1
|
Yoon JH, Lee D, Lee C, Cho E, Lee S, Cazenave-Gassiot A, Kim K, Chae S, Dennis EA, Suh PG. Paradigm shift required for translational research on the brain. Exp Mol Med 2024; 56:1043-1054. [PMID: 38689090 PMCID: PMC11148129 DOI: 10.1038/s12276-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korean Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| |
Collapse
|
2
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
3
|
Gradwell MA, Callister RJ, Graham BA. Reviewing the case for compromised spinal inhibition in neuropathic pain. J Neural Transm (Vienna) 2019; 127:481-503. [PMID: 31641856 DOI: 10.1007/s00702-019-02090-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
A striking and debilitating property of the nervous system is that damage to this tissue can cause chronic intractable pain, which persists long after resolution of the initial insult. This neuropathic form of pain can arise from trauma to peripheral nerves, the spinal cord, or brain. It can also result from neuropathies associated with disease states such as diabetes, human immunodeficiency virus/AIDS, herpes, multiple sclerosis, cancer, and chemotherapy. Regardless of the origin, treatments for neuropathic pain remain inadequate. This continues to drive research into the underlying mechanisms. While the literature shows that dysfunction in numerous loci throughout the CNS can contribute to chronic pain, the spinal cord and in particular inhibitory signalling in this region have remained major research areas. This review focuses on local spinal inhibition provided by dorsal horn interneurons, and how such inhibition is disrupted during the development and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| |
Collapse
|
4
|
Valle-Maroto S, Fernández-López B, Villar-Cerviño V, Barreiro-Iglesias A, Anadón R, Rodicio MC. Inhibitory descending rhombencephalic projections in larval sea lamprey. Neuroscience 2011; 194:1-10. [DOI: 10.1016/j.neuroscience.2011.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/29/2011] [Accepted: 08/06/2011] [Indexed: 10/17/2022]
|
5
|
Friauf E, Rust MB, Schulenborg T, Hirtz JJ. Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system. Hear Res 2011; 279:96-110. [PMID: 21683130 DOI: 10.1016/j.heares.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 01/24/2023]
Abstract
The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5).
Collapse
Affiliation(s)
- Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
6
|
Smith CUM. Origins of molecular neurobiology: the role of the physicists. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2005; 14:214-29. [PMID: 16188701 DOI: 10.1080/096470490512427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The revolution in the foundations of physics at the beginning of the twentieth century suggested to several of its most prominent workers that biology was ripe for something similar. In consequence, a number of physicists moved into biology. They were highly influential in initiating a molecular biology in the 1950s. Two decades later it seemed to several of these migrants, and those they had influenced, that the major problems in molecular biology had been solved, and that it was time to move on to what seemed to them the final problem: the nervous system, consciousness, and the age-old mind-body problem. This paper reviews this "double migration" and shows how the hopes of the first generation of physicist-biologists were both realized and dashed. No new physical principles were discovered at work in the foundations of biology or neuroscience. On the other hand, the mind-set of those trained in physics proved immensely valuable in analyzing fundamental issues in both biology and neuroscience. It has been argued that the outcome of the molecular biology of the 1950s was a change in the concept of the gene from that of "a mysterious entity into that of a real molecular object" (Watson, 1965, p.6); the gates and channels which play such crucial roles in the functioning of nervous systems have been transformed in a similar way. Studies on highly simplified systems have also opened the prospect of finding the neural correlatives of numerous behaviors and neuropathologies. This increasing understanding at the molecular level is invaluable not only in devising rational therapies but also, by defining the material substrate of consciousness, in bringing the mind-body problem into sharper focus.
Collapse
Affiliation(s)
- C U M Smith
- Vision Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
7
|
Schoenfeld RL. From Einthoven's galvanometer to single-channel recording with electronics, neuroscientists get inside the membrane. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2002; 21:90-6. [PMID: 12119876 DOI: 10.1109/memb.2002.1016853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Smith CU. Renatus renatus: the Cartesian tradition in British neuroscience and the neurophilosophy of John Carew Eccles. Brain Cogn 2001; 46:364-72. [PMID: 11487286 DOI: 10.1006/brcg.2001.1294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
J. C. Eccles (1903-1997) had a highly distinguished career in neurophysiology, being awarded the Nobel Prize for Medicine or Physiology in 1963. This paper sets him within the Cartesian tradition of British neurophysiology initiated by Thomas Henry Huxley in the mid-19th century. It shows how the mind-brain problematique of the Cartesian tradition troubled him throughout his career, leading him finally to a solution in terms of quantum microphysics and microphysiology. This position, which has subsequently become fashionable, is discussed and shown (at least in the form Eccles espoused) to provide no solution to the problem posed by Descartes in the early 17th century.
Collapse
Affiliation(s)
- C U Smith
- Vision Sciences, Aston University, Birmingham, B4 7ET, United Kingdom.
| |
Collapse
|
9
|
Kinesthetic and somatosensory evoked potentials in patients with Parkinson's syndrome. Bull Exp Biol Med 1994. [DOI: 10.1007/bf02444146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Ticku MK, Maksay G. Convulsant/depressant site of action at the allosteric benzodiazepine-GABA receptor-ionophore complex. Life Sci 1983; 33:2363-75. [PMID: 6139732 DOI: 10.1016/0024-3205(83)90630-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several classes of centrally acting convulsant, depressant, anticonvulsant and anxiolytic drugs modulate GABAergic transmission. The postsynaptic receptor with which these drugs interact is an allosteric complex with distinct binding sites for GABA, benzodiazepines, picrotoxinin and related compounds. Convulsants which inhibit GABA transmission (except bicuculline) inhibit competitively the binding of dihydropicrotoxinin (DHP) or t-butylbicyclophosphorothionate (TBPT) to the picrotoxinin site and prevent the allosteric enhancing effect of depressant drugs on GABA and benzodiazepine binding. Depressant drugs give a mixed inhibition of TBPT binding. The possible topography of the picrotoxinin site and its relationship to convulsant/depressant drug action at the benzodiazepine-GABA receptor-ionophore complex is discussed.
Collapse
|
11
|
Squires RF. Certain GABA mimetics reduce the affinity of anions required for benzodiazepine binding in a GABA-reversible way. Drug Dev Res 1981. [DOI: 10.1002/ddr.430010304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
|
13
|
Bradley PB. Synaptic transmission in the central nervous system and its relevance for drug action. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1969; 11:1-56. [PMID: 4388284 DOI: 10.1016/s0074-7742(08)60383-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Reichelt KL. The chemical basis for the intolerance of the brain to anoxia. ACTA ANAESTHESIOLOGICA SCANDINAVICA. SUPPLEMENTUM 1968; 29:35-46. [PMID: 4233924 DOI: 10.1111/j.1399-6576.1968.tb00724.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Maletta GJ, Timiras PS. Acetyl- and butyrylcholinesterase activity of selected brain areas in developing rats after neonatal x-irradiation. J Neurochem 1966; 13:75-84. [PMID: 5936155 DOI: 10.1111/j.1471-4159.1966.tb03334.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
|