: Bombyx mori nuclear polyhedrosis virus (BmNPV) has a great impact on the sericulture industry. However, the mechanism of resistance to BmNPV has not been fully elucidated. The silkworm midgut is not only the major organ for food digestion and nutrient absorption but also an immune organ serving as the first line of defense against microbial invasion and proliferation. Here we combined label-free quantitative proteomic, bioinformatics, quantitative real-time PCR and SDS-PAGE analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut of NIL·LVR with anti-BmNPV activity. The results showed that many upregulated differentially expressed proteins have been reported to have innate immune functions and the downregulation proteins are involved in apoptosis or abnormal cell viability. These findings provide evidence for host defense against BmNPV infection by both innate immunity and apoptosis, and reveals the potential function of the midgut after infection of BmNPV in Bombyx mori.
Collapse
Affiliation(s)
- Yuan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Yeshun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Cheng Lu
- Institute of Sericulture and System Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Deng L, Cao L, Chen Y, Chen J, Hu X, Chen X, Wu C, Zhou Y. Hepatitis B surface antigen with N-terminal addition of mCherry can assemble into functional subviral particles. Future Virol 2018. [DOI: 10.2217/fvl-2018-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To label HBsAg with the mCherry protein without impairing its functionality. Materials & methods: A vector expressing mCherry–HBsAg fusion protein was constructed and transfected into Huh7 cell lines. The expression, secretion and subcellular localization of HBsAg was detected by western blotting, ELISA and immunofluorescence staining, respectively. Then the assembly of subviral particles was evaluated by sucrose density gradient centrifugation, dot blotting and electron microscopic assay. Results: mCherry–HBsAg fusion protein can be expressed and secreted in a similar manner to HBsAg. More importantly, mCherry–HBsAg fusion protein can self-assemble into spherical subviral-like particles. Conclusion: mCherry could be introduced into HBsAg without affecting its biological characters including expression, secretion and assembly.
Collapse
Affiliation(s)
- Liu Deng
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Liang Cao
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
- Department of Microbiology & Immunology, Feinberg School of Medicine, NU, Chicago, IL, USA
| | - Yingshan Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xue Hu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Chunchen Wu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuan Zhou
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
13
|
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018; 10:E298. [PMID: 29857561 PMCID: PMC6024371 DOI: 10.3390/v10060298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications. Its versatile features, like large cloning capacity, nonreplicative nature in mammalian cells, and broad tissue tropism, hold it at an excellent position among vaccine vectors. In addition to ease and safety during swift production, recent key improvements to existing baculovirus vectors (such as inclusion of hybrid promoters, immunostimulatory elements, etc.) have led to significant improvements in immunogenicity and efficacy of surface-displayed antigens. Furthermore, some promising preclinical results have been reported that mirror the scope and practicality of baculovirus as a vaccine vector for human applications in the near future. Herein, this review provides an overview of the induced immune responses by baculovirus surface-displayed vaccines against influenza and other infectious diseases in animal models, and highlights the strategies applied to enhance the protective immune responses against the displayed antigens.
Collapse
Affiliation(s)
- Balraj Premanand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Poh Zhong Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
14
|
A Novel Modeling in Mathematical Biology for Classification of Signal Peptides. Sci Rep 2018; 8:1039. [PMID: 29348418 PMCID: PMC5773712 DOI: 10.1038/s41598-018-19491-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022] Open
Abstract
The molecular structure of macromolecules in living cells is ambiguous unless we classify them in a scientific manner. Signal peptides are of vital importance in determining the behavior of newly formed proteins towards their destined path in cellular and extracellular location in both eukaryotes and prokaryotes. In the present research work, a novel method is offered to foreknow the behavior of signal peptides and determine their cleavage site. The proposed model employs neural networks using isolated sets of prokaryote and eukaryote primary sequences. Protein sequences are classified as secretory or non-secretory in order to investigate secretory proteins and their signal peptides. In comparison with the previous prediction tools, the proposed algorithm is more rigorous, well-organized, significantly appropriate and highly accurate for the examination of signal peptides even in extensive collection of protein sequences.
Collapse
|
15
|
Xu Q, Knoshaug EP, Wang W, Alahuhta M, Baker JO, Yang S, Vander Wall T, Decker SR, Himmel ME, Zhang M, Wei H. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microb Cell Fact 2017; 16:126. [PMID: 28738851 PMCID: PMC5525229 DOI: 10.1186/s12934-017-0742-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/13/2017] [Indexed: 11/29/2022] Open
Abstract
Background Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. Results To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Conclusions Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0742-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
16
|
A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species. Protein Expr Purif 2017; 132:27-33. [DOI: 10.1016/j.pep.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022]
|
17
|
Jing L, Guo D, Hu W, Niu X. The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis. BMC Bioinformatics 2017; 18:166. [PMID: 28284182 PMCID: PMC5346188 DOI: 10.1186/s12859-017-1577-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/03/2017] [Indexed: 11/11/2022] Open
Abstract
Background Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome. Results 908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen. Conclusions This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1577-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lan Jing
- Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| | - Dandan Guo
- Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Wenjie Hu
- Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaofan Niu
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
18
|
Shimoji M, Figueroa RA, Neve E, Maksel D, Imreh G, Morgenstern R, Hallberg E. Molecular basis for the dual subcellular distribution of microsomal glutathione transferase 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:238-244. [DOI: 10.1016/j.bbamem.2016.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
|
19
|
Ben Azoun S, Belhaj AE, Göngrich R, Gasser B, Kallel H. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microb Biotechnol 2016; 9:355-68. [PMID: 26880068 PMCID: PMC4835572 DOI: 10.1111/1751-7915.12350] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 01/13/2023] Open
Abstract
In this work, different approaches were investigated to enhance the expression rabies virus glycoprotein (RABV-G) in the yeast Pichia pastoris; this membrane protein is responsible for the synthesis of rabies neutralizing antibodies. First, the impact of synonymous codon usage bias was examined and an optimized RABV-G gene was synthesized. Nevertheless, data showed that the secretion of the optimized RABV-G gene was not tremendously increased as compared with the non-optimized one. In addition, similar levels of RABV-G were obtained when α-factor mating factor from Saccharomyces cerevisiae or the acid phosphatase PHO1 was used as a secretion signal. Therefore, sequence optimization and secretion signal were not the major bottlenecks for high-level expression of RABV-G in P. pastoris. Unfolded protein response (UPR) was induced in clones containing high copy number of RABV-G expression cassette indicating that folding was the limiting step for RABV-G secretion. To circumvent this limitation, co-overexpression of five factors involved in oxidative protein folding was investigated. Among these factors only PDI1, ERO1 and GPX1 proved their benefit to enhance the expression. The highest expression level of RABV-G reached 1230 ng ml(-1). Competitive neutralizing assay confirmed that the recombinant protein was produced in the correct conformational form in this host.
Collapse
Affiliation(s)
- Safa Ben Azoun
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur. BP. 74, Tunis, 1002, Tunisia
| | - Aicha Eya Belhaj
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur. BP. 74, Tunis, 1002, Tunisia
| | - Rebecca Göngrich
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna, 1190, Austria
| | - Brigitte Gasser
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna, 1190, Austria
| | - Héla Kallel
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur. BP. 74, Tunis, 1002, Tunisia
| |
Collapse
|
20
|
Rehman S, Gupta VK, Goyal AK. Identification and functional analysis of secreted effectors from phytoparasitic nematodes. BMC Microbiol 2016; 16:48. [PMID: 27001199 PMCID: PMC4802876 DOI: 10.1186/s12866-016-0632-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. RESEARCH Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. CONCLUSION Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes.
Collapse
Affiliation(s)
- Sajid Rehman
- />International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat-Instituts-Morocco, P.O.Box 6299, Rabat, Morocco
| | - Vijai K. Gupta
- />National University of Ireland Galway, Galway, Ireland
| | - Aakash K. Goyal
- />International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat-Instituts-Morocco, P.O.Box 6299, Rabat, Morocco
| |
Collapse
|
21
|
Calderan-Rodrigues MJ, Jamet E, Douché T, Bonassi MBR, Cataldi TR, Fonseca JG, San Clemente H, Pont-Lezica R, Labate CA. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases. BMC PLANT BIOLOGY 2016; 16:14. [PMID: 26754199 PMCID: PMC4709929 DOI: 10.1186/s12870-015-0677-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/05/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. RESULTS A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. CONCLUSIONS The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane cell wall proteome, and provide target proteins that could be used in future research to facilitate 2G ethanol production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Elisabeth Jamet
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Thibaut Douché
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Maria Beatriz Rodrigues Bonassi
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Thaís Regiani Cataldi
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Hélène San Clemente
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Rafael Pont-Lezica
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Carlos Alberto Labate
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| |
Collapse
|
22
|
Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci Rep 2015; 5:14812. [PMID: 26446798 PMCID: PMC4597200 DOI: 10.1038/srep14812] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022] Open
Abstract
Protein S-nitrosylation modulates important cellular processes, including neurotransmission, vasodilation, proliferation, and apoptosis in various cell types. We have previously reported that protein disulfide isomerase (PDI) is S-nitrosylated in brains of patients with sporadic neurodegenerative diseases. This modification inhibits PDI enzymatic activity and consequently leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen. Here, we describe S-nitrosylation of additional ER pathways that affect the unfolded protein response (UPR) in cell-based models of Parkinson’s disease (PD). We demonstrate that nitric oxide (NO) can S-nitrosylate the ER stress sensors IRE1α and PERK. While S-nitrosylation of IRE1α inhibited its ribonuclease activity, S-nitrosylation of PERK activated its kinase activity and downstream phosphorylation/inactivation or eIF2α. Site-directed mutagenesis of IRE1α(Cys931) prevented S-nitrosylation and inhibition of its ribonuclease activity, indicating that Cys931 is the predominant site of S-nitrosylation. Importantly, cells overexpressing mutant IRE1α(C931S) were resistant to NO-induced damage. Our findings show that nitrosative stress leads to dysfunctional ER stress signaling, thus contributing to neuronal cell death.
Collapse
|
23
|
Extracellular expression of alkaline phytase in Pichia pastoris: Influence of signal peptides, promoters and growth medium. ACTA ACUST UNITED AC 2015. [PMID: 28626704 PMCID: PMC5466264 DOI: 10.1016/j.btre.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alkaline phytase isolated from pollen grains of Lilium longiflorum (LlALP) possesses unique catalytic and thermal stability properties that suggest it has the potential to be used as a feed supplement. However, substantial amounts of active enzymes are needed for animal feed studies and endogenous levels of LlALP in lily pollen are too low to provide the required amounts. Active rLlALP2 (coded by LlAlp2, one of two isoforms of alkaline phytase cDNA identified in lily pollen) has been successfully expressed in intracellular compartments of Pichia pastoris, however enzyme yields have been modest (25–30 mg/L) and purification of the enzyme has been challenging. Expression of foreign proteins to the extracellular medium of P. pastoris greatly simplifies protein purification because low levels of endogenous proteins are secreted by the yeast. In this paper, we first describe the generation of P. pastoris strains that will secrete rLlALP2 to the extracellular medium. Data presented here indicates that deletion of native signal peptides at the N- and C-termini of rLlALP2 enhanced α-mating factor (α-MF)-driven secretion by four-fold; chicken egg white lysozyme signal peptide was ineffective in the extracellular secretion of rLlALP2. Second, we describe our efforts to increase expression levels by employing a constitutive promoter from the glyceraldehyde-3-phosphate dehydrogenase gene (PGAP) in place of the strong, tightly controlled promoter of alcohol oxidase 1 gene (PAOX1). PGAP enhanced the extracellular expression levels of rLlALP2 compared to PAOX1. Finally, we report on the optimization of the culture medium to enhance yields of rLlALP2. The strength of PGAP varies depending on the carbon source available for cell growth; secreted expression of rLlALP2 was highest when glycerol was the carbon source. The addition of histidine and Triton X-100 also enhanced extracellular expression. Taken together, the employment of PGAP under optimized culture conditions resulted in approximately eight-fold (75–80 mg/L) increase in extracellular activity compared to PAOXI (8–10 mg/L). The P. pastoris expression system can be employed as a source of active alkaline phytase for animal feed studies.
Collapse
|
24
|
Cross-linking effect of hydrophobic cores on morphology of giant vesicles formed by amphiphilic random block copolymers. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3519-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells. Sci Rep 2014; 4:7096. [PMID: 25403445 PMCID: PMC4235288 DOI: 10.1038/srep07096] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/30/2014] [Indexed: 12/15/2022] Open
Abstract
Leptin is a circulating hormone that plays a critical role in regulating energy expenditure and food intake. Evidence to suggest the involvement of endoplasmic reticulum (ER) stress in the development of obesity is increasing. To adapt against ER stress, cells trigger the unfolded protein response (UPR). The 78 kDa glucose-regulated protein (GRP78) is an ER chaperone that protects cells against ER stress by inducing protein folding. In the present study, we hypothesized that leptin may activate UPR and protect against ER stress associated with obesity. SH-SY5Y, a human neuroblastoma cell line stably transfected with the Ob-Rb leptin receptor (SH-SY5Y-ObRb), was treated with leptin. We demonstrated that leptin induced GRP78 expression. We then validated the mechanism responsible for the leptin-induced expression of GRP78. Interestingly, leptin-induced GRP78 expression was not dependent on IRE1-XBP1 pathway. On the other hand, the PI3K inhibitor, LY294002, and mTOR inhibitor, rapamycin, inhibited the leptin-induced expression of GRP78. These results suggested that the leptin-induced expression of GRP78 may be dependent on the PI3K-mTOR pathway. Leptin specifically induced GRP78 because the induction of the ER-apoptotic marker, CHOP, was not detected in leptin-treated cells. Therefore, leptin may upregulate the expression of GRP78, thereby protecting against ER stress associated with obesity.
Collapse
|
26
|
Sørensen DM, Holen HW, Holemans T, Vangheluwe P, Palmgren MG. Towards defining the substrate of orphan P5A-ATPases. Biochim Biophys Acta Gen Subj 2014; 1850:524-35. [PMID: 24836520 DOI: 10.1016/j.bbagen.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. SCOPE OF REVIEW This review aims to discuss the available evidence which could lead to identification of possible substrates of P5A-ATPases. MAJOR CONCLUSIONS The complex phenotypes resulting from the loss of P5A-ATPases in model organisms can be explained by a role of the P5A-ATPase in the endoplasmic reticulum (ER), where loss of function leads to broad and unspecific phenotypes related to the impairment of basic ER functions such as protein folding and processing. Genetic interactions in Saccharomyces cerevisiae point to a role of the endogenous P5A-ATPase Spf1p in separation of charges in the ER, in sterol metabolism, and in insertion of tail-anchored proteins in the ER membrane. A role for P5A-ATPases in vesicle formation would explain why sterol transport and distribution are affected in knock out cells, which in turn has a negative impact on the spontaneous insertion of tail-anchored proteins. It would also explain why secretory proteins destined for the Golgi and the cell wall have difficulties in reaching their final destination. Cations and phospholipids could both be transported substrates of P5A-ATPases and as each carry charges, transport of either might explain why a charge difference arises across the ER membrane. GENERAL SIGNIFICANCE Identification of the substrate of P5A-ATPases would throw light on an important general process in the ER that is still not fully understood. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Henrik Waldal Holen
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tine Holemans
- Department of Cellular and Molecular Medicine, ON1 Campus Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, Box 802, B3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, ON1 Campus Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, Box 802, B3000 Leuven, Belgium
| | - Michael G Palmgren
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
27
|
SECRETOOL: integrated secretome analysis tool for fungi. Amino Acids 2013; 46:471-3. [PMID: 24370983 DOI: 10.1007/s00726-013-1649-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
The secretome (full set of secreted proteins) has been studied in multiple fungal genomes to elucidate the potential role of those protein collections involved in a number of metabolic processes from host infection to wood degradation. Being aminoacid composition a key factor to recognize secretory proteins, SECRETOOL comprises a group of web tools that enable secretome predictions out of aminoacid sequence files, up to complete fungal proteomes, in one step. SECRETOOL is freely available on the web at http://genomics.cicbiogune.es/SECRETOOL/Secretool.php .
Collapse
|
28
|
Characterization and 3D structure prediction of chitinase induced in sugarcane during pathogenesis of Colletotrichum falcatum. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2013. [DOI: 10.1007/s13562-013-0226-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Krügel U, Kühn C. Post-translational regulation of sucrose transporters by direct protein-protein interactions. FRONTIERS IN PLANT SCIENCE 2013; 4:237. [PMID: 23847641 PMCID: PMC3698446 DOI: 10.3389/fpls.2013.00237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/16/2013] [Indexed: 05/07/2023]
Abstract
Sucrose transporters are essential membrane proteins for the allocation of carbon resources in higher plants and protein-protein interactions play a crucial role in the post-translational regulation of sucrose transporters affecting affinity, transport capacity, oligomerization, localization, and trafficking. Systematic screening for protein interactors using sucrose transporters as bait proteins helped identifying several proteins binding to sucrose transporters from apple, Arabidopsis, potato, or tomato using the split ubiquitin system. This mini-review summarizes known sucrose transporter-interacting proteins and their potential function in plants. Not all of the identified interaction partners are postulated to be located at the plasma membrane, but some are predicted to be endoplasmic reticulum-residing proteins such as a protein disulfide isomerase and members of the cytochrome b5 family. Many of the SUT1-interacting proteins are secretory proteins or involved in metabolism. Identification of actin and actin-related proteins as SUT1-interacting proteins confirmed the observation that movement of SUT1-containing intracellular vesicles can be blocked by inhibition of actin polymerization using specific inhibitors. Manipulation of expression of these interacting proteins represents one possible way to modify resource allocation by post-translational regulation of sucrose transporters.
Collapse
Affiliation(s)
- Undine Krügel
- Institute of Plant Biology, University of Zürich, Zürich Switzerland
| | | |
Collapse
|
30
|
Crawford ED, Seaman JE, Agard N, Hsu GW, Julien O, Mahrus S, Nguyen H, Shimbo K, Yoshihara HAI, Zhuang M, Chalkley RJ, Wells JA. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. Mol Cell Proteomics 2012; 12:813-24. [PMID: 23264352 DOI: 10.1074/mcp.o112.024372] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolysis is a critical post-translational modification for regulation of cellular processes. Our lab has previously developed a technique for specifically labeling unmodified protein N termini, the α-aminome, using the engineered enzyme, subtiligase. Here we present a database, called the DegraBase (http://wellslab.ucsf.edu/degrabase/), which compiles 8090 unique N termini from 3206 proteins directly identified in subtiligase-based positive enrichment mass spectrometry experiments in healthy and apoptotic human cell lines. We include both previously published and unpublished data in our analysis, resulting in a total of 2144 unique α-amines identified in healthy cells, and 6990 in cells undergoing apoptosis. The N termini derive from three general categories of proteolysis with respect to cleavage location and functional role: translational N-terminal methionine processing (∼10% of total proteolysis), sites close to the translational N terminus that likely represent removal of transit or signal peptides (∼25% of total), and finally, other endoproteolytic cuts (∼65% of total). Induction of apoptosis causes relatively little change in the first two proteolytic categories, but dramatic changes are seen in endoproteolysis. For example, we observed 1706 putative apoptotic caspase cuts, more than double the total annotated sites in the CASBAH and MEROPS databases. In the endoproteolysis category, there are a total of nearly 3000 noncaspase nontryptic cleavages that are not currently reported in the MEROPS database. These studies significantly increase the annotation for all categories of proteolysis in human cells and allow public access for investigators to explore interesting proteolytic events in healthy and apoptotic human cells.
Collapse
Affiliation(s)
- Emily D Crawford
- Department of Pharmaceutical Chemistry, University of California-San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dhanaraj P, James JV, Michael PG, Muthiah I. SIGLOCPRED: an algorithm to predict bacterial signal peptides and OMPS. Bioinformation 2012; 8:970-3. [PMID: 23275689 PMCID: PMC3524949 DOI: 10.6026/97320630008970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/09/2012] [Indexed: 11/23/2022] Open
Abstract
There is a growing interest in Biological investigation to determine the location of proteins, to identify new potentially accessible drug targets. Signal peptide directs the transport of the protein to its location. Bacterial OMPs are essential for their survival in the host organism. SIGLOCPRED a signal peptide predictor for the bacterial proteins as well as OMP prediction has been developed. The signal peptide prediction is done based on the influence of the flanking residues on the signal peptide cleavage. A dataset of proteins with confirmed outer membrane location has being created, and the probable OMP polypeptide sequence is predicted. Since the algorithm uses confirmed datasets the prediction is more reliable and efficient. SIGLOCPRED is as efficient as many of the existing signal peptide predictors and can also predict OMPs in addition.
Collapse
Affiliation(s)
- Premnath Dhanaraj
- School of Biotechnology and Health Science, Karunya University, INDIA
| | | | | | | |
Collapse
|
32
|
Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Fact 2012; 11:97. [PMID: 22830363 PMCID: PMC3416730 DOI: 10.1186/1475-2859-11-97] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secretory signal peptides (SPs) are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1) of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv's). The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. RESULTS We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv's, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv's contained one additional amino-acid (AA). CONCLUSIONS The obtained results demonstrate the importance of SP-sequence optimization for efficient expression-secretion of scFv's. We could successfully demonstrate that minor modifications in the AA-sequence in the c-region of the natural SP from SAP1, based on in-silico predictions following the (-3, -1) rule, resulted in different expression-secretion rates of the protein of interest. The yield of scFv production could be improved close to one order of magnitude. Therefore, SP-sequence optimization is a viable option to increase the overall yield of recombinant protein production.
Collapse
|
33
|
Kim CH, Leung A, Huh YH, Yang E, Kim DJ, Leblanc P, Ryu H, Kim K, Kim DW, Garland EM, Raj SR, Biaggioni I, Robertson D, Kim KS. Norepinephrine deficiency is caused by combined abnormal mRNA processing and defective protein trafficking of dopamine beta-hydroxylase. J Biol Chem 2011; 286:9196-204. [PMID: 21209083 DOI: 10.1074/jbc.m110.192351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human norepinephrine (NE) deficiency (or dopamine β-hydroxylase (DBH) deficiency) is a rare congenital disorder of primary autonomic failure, in which neurotransmitters NE and epinephrine are undetectable. Although potential pathogenic mutations, such as a common splice donor site mutation (IVS1+2T→C) and various missense mutations, in NE deficiency patients were identified, molecular mechanisms underlying this disease remain unknown. Here, we show that the IVS1+2T→C mutation results in a non-detectable level of DBH protein production and that all three missense mutations tested lead to the DBH protein being trapped in the endoplasmic reticulum (ER). Supporting the view that mutant DBH induces an ER stress response, exogenous expression of mutant DBH dramatically induced expression of BiP, a master ER chaperone. Furthermore, we found that a pharmacological chaperone, glycerol, significantly rescued defective trafficking of mutant DBH proteins. Taken together, we propose that NE deficiency is caused by the combined abnormal processing of DBH mRNA and defective protein trafficking and that this disease could be treated by a pharmacological chaperone(s).
Collapse
Affiliation(s)
- Chun-Hyung Kim
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gentile CL, Frye MA, Pagliassotti MJ. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. Biofactors 2011; 37:8-16. [PMID: 21328622 PMCID: PMC3080031 DOI: 10.1002/biof.135] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/10/2010] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning public health concern in westernized nations. The obesity-related disorder is associated with an increased risk of cardiovascular disease, type 2 diabetes and liver failure. Although the underlying pathogenesis of NAFLD is unclear, increasing evidence suggests that excess saturated fatty acids presented to or stored within the liver may play a role in both the development and progression of the disorder. A putative mechanism linking saturated fatty acids to NAFLD may be endoplasmic reticulum (ER) stress. Specifically, excess saturated fatty acids may induce an ER stress response that, if left unabated, can activate stress signaling pathways, cause hepatocyte cell death, and eventually lead to liver dysfunction. In the current review we discuss the involvement of saturated fatty acids in the pathogenesis of NAFLD with particular emphasis on the role of ER stress.
Collapse
Affiliation(s)
- Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Melinda A. Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
35
|
Luhe AL, Ting ENY, Tan L, Wu J, Zhao H. Engineering of small sized DNAs by error-prone multiply-primed rolling circle amplification for introduction of random point mutations. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Tang XC, Lu HR, Ross TM. Hemagglutinin displayed baculovirus protects against highly pathogenic influenza. Vaccine 2010; 28:6821-31. [PMID: 20727393 DOI: 10.1016/j.vaccine.2010.08.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/11/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
Baculovirus (BV) replicating in insect cells can express a foreign gene product as part of its genome. The influenza hemagglutinin (HA) can be expressed from BV and displayed on the surface of baculovirus (HA-DBV). In this study we first generated six recombinant baculoviruses that expressed chimeric HAs with segments of the BV glycoprotein (gp64). The signal peptide (SP) and cytoplasmic tail (CT) domains of gp64 can enhance the display of HA from A/PR8/34 on BV surface, while the transmembrane (TM) domain of gp64 impairs HA display. Different doses of either live or β-propiolactone (BPL)-inactivated HA-DBV were administered to BALB/c mice. Live HA-DBV elicited higher hemagglutination-inhibition (HAI) titers than BPL-inactivated HA-DBV, and provided sterilizing protection. A second generation recombinant BV simultaneously displaying four HAs derived from four subclades of H5N1 influenza viruses was constructed. This tetravalent H5N1 HA-DBV vaccine elicited HAI titers against all four homologous H5N1 viruses, significantly decreasing viral lung titers of challenged mice and providing 100% protection against lethal doses of homologous H5N1 viruses. Moreover, mice vaccinated with HA-DBV had high levels of IFNγ-secreting and HA-specific CD8+ T cells. Taken together, this study demonstrates that HA-DBV can stimulate strong humoral, as well as cellular immune responses, and is an effective vaccine candidate for influenza.
Collapse
Affiliation(s)
- Xian-Chun Tang
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
37
|
Protein location prediction using atomic composition and global features of the amino acid sequence. Biochem Biophys Res Commun 2010; 391:1670-4. [DOI: 10.1016/j.bbrc.2009.12.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 11/17/2022]
|
38
|
Futatsumori-Sugai M, Tsumoto K. Signal peptide design for improving recombinant protein secretion in the baculovirus expression vector system. Biochem Biophys Res Commun 2010; 391:931-5. [DOI: 10.1016/j.bbrc.2009.11.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
|
39
|
Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. J Mol Biol 2009; 391:679-90. [PMID: 19497327 DOI: 10.1016/j.jmb.2009.05.075] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 12/31/2022]
Abstract
The specialised signal recognition particle family guanosine 5c-triphosphate (GTP)-binding protein FlhF is required for the correct localisation of flagella in several bacterial species. Here, we characterise the regions of Vibrio cholerae FlhF that are required for its function and targeting to the old cell pole, and we present evidence for a mechanism by which FlhF establishes flagellum polar localisation. Substitution of residues in FlhF nucleotide-binding motifs reduced GTP binding and the efficiency of flagellum biogenesis, and caused flagellum mislocalisation. However, replacement of conserved putative catalytic residues (D(321), R(324), and Q(330)) had no effect, suggesting that while GTP binding influences FlhF function, GTPase activity might not be essential. FlhF associated with the inner membrane in the absence of other flagellar proteins, and a functional FlhF-green fluorescent protein fusion was targeted to the old cell pole where the flagellum is localised. FlhF targeting to the pole was intrinsic, as no other flagellar proteins were needed. Neither the FlhF C-terminal GTP-binding region nor the N-terminal 166-residue B-region was required for polar localisation, though they were essential for FlhF function. Deletion of the central 108-residue N-region of FlhF, comprising alpha-helices N1-N4, did however severely reduce the efficiency of FlhF polar targeting, as well as FlhF function. The intrinsic localisation of FlhF to the old cell pole membrane suggested that FlhF might function at an early stage of flagellum assembly; to test this, we assessed the effect of FlhF on the localisation of the earliest flagellar structural component, the membrane-supramembrane ring protein FliF. Recruitment of FliF to the pole required only FlhF and no other flagellar proteins. FliF polar targeting was abolished in the absence of FlhF and by deletion of the FlhF B-domain or GTP-binding region. Our data indicate that FlhF establishes the site of flagellum assembly at the old cell pole membrane by recruiting the earliest flagellar structural component FliF.
Collapse
|
40
|
Lee AH, Glimcher LH. Intersection of the unfolded protein response and hepatic lipid metabolism. Cell Mol Life Sci 2009; 66:2835-50. [PMID: 19468685 DOI: 10.1007/s00018-009-0049-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 12/20/2022]
Abstract
The liver plays a central role in whole-body lipid metabolism by governing the synthesis, oxidization, transport and excretion of lipids. The unfolded protein response (UPR) was identified as a signal transduction system that is activated by ER stress. Recent studies revealed a critical role of the UPR in hepatic lipid metabolism. The IRE1/XBP1 branch of the UPR is activated by high dietary carbohydrates and controls the expression of genes involved in fatty acid and cholesterol biosynthesis. PERK mediated eIF2alpha phosphorylation is also required for the expression of lipogenic genes and the development of hepatic steatosis, likely by activating C/EBP and PPARgamma transcription factors. Further studies to define the molecular pathways that lead to the activation of the UPR by nutritional cues in the liver, and their contribution to human metabolic disorders such as hepatic steatosis, atherosclerosis and type 2 diabetes that are associated with dysregulation of lipid homeostasis, are warranted.
Collapse
Affiliation(s)
- Ann-Hwee Lee
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115-6017, USA.
| | | |
Collapse
|
41
|
Ahmed AU, Fisher PR. Import of nuclear-encoded mitochondrial proteins: a cotranslational perspective. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:49-68. [PMID: 19215902 DOI: 10.1016/s1937-6448(08)01802-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing amount of evidence suggests that the cytosolic translation of nuclear-encoded mitochondrial proteins and their subsequent import into mitochondria are tightly coupled in a process termed cotranslational import. In addition to the original posttranslational view of mitochondrial protein import, early literature also provides both in vitro and in vivo experimental evidence supporting the simultaneous existence of a cotranslational protein-import mechanism in mitochondria. Recent investigations have started to reveal the cotranslational import mechanism which is initiated by transporting either a translation complex or a translationally competent mRNA encoding a mitochondrial protein to the mitochondrial surface. The intracellular localization of mRNA to the mitochondrial surface has emerged as the latest addition to our understanding of mitochondrial biogenesis. It is mediated by targeting elements within the mRNA molecule in association with potential mRNA-binding proteins.
Collapse
Affiliation(s)
- Afsar U Ahmed
- Department of Microbiology, La Trobe University, Victoria, Australia
| | | |
Collapse
|
42
|
Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 2008; 60:702-16. [PMID: 18155316 PMCID: PMC7103284 DOI: 10.1016/j.addr.2007.09.007] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 09/30/2007] [Indexed: 12/11/2022]
Abstract
After oral administration, the majority of drug molecules are absorbed across the small intestine and enter the systemic circulation via the portal vein and the liver. For some highly lipophilic drugs (typically log P > 5, lipid solubility > 50 mg/g), however, association with lymph lipoproteins in the enterocyte leads to transport to the systemic circulation via the intestinal lymph. The attendant delivery benefits associated with lymphatic drug transport include a reduction in first-pass metabolism and lymphatic exposure to drug concentrations orders of magnitude higher than that attained in systemic blood. In the current review we briefly describe the mechanisms by which drug molecules access the lymph and the formulation strategies that may be utilised to enhance lymphatic drug transport. Specific focus is directed toward recent advances in understanding regarding the impact of lipid source (both endogenous and exogenous) and intracellular lipid trafficking pathways on lymphatic drug transport and enterocyte-based first-pass metabolism.
Collapse
|
43
|
Yoon KS, Lee KP, Klochkova TA, Kim GH. MOLECULAR CHARACTERIZATION OF THE LECTIN, BRYOHEALIN, INVOLVED IN PROTOPLAST REGENERATION OF THE MARINE ALGA BRYOPSIS PLUMOSA (CHLOROPHYTA)(1). JOURNAL OF PHYCOLOGY 2008; 44:103-112. [PMID: 27041047 DOI: 10.1111/j.1529-8817.2007.00457.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When a coenocytic cell of the green alga Bryopsis plumosa (Hudson) C. Agardh was cut open and the cell contents expelled, the cell organelles agglutinated rapidly in seawater to form protoplasts. This process was mediated by a lectin, Bryohealin. The full sequence of the cDNA encoding Bryohealin was obtained, which consisted of 1,101 base pairs (bp), with 24 bp of 5' untranslated region (UTR) and 201 bp of 3' UTR. It had an open reading frame (ORF) of 771 bp encoding 257 amino acid residues. A signal peptide consisted of 22 amino acids presented before the start codon of Bryohealin, indicating that this lectin was a vacuolar (storage) protein. The C-terminal sequence of Bryohealin was composed of antibiotic domains, suggesting that this lectin could perform two functions: (i) aggregation of cell organelles in seawater and (ii) protection from bacterial contamination for successful protoplast regeneration. The BLAST search result showed that Bryohealin had little sequence homology with any known plant lectins, but rather resembled animal lectins with fucolectin domains. The expression of recombinant Bryohealin (rBryohealin) was obtained in the Escherichia coli system.
Collapse
Affiliation(s)
- Kang Sup Yoon
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| | - Key Pyoung Lee
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| | - Tatyana A Klochkova
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, 314-701, KoreaDepartment of Chemistry, Kongju National University, Kongju, 314-701, KoreaDepartment of Biology, Kongju National University, Kongju, 314-701, Korea
| |
Collapse
|
44
|
Shen HB, Chou KC. Signal-3L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun 2007; 363:297-303. [PMID: 17880924 DOI: 10.1016/j.bbrc.2007.08.140] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Functioning as an "address tag" that directs nascent proteins to their proper cellular and extracellular locations, signal peptides have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for rapidly and accurately identifying the signal peptide for a given nascent protein. With the avalanche of new protein sequences generated in the post-genomic era, the challenge has become even more urgent and critical. In this paper, we have developed a novel method for predicting signal peptide sequences and their cleavage sites in human, plant, animal, eukaryotic, Gram-positive, and Gram-negative protein sequences, respectively. The new predictor is called Signal-3L that consists of three prediction engines working, respectively, for the following three progressively deepening layers: (1) identifying a query protein as secretory or non-secretory by an ensemble classifier formed by fusing many individual OET-KNN (optimized evidence-theoretic K nearest neighbor) classifiers operated in various dimensions of PseAA (pseudo amino acid) composition spaces; (2) selecting a set of candidates for the possible signal peptide cleavage sites of a query secretory protein by a subsite-coupled discrimination algorithm; (3) determining the final cleavage site by fusing the global sequence alignment outcome for each of the aforementioned candidates through a voting system. Signal-3L is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-3L is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-3L/ or http://202.120.37.186/bioinf/Signal-3L, where, to further support the demand of the related areas, the signal peptides identified by Signal-3L for all the protein entries in Swiss-Prot databank that do not have signal peptide annotations or are annotated with uncertain terms but are classified by Signal-3L as secretory proteins are provided in a downloadable file. The large-scale file is prepared with Microsoft Excel and named "Tab-Signal-3L.xls", and will be updated once a year to include new protein entries and reflect the continuous development of Signal-3L.
Collapse
Affiliation(s)
- Hong-Bin Shen
- Gordon Life Science Institute, San Diego, CA 92130, USA.
| | | |
Collapse
|
45
|
Miller JD, Walter P. A GTPase cycle in initiation of protein translocation across the endoplasmic reticulum membrane. CIBA FOUNDATION SYMPOSIUM 2007; 176:147-59; discussion 159-63. [PMID: 8299417 DOI: 10.1002/9780470514450.ch10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In higher eukaryotes proteins bearing a signal sequence are translocated across the membrane of the endoplasmic reticulum (ER). The initial events of protein translocation are the binding of the signal sequence by the 54 kDa subunit (SRP54) of the signal recognition particle (SRP) and the targeting of the ribosome nascent chain complex to the ER. Targeting is mediated by the binding of SRP to the SRP receptor, a membrane protein comprising two different subunits, SR alpha and SR beta. Interaction of SRP and SR alpha/SR beta causes release of the signal and the engagement of the nascent chain with the membrane-bound translocation apparatus. Both SRP54 and SR alpha contain homologous domains which include a predicted GTPase fold. The transmembrane protein SR beta also contains a GTPase domain, but it is not closely related to those of SRP54 and SR alpha. All three proteins bind GTP specifically, and the SR alpha/SR beta complex stimulates both GTP binding to and GTP hydrolysis by SRP54. We suggest a model for the initiation of protein translocation across the ER in which SR alpha beta catalyses a cycle of GTP binding, hydrolysis and release by SRP54 that regulates its dissociation from the signal sequence.
Collapse
Affiliation(s)
- J D Miller
- Department of Biochemistry and Biophysics, School of Medicine, University of California, San Francisco 94143-0448
| | | |
Collapse
|
46
|
|
47
|
Chou KC, Shen HB. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 2007; 357:633-40. [PMID: 17434148 DOI: 10.1016/j.bbrc.2007.03.162] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
We have developed an automated method for predicting signal peptide sequences and their cleavage sites in eukaryotic and bacterial protein sequences. It is a 2-layer predictor: the 1st-layer prediction engine is to identify a query protein as secretory or non-secretory; if it is secretory, the process will be automatically continued with the 2nd-layer prediction engine to further identify the cleavage site of its signal peptide. The new predictor is called Signal-CF, where C stands for "coupling" and F for "fusion", meaning that Signal-CF is formed by incorporating the subsite coupling effects along a protein sequence and by fusing the results derived from many width-different scaled windows through a voting system. Signal-CF is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-CF is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-CF/ or http://202.120.37.186/bioinf/Signal-CF/.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130, USA.
| | | |
Collapse
|
48
|
Xu F, Fan C, He Y. Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. J Genet Genomics 2007; 34:138-50. [PMID: 17469786 DOI: 10.1016/s1673-8527(07)60015-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/31/2006] [Indexed: 11/22/2022]
Abstract
Chitinases (EC3.2.1.14), found in a wide range of organisms, catalyze the hydrolysis of chitin and play a major role in defense mechanisms against fungal pathogens. The alignment and typical domains were analyzed using basic local alignment search tool (BLAST) and simple modular architecture research tool (SMART), respectively. On the basis of the annotations of rice (Oryza sativa L.) and Arabidopsis genomic sequences and using the bio-software SignalP3.0, TMHMM2.0, TargetP1.1, and big-Pi Predictor, 25 out of 37 and 16 out of 24 open reading frames (ORFs) with chitinase activity from rice and Arabidopsis, respectively, were predicted to have signal peptides (SPs), which have an average of 24.8 amino acids at the N-terminal region. Some of the chitinases were secreted extracellularly, whereas some were located in the vacuole. The phylogenic relationship was analyzed with 61 ORFs and 25 known chitinases and they were classified into 6 clusters using Clustal X and MEGA3.1. This classification is not completely consistent when compared with the traditional system that classifies the chitinases into 7 classes. The frequency of distribution of amino acid residues was distinct in different clusters. The contents of alanine, glycine, serine, and leucine were very high in each cluster, whereas the contents of methionine, histidine, tryptophan, and cysteine were lower than 20%. Each cluster had distinct amino acid characteristics. Alanine, valine, leucine, cysteine, serine, and lysine were rich in Clusters I to VI, respectively.
Collapse
Affiliation(s)
- Fenghua Xu
- Key Laboratory of Plant Pathology of the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | | | | |
Collapse
|
49
|
Suzuki S, Okuse Y, Kawase M, Takiguchi M, Fukuyama Y, Takahashi H, Sato M. A norbergenin derivative inhibits neuronal cell damage induced by tunicamycin. Biol Pharm Bull 2006; 29:1335-8. [PMID: 16819164 DOI: 10.1248/bpb.29.1335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several chemically synthesized compounds were examined for protective effects against the cell damage in tunicamycin-treated human neuroblastoma IMR-32 cells. Among the compounds tested, an antioxidant, Norbergenin-11-caproate (10 microM), exhibited complete protection against the cell growth inhibitory effect of tunicamycin but did not inhibit the induction of Bip/GRP78 mRNA by tunicamycin. Both norbergenin-11-caproate and alpha-tocopherol completely inhibited the production of reactive oxygen species induced by tunicamycin, however, alpha-tocopherol inhibited tunicamycin-induced cell damage only partially, even at 100 microM. These findings suggest the potential of Norbergenin-11-caproate for therapeutic application in endoplasmic reticulum (ER) stress-dependent diseases implicating a specific mechanism other than anti-oxidative one.
Collapse
Affiliation(s)
- Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Ohse T, Inagi R, Tanaka T, Ota T, Miyata T, Kojima I, Ingelfinger JR, Ogawa S, Fujita T, Nangaku M. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 2006; 70:1447-55. [PMID: 16955111 DOI: 10.1038/sj.ki.5001704] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic proteinuria appears to be a key factor in tubulointerstitial damage. Recent studies have emphasized a pathogenic role of endoplasmic reticulum (ER) stress which is induced by the accumulation of misfolded proteins in ER, extracellular stress, etc. In the present study, we investigated ER stress and ER stress-induced apoptosis in proximal tubular cells (PTCs). Immortalized rat PTCs (IRPTCs) were cultured with bovine serum albumin (BSA). The viability of IRPTCs decreased proportionately with BSA overload in a time-dependent manner. Quantitative real-time polymerase chain reaction analysis revealed that 40 mg/ml BSA increases mRNA of ER stress markers by 7.7- and 4.6-fold (glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150), respectively) as compared to control. The increased expression of ORP150 and GRP78 in IRPTCs with albumin overload was detected by Western blot and immunofluorescence study. These in vitro observations were supported by in vivo studies, which demonstrated that ER stress proteins were upregulated at PTCs in experimental proteinuric rats. Furthermore, increased ER stress-induced apoptosis and activation of caspase-12 were observed in IRPTCs with albumin overload and kidneys of experimental proteinuric rats. We confirmed that apoptotic cell death was attenuated by co-incubation with caspase-3 inhibitor or calpain inhibitors. These results indicate that the ER stress-induced apoptosis pathway contributed to the insult of tubular cells by proteinuria. In conclusion, renal tubular cells exposed to high protein load suffer from ER stress. ER stress may subsequently lead to tubular damage by activation of caspase-12.
Collapse
Affiliation(s)
- T Ohse
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|