1
|
Vidović T, Ewald CY. Longevity-Promoting Pathways and Transcription Factors Respond to and Control Extracellular Matrix Dynamics During Aging and Disease. FRONTIERS IN AGING 2022; 3:935220. [PMID: 35874275 PMCID: PMC9301135 DOI: 10.3389/fragi.2022.935220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Mobeen A, Puniya BL, Ramachandran S. A computational approach to investigate constitutive activation of
NF‐κB. Proteins 2022; 90:1944-1964. [DOI: 10.1002/prot.26388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ahmed Mobeen
- CSIR – Institute of Genomics & Integrative Biology, Sukhdev Vihar New Delhi India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Bhanwar Lal Puniya
- Department of Biochemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Srinivasan Ramachandran
- CSIR – Institute of Genomics & Integrative Biology, Sukhdev Vihar New Delhi India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
3
|
Galli G, Vacher P, Ryffel B, Blanco P, Legembre P. Fas/CD95 Signaling Pathway in Damage-Associated Molecular Pattern (DAMP)-Sensing Receptors. Cells 2022; 11:cells11091438. [PMID: 35563744 PMCID: PMC9105874 DOI: 10.3390/cells11091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Study of the initial steps of the CD95-mediated signaling pathways is a field of intense research and a long list of actors has been described in the literature. Nonetheless, the dynamism of protein-protein interactions (PPIs) occurring in the presence or absence of its natural ligand, CD95L, and the cellular distribution where these PPIs take place render it difficult to predict what will be the cellular outcome associated with the receptor engagement. Accordingly, CD95 stimulation can trigger apoptosis, necroptosis, pyroptosis, or pro-inflammatory signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphatidylinositol-3-kinase (PI3K). Recent data suggest that CD95 can also activate pattern recognition receptors (PRRs) known to sense damage-associated molecular patterns (DAMPs) such as DNA debris and dead cells. This activation might contribute to the pro-inflammatory role of CD95 and favor cancer development or severity of chronic inflammatory and auto-immune disorders. Herein, we discuss some of the molecular links that might connect the CD95 signaling to DAMP sensors.
Collapse
Affiliation(s)
- Gael Galli
- CNRS, ImmunoConcEpT, UMR 5164, University Bordeaux, 33000 Bordeaux, France; (G.G.); (P.B.)
- Centre National de Référence Maladie Auto-Immune et Systémique Rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
- Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604 Pessac, France
| | - Pierre Vacher
- INSERM, CRCTB, U1045, University Bordeaux, 33000 Bordeaux, France;
| | - Bernhard Ryffel
- CNRS, INEM, UMR7355, University of Orleans, 45071 Orleans, France;
| | - Patrick Blanco
- CNRS, ImmunoConcEpT, UMR 5164, University Bordeaux, 33000 Bordeaux, France; (G.G.); (P.B.)
- Centre National de Référence Maladie Auto-Immune et Systémique Rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
- Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604 Pessac, France
| | - Patrick Legembre
- UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, 87025 Limoges, France
- Correspondence:
| |
Collapse
|
4
|
Guégan JP, Pollet J, Ginestier C, Charafe-Jauffret E, Peter ME, Legembre P. CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. iScience 2021; 24:103538. [PMID: 34917906 PMCID: PMC8666665 DOI: 10.1016/j.isci.2021.103538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
CD95 expression is preserved in triple-negative breast cancers (TNBCs), and CD95 loss in these cells triggers the induction of a pro-inflammatory program, promoting the recruitment of cytotoxic NK cells impairing tumor growth. Herein, we identify a novel interaction partner of CD95, Kip1 ubiquitination-promoting complex protein 2 (KPC2), using an unbiased proteomic approach. Independently of CD95L, CD95/KPC2 interaction contributes to the partial degradation of p105 (NF-κB1) and the subsequent generation of p50 homodimers, which transcriptionally represses NF-κB-driven gene expression. Mechanistically, KPC2 interacts with the C-terminal region of CD95 and serves as an adaptor to recruit RelA (p65) and KPC1, which acts as E3 ubiquitin-protein ligase promoting the degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines, which might contribute to remodeling the immune landscape in TNBC cells.
Collapse
Affiliation(s)
| | - Justine Pollet
- Technological core facility BISCEm, Université de Limoges, US042 Inserm, UMS 2015 CNRS, Centre hospitalo-universitaire de Limoges, Limoges, France
| | - Christophe Ginestier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Marcus E. Peter
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, Université Limoges, UMR CNRS 7276, INSERM 1262, Limoges, France
| |
Collapse
|
5
|
Pietrobon V, Todd LA, Goswami A, Stefanson O, Yang Z, Marincola F. Improving CAR T-Cell Persistence. Int J Mol Sci 2021; 22:ijms221910828. [PMID: 34639168 PMCID: PMC8509430 DOI: 10.3390/ijms221910828] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Over the last decade remarkable progress has been made in enhancing the efficacy of CAR T therapies. However, the clinical benefits are still limited, especially in solid tumors. Even in hematological settings, patients that respond to CAR T therapies remain at risk of relapsing due to several factors including poor T-cell expansion and lack of long-term persistence after adoptive transfer. This issue is even more evident in solid tumors, as the tumor microenvironment negatively influences the survival, infiltration, and activity of T-cells. Limited persistence remains a significant hindrance to the development of effective CAR T therapies due to several determinants, which are encountered from the cell manufacturing step and onwards. CAR design and ex vivo manipulation, including culture conditions, may play a pivotal role. Moreover, previous chemotherapy and lymphodepleting treatments may play a relevant role. In this review, the main causes for decreased persistence of CAR T-cells in patients will be discussed, focusing on the molecular mechanisms underlying T-cell exhaustion. The approaches taken so far to overcome these limitations and to create exhaustion-resistant T-cells will be described. We will also examine the knowledge gained from several key clinical trials and highlight the molecular mechanisms determining T-cell stemness, as promoting stemness may represent an attractive approach to improve T-cell therapies.
Collapse
Affiliation(s)
- Violena Pietrobon
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
- Correspondence: (V.P.); (F.M.)
| | - Lauren Anne Todd
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anghsumala Goswami
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Ofir Stefanson
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Zhifen Yang
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Francesco Marincola
- Kite Pharma, Inc., Santa Monica, CA 90404, USA
- Correspondence: (V.P.); (F.M.)
| |
Collapse
|
6
|
Oxidative Damages to Eye Stem Cells, in Response to, Bright and Ultraviolet Light, Their Associated Mechanisms, and Salvage Pathways. Mol Biotechnol 2018; 61:145-152. [DOI: 10.1007/s12033-018-0136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Saiki P, Kawano Y, Van Griensven LJLD, Miyazaki K. The anti-inflammatory effect of Agaricus brasiliensis is partly due to its linoleic acid content. Food Funct 2018; 8:4150-4158. [PMID: 29022634 DOI: 10.1039/c7fo01172e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For hundreds of years mushrooms have been used as functional food for health. The basidiomycete Agaricus brasiliensis (A. brasiliensis) is famous for the medicinal properties of its beta glucans and of its antioxidants. Most researchers have studied polysaccharides from A. brasiliensis for their anti-inflammatory activity. However, active compounds from this mushroom have not yet been studied for the inactivation of NO inhibitory activity. The present study aimed to find the active compounds from A. brasiliensis for their NO inhibitory activity related inflammatory activity. This study found that linoleic acid isolated from A. brasiliensis inhibited NO production and suppressed the expression of pro-inflammatory cytokines including TNF-α, IL-6, IL-1β, and NOS2 in RAW 264.7 cells. Linoleic acid also suppressed the expression of NF-κB subunit p50 and restored PPARα. This leads to the conclusion that linoleic acid from A. brasiliensis could reduce NO production and inflammatory activity in RAW 264.7 cells by the inhibition of p50 and via the activation of PPARα. This study suggests that linoleic acid present in A. brasiliensis could play a role in the prevention of inflammatory diseases for which this edible mushroom is already known.
Collapse
Affiliation(s)
- Papawee Saiki
- Biomedical Research Institute, National institute of Advance Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
8
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
9
|
Zhao D, Zhang Q, Liu Y, Li X, Zhao K, Ding Y, Li Z, Shen Q, Wang C, Li N, Cao X. H3K4me3 Demethylase Kdm5a Is Required for NK Cell Activation by Associating with p50 to Suppress SOCS1. Cell Rep 2016; 15:288-99. [PMID: 27050510 DOI: 10.1016/j.celrep.2016.03.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/21/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023] Open
Abstract
The H3K4me3 demethylase Kdm5a regulates gene transcription and is implicated in carcinogenesis. However, the role of Kdm5a in innate immune response remains poorly understood. Here, we demonstrate that Kdm5a deficiency impairs activation of natural killer (NK) cells, with decreased IFN-γ production. Accordingly, Kdm5a(-/-) mice are highly susceptible to Listeria monocytogenes (Lm) infection. During NK cell activation, loss of Kdm5a profoundly impairs phosphorylation and nuclear localization of STAT4, along with increased expression of suppressor of cytokine signaling 1 (SOCS1). Mechanistic studies reveal that Kdm5a associates with p50 and binds to the Socs1 promoter region in resting NK cells, leading to a substantial decrease in H3K4me3 modification and repressive chromatin configuration at the Socs1 promoter. Thus, Kdm5a is required for priming activation of NK cells by suppressing the suppressor, SOCS1. Our study provides insights into the epigenetic regulation of innate immune response of NK cells.
Collapse
Affiliation(s)
- Dezhi Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yiqi Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xia Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Zhao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuanyuan Ding
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiqing Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Chunmei Wang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China; National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
10
|
Poveda J, Sanz AB, Rayego-Mateos S, Ruiz-Ortega M, Carrasco S, Ortiz A, Sanchez-Niño MD. NFκBiz protein downregulation in acute kidney injury: Modulation of inflammation and survival in tubular cells. Biochim Biophys Acta Mol Basis Dis 2016; 1862:635-646. [PMID: 26776679 DOI: 10.1016/j.bbadis.2016.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022]
Abstract
Acute kidney injury is characterized by decreased renal function, tubular cell death and interstitial inflammation. The transcription factor NF-κB is a key regulator of genes involved in cell survival and the inflammatory response. In order to better understand the regulation and role of NF-κB in acute kidney injury we explored the expression of NF-κB-related genes in experimental acute kidney injury induced by a folic acid overdose. NFκBiz, a member of the IκB family of NF-κB regulators encoding NFκBiz, was among the top up-regulated NF-κB-related genes at the mRNA level in experimental acute kidney injury. However, the NFκBiz protein was constitutively expressed by normal tubular cells but was down-regulated in experimental acute kidney injury. Kidney NFκBiz mRNA upregulation and protein downregulation was also observed in acute kidney injury induced by cisplatin or unilateral kidney injury resulting from ureteral obstruction. Thus, we studied the consequences of NFκBiz protein downregulation by specific siRNA in cultured tubular epithelial cells. NFκBiz mRNA and protein were up-regulated by inflammatory cytokines (IL-1β or TWEAK/TNFα/IFNγ) and by LPS in cultured tubular cells. However, TWEAK only induced a very mild and short lived NFκBiz upregulation. NFκBiz targeting increased chemokine production and dampened Klotho downregulation induced by TWEAK, without modulating cell proliferation. NFκBiz targeting also rendered cells more resistant to apoptosis induced by serum deprivation or inflammatory cytokines. In conclusion, NFκBiz differentially regulates NF-κB-mediated responses of tubular cells to inflammatory cytokines in a gene-specific manner, and may be of potential therapeutic interest to limit inflammation in kidney disease.
Collapse
Affiliation(s)
- Jonay Poveda
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain.
| | - Ana B Sanz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Sandra Rayego-Mateos
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Susana Carrasco
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain.
| | - Maria D Sanchez-Niño
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain.
| |
Collapse
|
11
|
Miller JRC, Träger U, Andre R, Tabrizi SJ. Mutant Huntingtin Does Not Affect the Intrinsic Phenotype of Human Huntington's Disease T Lymphocytes. PLoS One 2015; 10:e0141793. [PMID: 26529236 PMCID: PMC4631523 DOI: 10.1371/journal.pone.0141793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022] Open
Abstract
Huntington’s disease is a fatal neurodegenerative condition caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system is dysregulated in Huntington’s disease and may contribute to its pathogenesis. However, it is not clear whether or to what extent the adaptive immune system is also involved. Here, we carry out the first comprehensive investigation of human ex vivo T lymphocytes in Huntington’s disease, focusing on the frequency of a range of T lymphocyte subsets, as well as analysis of proliferation, cytokine production and gene transcription. In contrast to the innate immune system, the intrinsic phenotype of T lymphocytes does not appear to be affected by the presence of mutant huntingtin, with Huntington’s disease T lymphocytes exhibiting no significant functional differences compared to control cells. The transcriptional profile of T lymphocytes also does not appear to be significantly affected, suggesting that peripheral immune dysfunction in Huntington’s disease is likely to be mediated primarily by the innate rather than the adaptive immune system. This study increases our understanding of the effects of Huntington’s disease on peripheral tissues, while further demonstrating the differential effects of the mutant protein on different but related cell types. Finally, this study suggests that the potential use of novel therapeutics aimed at modulating the Huntington’s disease innate immune system should not be extended to include the adaptive immune system.
Collapse
Affiliation(s)
- James R. C. Miller
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Ulrike Träger
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Ralph Andre
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Sarah J. Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Kim JH, Hong JM, Jeong EM, Lee WJ, Kim HR, Kang JS, Kim IG, Hwang YI. Lack of transglutaminase 2 diminished T-cell responses in mice. Immunology 2014; 142:506-16. [PMID: 24628083 DOI: 10.1111/imm.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022] Open
Abstract
Transglutaminase 2 (TG2) has been reported to play a role in dendritic cell activation and B-cell differentiation after immunization. Its presence and role in T cells, however, has not been explored. In the present study, we determined the expression of TG2 on mouse T cells, and evaluated its role by comparing the behaviours of wild-type and TG2(-/-) T cells after activation. In our results, naive T cells minimally expressed TG2, expression of which was increased after activation. T-cell proliferation, expression of activation markers such as CD69 and CD25, and secretions of interleukin-2 and interferon-γ were suppressed in the absence of TG2, presumably due, in part, to diminished nuclear factor-κB activation. These effects on T cells seemed to be reflected in the in vivo immune response, the contact hypersensitivity reaction elicited by 2,4-dinitro-1-fluorobenzene, with lowered peak responses in the TG2(-/-) mice. When splenic T cells from mice immunized with tumour lysate-loaded wild-type dendritic cells were re-challenged ex vivo with the same antigen, the profile of surface markers including CD44, CD62L, and CD127 strongly indicated lesser generation of memory CD8(+) T cells in TG2(-/-) mice. In the TG2(-/-) CD8(+) T cells, moreover, Eomes expression was markedly decreased. These results indicate possible roles of TG2 in CD8(+) T-cell activation and CD8(+) memory T-cell generation.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity. Vaccines (Basel) 2014; 2:196-215. [PMID: 26344618 PMCID: PMC4494262 DOI: 10.3390/vaccines2020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 12/26/2022] Open
Abstract
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.
Collapse
|
14
|
Abstract
Anergy is a long-term stable state of T-lymphocyte unresponsiveness to antigenic stimulation associated with the blockade of IL-2 production and proliferation. Anergy is a pathway of peripheral tolerance formation. In this review, mechanisms underlying T-cell tolerization are considered in a classical in vitro model of clonal anergy, and these mechanisms are compared with different pathways of anergy induction in vivo. Special attention is given to regulatory T-lymphocytes because, on one hand, anergy is a specific feature of these cells, and on the other hand anergy is also a mechanism of their action on target cells - effector T-lymphocytes. The role of this phenomenon in the differentiation of regulatory T-cells and also in the development of activation-induced apoptosis in effector T-lymphocytes is discussed.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia.
| |
Collapse
|
15
|
Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D. Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 2013; 6:ra75. [PMID: 23982206 DOI: 10.1126/scisignal.2004097] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB) rapidly reprograms gene expression in response to various stimuli, and its activity is regulated by several posttranslational modifications, including phosphorylation, methylation, and acetylation. The addition of O-linked β-N-acetylglucosamine (a process known as O-GlcNAcylation) is an abundant posttranslational modification that is enhanced in conditions such as hyperglycemia and cellular stress. We report that the NF-κB subunit c-Rel is modified and activated by O-GlcNAcylation. We identified serine 350 as the site of O-GlcNAcylation, which was required for the DNA binding and transactivation functions of c-Rel. Blocking the O-GlcNAcylation of this residue abrogated c-Rel-mediated expression of the cytokine-encoding genes IL2, IFNG, and CSF2 in response to T cell receptor (TCR) activation, whereas increasing the extent of O-GlcNAcylation of cellular proteins enhanced the expression of these genes. TCR- or tumor necrosis factor (TNF)-induced expression of other NF-κB target genes, such as NFKBIA (which encodes IκBα) and TNFAIP3 (which encodes A20), occurred independently of the O-GlcNAcylation of c-Rel. Our findings suggest a stimulus-specific role for hyperglycemia-induced O-GlcNAcylation of c-Rel in promoting T cell-mediated autoimmunity in conditions such as type 1 diabetes by enhancing the production of T helper cell cytokines.
Collapse
|
16
|
Abstract
At mucosal surfaces, phagocytes such as macrophages coexist with microbial communities; highly controlled regulation of these interactions is essential for immune homeostasis. Pattern-recognition receptors (PRRs) are critical in recognizing and responding to microbial products, and they are subject to negative regulation through various mechanisms, including downregulation of PRR-activating components or induction of inhibitors. Insights into these regulatory mechanisms have been gained through human genetic disease-association studies, in vivo mouse studies utilizing disease models or targeted gene perturbations, and in vitro and ex vivo human cellular studies examining phagocytic cell functions. Although mouse models provide an important approach to study macrophage regulation, human and mouse macrophages exhibit differences, which must be considered when extrapolating mouse findings to human physiology. This review discusses inhibitory regulation of PRR-induced macrophage functions and the consequences of dysregulation of these functions and highlights mechanisms that have a role in intestinal macrophages and in human macrophage studies.
Collapse
Affiliation(s)
- M Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
17
|
Wu CS, Lan CCE, Kuo HY, Chai CY, Chen WT, Chen GS. Differential regulation of nuclear factor-kappa B subunits on epidermal keratinocytes by ultraviolet B and tacrolimus. Kaohsiung J Med Sci 2012; 28:577-85. [DOI: 10.1016/j.kjms.2012.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/09/2011] [Indexed: 10/28/2022] Open
|
18
|
Bendfeldt H, Benary M, Scheel T, Frischbutter S, Abajyan A, Radbruch A, Herzel H, Baumgrass R. Stable IL-2 decision making by endogenous c-Fos amounts in peripheral memory T-helper cells. J Biol Chem 2012; 287:18386-97. [PMID: 22474330 DOI: 10.1074/jbc.m112.358853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytokine IL-2 performs opposite functions supporting efficient immune responses and playing a key role in peripheral tolerance. Therefore, precise fine-tuning of IL-2 expression is crucial for adjusting the immune response. Combining transcription factor analysis at the single cell and the single nucleus level using flow cytometry with statistical analysis, we showed that physiological differences in the expression levels of c-Fos and NFATc2, but not of c-Jun and NF-κBp65, are limiting for the decision whether IL-2 is expressed in a strongly activated human memory T-helper (Th) cell. Variation in the expression of c-Fos leads to substantial diversity of IL-2 expression in ∼40% of the memory Th cells. The remaining cells exhibit an equally high c-Fos expression level, thereby ensuring robustness in IL-2 response within the population. These findings reveal how memory Th cells benefit from regulated variation in transcription factor expression to achieve a certain stability and variability of cytokine expression in a controlled manner.
Collapse
Affiliation(s)
- Hanna Bendfeldt
- Deutsches Rheuma-Forschungszentrum Berlin, A. Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao X, Ross EJ, Wang Y, Horwitz BH. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms. PLoS One 2012; 7:e32811. [PMID: 22427889 PMCID: PMC3299705 DOI: 10.1371/journal.pone.0032811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/04/2012] [Indexed: 11/29/2022] Open
Abstract
Background Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb) and IL-12 p40 (Il12b) gene expression in macrophages following LPS stimulation have not been directly compared. Methodology/Principal Findings We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN) in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A) that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel. Conclusions These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.
Collapse
Affiliation(s)
- Xixing Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Erik J. Ross
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Yanyan Wang
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Bruce H. Horwitz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Emergency Medicine, Children's Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wang L, Deng SX, Lu L. Role of CTCF in EGF-induced migration of immortalized human corneal epithelial cells. Invest Ophthalmol Vis Sci 2012; 53:946-51. [PMID: 22247490 DOI: 10.1167/iovs.11-8747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE EGF-induced activation of the epigenetic CCCTC binding factor (CTCF) plays an important role in corneal epithelial cell proliferation by suppressing the Pax6 gene. The present study focused on further understanding the role of CTCF in mediating EGF-induced migration of immortalized human corneal epithelial cells. METHODS CTCF activities in human corneal epithelial cells immortalized by telomerase (HTCE cells) and SV-40 (HCE cells) transformation were suppressed and enhanced by CTCF mRNA knockdown and by overexpressing CTCF cDNA, respectively. EGF-induced cell migration was evaluated by linear scratch wound healing, a cell migration assay, and live cell motility GFP-tracking with a fluorescence microscope. Immunochemical analysis was performed for detecting focal adhesion changes in EGF-induced and CTCF activity-altered cells. RESULTS EGF-induced wound closure and cell migration rates of human corneal epithelial cells were significantly suppressed and enhanced by CTCF mRNA knockdown and by overexpression of CTCF, respectively. CTCF mRNA knockdown also markedly suppressed cell motility, determined by using a live-cell-tracking system in GFP-tag-expressed HTCE cells. Finally, alterations of EGF-stimulated focal adhesion were observed in CTCF knockdown HTCE cells by immunostaining of F-actin and vinculin in cytoskeleton reorganization. CONCLUSIONS CTCF, an epigenetic regulator and transcription factor, involves EGF-induced increases in cell motility and migration. CTCF plays an essential role in growth factor-regulated human corneal epithelial cell wound healing.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medicine, Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, CA 90502, USA
| | | | | |
Collapse
|
21
|
Siegel R, Eskdale J, Gallagher G. Regulation of IFN-λ1 promoter activity (IFN-λ1/IL-29) in human airway epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5636-44. [PMID: 22058416 DOI: 10.4049/jimmunol.1003988] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The type III (λ) IFNs (IFN-λ1, IFN-λ2, and IFN-λ3) and their receptor are the most recently discovered IFN family. They are induced by viruses and mediate antiviral activity, but type III IFNs have an important, specific functional niche at the immune/epithelial interface, as well as in the regulation of Th2 cytokines. Their expression appears diminished in bronchial epithelial cells of rhinovirus-infected asthmatic individuals. We investigated the regulation of IFN-λ1 expression in human airway epithelial cells using reporter genes analysis, chromatin immunoprecipitation, small interfering RNA knockdown, and DNase footprinting. In this article, we define the c-REL/p65 NF-κB heterodimer and IRF-1 as key transcriptional activators and ZEB1, B lymphocyte-induced maturation protein 1, and the p50 NF-κB homodimer as key repressors of the IFN-λ1 gene. We further show that ZEB1 selectively regulates type III IFNs. To our knowledge, this study presents the first characterization of any type III IFN promoter in its native context and conformation in epithelial cells and can now be applied to understanding pathogenic dysregulation of IFN-λ1 in human disease.
Collapse
Affiliation(s)
- Rachael Siegel
- Genetic Immunology Laboratory, HUMIGEN LLC, Institute for Genetic Immunology, Genesis Biotechnology Group, Hamilton, NJ 08690, USA
| | | | | |
Collapse
|
22
|
Nuclear factor-κB1 controls the functional maturation of dendritic cells and prevents the activation of autoreactive T cells. Nat Med 2011; 17:1663-7. [PMID: 22081022 DOI: 10.1038/nm.2556] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/12/2011] [Indexed: 01/08/2023]
Abstract
Mature dendritic cells (DCs) are crucial for the induction of adaptive immune responses and perturbed DC homeostasis can result in autoimmune disease. Either uncontrolled expansion or enhanced survival of DCs can result in a variety of autoimmune diseases in mouse models. In addition, increased maturation signals, through overexpression of surface Toll-like receptors (TLRs) or stimulation by type I interferon (IFN), has been associated with systemic autoimmunity. Whereas recent studies have focused on identifying factors required for initiating the maturation process, the possibility that resting DCs also express molecules that 'hold' them in an immature state has generally not been considered. Here we show that nuclear factor-κB1 (NF-κB1) is crucial for maintaining the resting state of DCs. Self-antigen-pulsed unstimulated DCs that do not express NF-κB1 were able to activate CD8(+) T lymphocytes and induce autoimmunity. We further show that NF-κB1 negatively regulates the spontaneous production of tumor necrosis factor-α (TNF-α), which is associated with increased granzyme B expression in cytotoxic T lymphocytes (CTLs). These findings provide a new perspective on functional DC maturation and a potential mechanism that may account for pathologic T cell activation.
Collapse
|
23
|
Mitsui T, Ishida M, Izawa M, Kagami Y, Arita J. Inhibition of Bcl3 gene expression mediates the anti-proliferative action of estrogen in pituitary lactotrophs in primary culture. Mol Cell Endocrinol 2011; 345:68-78. [PMID: 21787835 DOI: 10.1016/j.mce.2011.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 07/08/2011] [Indexed: 01/13/2023]
Abstract
In addition to their well-known stimulatory action, estrogens have an anti-proliferative effect. The present study was undertaken to investigate the mechanism by which 17β-estradiol (E2) inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation in vitro in the rat pituitary lactotroph, a typical estrogen-responsive cell. E2 treatment of pituitary cells did not change levels of IGF-1-induced phosphorylation of proliferation-related protein kinases such as Erk1/2 and Akt. We performed global gene expression profiling by DNA microarray analysis and identified 177 genes regulated by E2 in the presence of IGF-1. These results were verified by quantitative real time PCR. The estrogen-regulated genes included several NFκB family related genes. As pharmacological inhibition of the NFκB pathway blocked IGF-1-induced lactotroph proliferation, we chose to investigate whether one NFκB pathway gene, Bcl3, was involved in the anti-proliferative action of E2. RNA interference-mediated knockdown of Bcl3 expression attenuated IGF-1-induced lactotroph proliferation. Even minimal induced overexpression of Bcl3 blocked the anti-proliferative action of E2. In contrast, Nfkb2, another E2-downregulated protein, required maximal overexpression to block the anti-proliferative action of E2. These results suggest that inhibition of Bcl3 expression is involved in the anti-proliferative action of estrogens in pituitary lactotrophs in culture.
Collapse
Affiliation(s)
- Tetsuo Mitsui
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | | | | | | | | |
Collapse
|
24
|
Wang Y, Lu L. Activation of oxidative stress-regulated Bcl-3 suppresses CTCF in corneal epithelial cells. PLoS One 2011; 6:e23984. [PMID: 21912613 PMCID: PMC3166060 DOI: 10.1371/journal.pone.0023984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023] Open
Abstract
Epigenetic factor CTCF (CCCTC binding factor) plays important roles in genetic controls of the cell fate. Previous studies found in corneal epithelial cells that CTCF is regulated by epidermal growth factor (EGF) through activation of NF-κB p65/p50. It also found that CTCF is suppressed in ultraviolet (UV) stress-induced corneal epithelial cells. However, it is still unknown how UV stress down-regulates CTCF affecting the cell fate. In the present study, we report that regulation of CTCF by extracellular stress signals is dependent upon activations of an oxidative stress-regulated protein Bcl-3. We found that activated Bcl-3 was able to bind to the κB sites identified in the CTCF promoter region. Bcl-3 was activated by UV irradiation to interact with NF-κB p50 by forming a Bcl-3/p50 heterodimer complex. The Bcl-3/p50 complex suppressed CTCF promoter activity to down-regulate CTCF transcription. Unlike the effect of EGF, UV stress-induced Bcl-3 activation suppressed CTCF activity without involving the IκBα and p65 pathway. Thus, results of the study reveal a novel mechanism for regulatory control of CTCF in UV stress-induced human corneal epithelial cells, which requires activation and formation of Bcl-3/p50 complex through a noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, United States of America
| | - Luo Lu
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
RETRACTED ARTICLE: Molecular Cloning, Sequence Characterization, and Tissue Expression Analysis of Hi-Line Brown Chicken Akirin2. Protein J 2011; 30:471-9. [DOI: 10.1007/s10930-011-9352-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Abstract
CD4(+) T cells are the master regulators of adaptive immune responses, and many autoimmune diseases arise due to a breakdown of self-tolerance in CD4(+) T cells. Activation of CD4(+) T cells is regulated by not only the binding of peptide-major histocompatibility complexes to T-cell receptor but also costimulatory signals from antigen-presenting cells. Recently, there has been progress in understanding the extracellular and intracellular mechanisms that are required for implementation and maintenance of T-cell tolerance. Understanding of the molecular mechanisms underlying T-cell tolerance will lead to development of pharmacological approaches either to promote the tolerance state in terms of autoimmunity or to break tolerance in cancer.
Collapse
Affiliation(s)
- Roza I Nurieva
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Man C, Lee J. Molecular cloning, sequence characterization, and tissue expression analysis of chicken sphingomyelin synthase 1 (SMS1). Mol Cell Biochem 2011; 357:353-61. [DOI: 10.1007/s11010-011-0906-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/28/2011] [Indexed: 12/30/2022]
|
28
|
Mechanisms that regulate peripheral immune responses to control organ-specific autoimmunity. Clin Dev Immunol 2011; 2011:294968. [PMID: 21603204 PMCID: PMC3095406 DOI: 10.1155/2011/294968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 02/16/2011] [Indexed: 01/10/2023]
Abstract
The immune system must balance the need to maintain a diverse repertoire of lymphocytes to be able to fight infection with the need to maintain tolerance to self-proteins. The immune system places strict regulation over the ability of T cells to produce the major T cell growth factor interleukin 2 as this cytokine can influence a variety of immune outcomes. T cells require the delivery of two signals, one through the antigen receptor and a second through the costimulatory receptor CD28. The immune system uses a variety of E3 ubiquitin ligases to target signaling proteins that function downstream of the TCR and CD28 receptors. Mutations in these E3 ligases can lead to a breakdown in immune tolerance and development of autoimmunity. This paper will examine the role of a range of E3 ubiquitin ligases and signaling pathways that influence the development of T-cell effector responses and the development of organ-specific autoimmune diseases such as type 1 diabetes.
Collapse
|
29
|
C/EBPα and C/EBPα oncoproteins regulate nfkb1 and displace histone deacetylases from NF-κB p50 homodimers to induce NF-κB target genes. Blood 2011; 117:4085-94. [PMID: 21346255 DOI: 10.1182/blood-2010-07-294470] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutated CEBPA defines a subgroup of acute myeloid leukemia (AML). We have previously shown that C/EBPα or its AML mutants synergize with NF-κB p50 to activate antiapoptotic genes, including BCL2 and FLIP. Furthermore, p50 binds and activates the CEBPA gene in myeloid cells. We now report that C/EBPα or C/EBPα leucine zipper AML mutants bind in vivo to the nfkb1 (p50) promoter and induce its expression even in the presence of cycloheximide. Induction of p50 by C/EBPα depends on 2 conserved κB sites in the nfkb1 promoter. C/EBPα did not induce p65 expression. Thus, C/EBPα and p50 reciprocally regulate each other's expression, establishing a positive feedback relationship. Although p50 homodimers inhibit transcription, C/EBPα and p50 synergistically activate antiapoptotic genes. ChIP analysis showed that C/EBPα diminishes the occupation of histone deacetylase 1 (HDAC1) or HDAC3 on the endogenous FLIP promoter but not in mice lacking p50. Coimmunoprecipitation confirmed that C/EBPα, its AML variants, or C/EBPβ disrupt interaction between p50 and HDACs dependent on the C/EBP basic region. These findings suggest that C/EBPs displace HDACs from p50 homodimers bound to antiapoptotic genes, contributing to NF-κB dysregulation in leukemia, and that the C/EBPα:p50 complex is a potential therapeutic target.
Collapse
|
30
|
Cheng CS, Feldman KE, Lee J, Verma S, Huang DB, Huynh K, Chang M, Ponomarenko JV, Sun SC, Benedict CA, Ghosh G, Hoffmann A. The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p50. Sci Signal 2011; 4:ra11. [PMID: 21343618 DOI: 10.1126/scisignal.2001501] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE-containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity.
Collapse
Affiliation(s)
- Christine S Cheng
- Signaling Systems Laboratory, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang HT, Wang Y, Zhao X, Demissie E, Papoutsopoulou S, Mambole A, O’Garra A, Tomczak MF, Erdman SE, Fox JG, Ley SC, Horwitz BH. NF-κB1 inhibits TLR-induced IFN-β production in macrophages through TPL-2-dependent ERK activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1989-96. [PMID: 21217011 PMCID: PMC3070925 DOI: 10.4049/jimmunol.1001003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although NF-κB1 p50/p105 has critical roles in immunity, the mechanism by which NF-κB1 regulates inflammatory responses is unclear. In this study, we analyzed the gene expression profile of LPS-stimulated Nfkb1(-/-) macrophages that lack both p50 and p105. Deficiency of p50/p105 selectively increased the expression of IFN-responsive genes, which correlated with increased IFN-β expression and STAT1 phosphorylation. IFN Ab-blocking experiments indicated that increased STAT1 phosphorylation and expression of IFN-responsive genes observed in the absence of p50/p105 depended upon autocrine IFN-β production. Markedly higher serum levels of IFN-β were observed in Nfkb1(-/-) mice than in wild-type mice following LPS injection, demonstrating that Nfkb1 inhibits IFN-β production under physiological conditions. TPL-2, a mitogen-activated protein kinase kinase kinase stabilized by association with the C-terminal ankyrin repeat domain of p105, negatively regulates LPS-induced IFN-β production by macrophages via activation of ERK MAPK. Retroviral expression of TPL-2 in Nfkb1(-/-) macrophages, which are deficient in endogenous TPL-2, reduced LPS-induced IFN-β secretion. Expression of the C-terminal ankyrin repeat domain of p105 in Nfkb1(-/-) macrophages, which rescued LPS activation of ERK, also inhibited IFN-β expression. These data indicate that p50/p105 negatively regulates LPS-induced IFN signaling in macrophages by stabilizing TPL-2, thereby facilitating activation of ERK.
Collapse
Affiliation(s)
- Huei-Ting Yang
- Division of Immune Cell Biology, National Institute for Medical Research, London, NW7 1AA
| | - Yanyan Wang
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Xixing Zhao
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Ezana Demissie
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | | | - Agnes Mambole
- Division of Immune Cell Biology, National Institute for Medical Research, London, NW7 1AA
| | - Anne O’Garra
- Division of Immunoregulation, National Institute for Medical Research, London, NW7 1AA
| | - Michal F. Tomczak
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | | | - James G. Fox
- Division of Comparative Medicine, Cambridge, MA 02139
| | - Steven C. Ley
- Division of Immune Cell Biology, National Institute for Medical Research, London, NW7 1AA
| | - Bruce H. Horwitz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Division of Emergency Medicine, Children’s Hospital, Boston, MA 02115
| |
Collapse
|
32
|
Wan F, Lenardo MJ. Specification of DNA binding activity of NF-kappaB proteins. Cold Spring Harb Perspect Biol 2010; 1:a000067. [PMID: 20066093 DOI: 10.1101/cshperspect.a000067] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a pleiotropic mediator of inducible and specific gene regulation involving diverse biological activities including immune response, inflammation, cell proliferation, and death. The fine-tuning of the NF-kappaB DNA binding activity is essential for its fundamental function as a transcription factor. An increasing body of literature illustrates that this process can be elegantly and specifically controlled at multiple levels by different protein subsets. In particular, the recent identification of a non-Rel subunit of NF-kappaB itself provides a new way to understand the selective high-affinity DNA binding specificity of NF-kappaB conferred by a synergistic interaction within the whole complex. Here, we review the mechanism of the specification of DNA binding activity of NF-kappaB complexes, one of the most important aspects of NF-kappaB transcriptional control.
Collapse
Affiliation(s)
- Fengyi Wan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
33
|
Lehmann ML, Brachman RA, Listwak SJ, Herkenham M. NF-kappaB activity affects learning in aversive tasks: possible actions via modulation of the stress axis. Brain Behav Immun 2010; 24:1008-17. [PMID: 20399847 PMCID: PMC2897969 DOI: 10.1016/j.bbi.2010.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 12/13/2022] Open
Abstract
The role of altered activity of nuclear factor kappaB (NF-kappaB) in specific aspects of motivated behavior and learning and memory was examined in mice lacking the p50 subunit of the NF-kappaB/rel transcription factor family. Nfkb1-deficient mice are unable to produce p50 and show specific susceptibilities to infections and inflammatory challenges, but the behavioral phenotype of such mice has been largely unexamined, owing in large part to the lack of understanding of the role of NF-kappaB in nervous system function. Here we show that Nfkb1 (p50) knockout mice more rapidly learned to find the hidden platform in the Morris water maze than did wildtype mice. The rise in plasma corticosterone levels after the maze test was greater in p50 knockout than in wildtype mice. In the less stressful Barnes maze, which tests similar kinds of spatial learning, the p50 knockout mice performed similarly to control mice. Adrenalectomy with corticosterone replacement eliminated the differences between p50 knockout and wildtype mice in the water maze. Knockout mice showed increased levels of basal anxiety in the open-field and light/dark box tests, suggesting that their enhanced escape latency in the water maze was due to activation of the stress (hypothalamic-pituitary-adrenal) axis leading to elevated corticosterone production by strongly but not mildly anxiogenic stimuli. The results suggest that, as in the immune system, p50 in the nervous system normally serves to dampen NF-kappaB-mediated intracellular activities, which are manifested physiologically through elevated stress responses to aversive stimuli and behaviorally in the facilitated escape performance in learning tasks.
Collapse
Affiliation(s)
- Michael L. Lehmann
- Correspondence: Michael Lehmann, PhD., National Institute of Mental Health, 35 Convent Dr, Bldg 35, Rm 1C911, Bethesda, MD, 20892, Phone: (301) 402-3243, Fax: (301) 402-2200,
| | | | | | | |
Collapse
|
34
|
de Groot D, Haverslag RT, Pasterkamp G, de Kleijn DPV, Hoefer IE. Targeted deletion of the inhibitory NF- B p50 subunit in bone marrow-derived cells improves collateral growth after arterial occlusion. Cardiovasc Res 2010; 88:179-85. [DOI: 10.1093/cvr/cvq150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Padhan K, Varma R. Immunological synapse: a multi-protein signalling cellular apparatus for controlling gene expression. Immunology 2010; 129:322-8. [PMID: 20409153 DOI: 10.1111/j.1365-2567.2009.03241.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction of T cells with antigen-presenting cells is the hallmark of adaptive immunity. In vitro studies have described the formation of an immunological synapse between these cells, and intra-vital imaging has described in great detail the dynamics of these interactions. The immunological synapse has become a paradigm to study signals exchanged between the two cells. A wealth of information has been amassed regarding the localization of signalling molecules, their kinetics and the transcription factors they activate. We continue to discover mechanisms that cause receptors and signalling molecules to compartmentalize in the cell; however, the emerging challenge lies in understanding how the immunological synapse contributes to differentiation. Here, we review some of the transcription factors activated downstream of T-cell receptor signalling and discuss mechanisms by which antigen dose and affinity may influence differentiation. Antigen affinity might change the kind of transcription factors that are activated whereas antigen dose is likely to influence the temporal dynamics of the transcription factors. The immunological synapse is therefore likely to influence differentiation by modulating the trafficking of transcription factors and by promoting asymmetric cell division, an emerging concept.
Collapse
Affiliation(s)
- Kartika Padhan
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
37
|
Cecon E, Fernandes PA, Pinato L, Ferreira ZS, Markus RP. DAILY VARIATION OF CONSTITUTIVELY ACTIVATED NUCLEAR FACTOR KAPPA B (NFKB) IN RAT PINEAL GLAND. Chronobiol Int 2010; 27:52-67. [DOI: 10.3109/07420521003661615] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res 2009; 20:24-33. [PMID: 19997086 DOI: 10.1038/cr.2009.137] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor-kappa B (NF-kappaB) transcription factor plays a critical role in diverse cellular processes associated with proliferation, cell death, development, as well as innate and adaptive immune responses. NF-kappaB is normally sequestered in the cytoplasm by a family of inhibitory proteins known as inhibitors of NF-kappaB (IkappaBs). The signal pathways leading to the liberation and nuclear accumulation of NF-kappaB, which can be activated by a wide variety of stimuli, have been extensively studied in the past two decades. After gaining access to the nucleus, NF-kappaB must be actively regulated to execute its fundamental function as a transcription factor. Recent studies have highlighted the importance of nuclear signaling in the regulation of NF-kappaB transcriptional activity. A non-Rel subunit of NF-kappaB, ribosomal protein S3 (RPS3), and numerous other nuclear regulators of NF-kappaB, including Akirin, Nurr1, SIRT6, and others, have recently been identified, unveiling novel and exciting layers of regulatory specificity for NF-kappaB in the nucleus. Further insights into the nuclear events that govern NF-kappaB function will deepen our understanding of the elegant control of its transcriptional activity and better inform the potential rational design of therapeutics for NF-kappaB-associated diseases.
Collapse
Affiliation(s)
- Fengyi Wan
- Laborathory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
39
|
Rajendrasozhan S, Chung S, Sundar IK, Yao H, Rahman I. Targeted disruption of NF-{kappa}B1 (p50) augments cigarette smoke-induced lung inflammation and emphysema in mice: a critical role of p50 in chromatin remodeling. Am J Physiol Lung Cell Mol Physiol 2009; 298:L197-209. [PMID: 19965984 DOI: 10.1152/ajplung.00265.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NF-kappaB-mediated proinflammatory response to cigarette smoke (CS) plays a pivotal role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The heterodimer of RelA/p65-p50 (subunits of NF-kappaB) is involved in transactivation of NF-kappaB-dependent genes, but interestingly p50 has no transactivation domain. The endogenous role of p50 subunit, particularly in regulation of CS-mediated inflammation in vivo, is not known. We therefore hypothesized that p50 subunit plays a regulatory role on RelA/p65, and genetic ablation of p50 (p50(-/-)) leads to increased lung inflammation and lung destruction in response to CS exposure in mouse. To test this hypothesis, p50-knockout and wild-type (WT) mice were exposed to CS for 3 days to 6 mo, and inflammatory responses as well as air space enlargement were assessed. Lungs of p50-deficient mice showed augmented proinflammatory response to acute and chronic CS exposures as evidenced by increased inflammatory cell influx and proinflammatory mediators release such as monocyte chemoattractant protein-1 (MCP-1) and interferon-inducible protein-10 (IP-10) compared with WT mice. IKK2 inhibitor (IMD-0354), which reduces the nuclear translocation of RelA/p65, attenuated CS-mediated neutrophil influx in bronchoalveolar lavage fluid and cytokine (MCP-1 and IP-10) levels in lungs of WT but not in p50-deficient mice. Importantly, p50 deficiency resulted in increased phosphorylation (Ser276 and Ser536), acetylation (Lys310), and DNA binding activity of RelA/p65 in mouse lung, associated with increased chromatin remodeling evidenced by specific phosphoacetylation of histone H3 (Ser10/Lys9) and acetylation of H4 (Lys12) in response to CS exposure. Surprisingly, p50-null mice showed spontaneous air space enlargement, which was further increased after CS exposure compared with WT mice. Thus our data showed that p50 endogenously regulates the activity of RelA/p65 by decreasing its phosphoacetylation and DNA binding activity and specific histone modifications and that genetic ablation of p50 leads to air space enlargement in mouse.
Collapse
Affiliation(s)
- Saravanan Rajendrasozhan
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York , USA
| | | | | | | | | |
Collapse
|
40
|
Song Y, Zhuang Y, Zhai S, Huang D, Zhang Y, Kang W, Li X, Liu Q, Yu Q, Sun Y. Increased expression of TLR7 in CD8(+) T cells leads to TLR7-mediated activation and accessory cell-dependent IFN-gamma production in HIV type 1 infection. AIDS Res Hum Retroviruses 2009; 25:1287-95. [PMID: 19954299 DOI: 10.1089/aid.2008.0303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has recently been demonstrated that toll-like receptors (TLRs) can recognize structural conserved motifs carried by circulating microbial products and lead to systemic immune responses in individuals infected with HIV-1. TLRs have been detected in CD8(+) T cells at either a protein or RNA level. The role of TLRs on CD8(+) T cells involved in the host's immune responses during HIV-1 infection has not been well characterized. In this study, we analyzed expression of TLR4, TLR5, TLR7, and TLR8 in CD8(+) T cells in HIV-1 infection. All these four TLRs could be detected in CD8(+) T cells, but only TLR7 in CD8(+) T cells from HIV-1-infected individuals showed a higher expression level compared with that from healthy individuals (p < 0.05). The function of TLR7 in CD8(+) T cells was then investigated. We found that TLR7 ligand responsiveness significantly increased the expression of immune activation markers on purified CD8(+) T cells in HIV-1-infected individuals compared with healthy controls. And the levels of these markers were equivalent to those achieved by CD8(+) T cells from peripheral blood mononuclear cells (PBMCs). However, we also observed that TLR7 ligand stimulated significant IFN-gamma production by CD8(+) T cells in an accessory cell-dependent manner. Therefore, although CD8(+) T cells can be directly activated by TLR7, accessory cells must play an essential role in the activation of effective functions such as IFN-gamma production. These findings suggest that the abnormal expression of TLR7 in CD8(+) T cells from HIV-1-infected individuals may contribute to the abnormal immune activation in HIV-1 infection and play an important role in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Yang Song
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Yan Zhuang
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Song Zhai
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Dedong Huang
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Wenzhen Kang
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Xinhong Li
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Qingquan Liu
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| | - Qigui Yu
- Hawaii AIDS Clinical Research Program, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96812
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital Affiliated to the Fourth Military Medical University, Xi'an 710038, P.R. China
| |
Collapse
|
41
|
Abstract
The nuclear factor NF-kappaB pathway has long been considered a prototypical proinflammatory signaling pathway, largely based on the role of NF-kappaB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules. In this article, we describe how genetic evidence in mice has revealed complex roles for the NF-kappaB in inflammation that suggest both pro- and anti-inflammatory roles for this pathway. NF-kappaB has long been considered the "holy grail" as a target for new anti-inflammatory drugs; however, these recent studies suggest this pathway may prove a difficult target in the treatment of chronic disease. In this article, we discuss the role of NF-kappaB in inflammation in light of these recent studies.
Collapse
Affiliation(s)
- Toby Lawrence
- Inflammation Biology Group, Centre d'Immunologie Marseille-Luminy, Parc Scientifique de Luminy, Case 906, 13288 Marseille, France.
| |
Collapse
|
42
|
Wells AD. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. THE JOURNAL OF IMMUNOLOGY 2009; 182:7331-41. [PMID: 19494254 DOI: 10.4049/jimmunol.0803917] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The vertebrate immune system has evolved to deal with invasive pathogens, but this adaptation comes at the expense of immunopathology. Among a number of mechanisms that coevolved to control adaptive immunity is anergy, the functional inactivation of T lymphocytes that respond to Ag in the absence of inflammation. In this review, I highlight a series of intracellular proteins in quiescent T cells that function to integrate signals from Ag, costimulatory, and growth factor receptors. These factors ensure that cells that fail to engage all three pathways are shunted into an alternative transcriptional program designed to dissuade them from participating in subsequent immune responses. Recent studies indicate that anergy is the combined result of factors that negatively regulate proximal TCR-coupled signal transduction, together with a program of active transcriptional silencing that is reinforced through epigenetic mechanisms.
Collapse
Affiliation(s)
- Andrew D Wells
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Response to the Letter by Frantz and Bauersachs. Circ Res 2009. [DOI: 10.1161/circresaha.109.199232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Timmers L, van Keulen JK, Hoefer IE, Meijs MFL, van Middelaar B, den Ouden K, van Echteld CJA, Pasterkamp G, de Kleijn DPV. Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ Res 2009; 104:699-706. [PMID: 19168865 DOI: 10.1161/circresaha.108.189746] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myocardial infarction is commonly complicated by left ventricular remodeling, a process that leads to cardiac dilatation, congestive heart failure and death. The innate immune system plays a pivotal role in the remodeling process via nuclear factor (NF)-kappaB activation. The NF-kappaB transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocardial ischemia. The function of NF-kappaB p50, however, is controversial in this process. To clarify the role of NF-kappaB p50 in postinfarct left ventricular remodeling, myocardial infarction was induced in wild-type 129Bl6 mice and NF-kappaB p50-deficient mice. Without affecting infarct size, deletion of NF-kappaB p50 markedly increased the extent of expansive remodeling (end-diastolic volume: 176+/-13 microL versus 107+/-11 microL; P=0.003) and aggravated systolic dysfunction (left ventricular ejection fraction: 16.1+/-1.5% versus 24.7+/-3.7%; P=0.029) in a 28-day time period. Interstitial fibrosis and hypertrophy in the noninfarcted myocardium was increased in NF-kappaB p50 knockout mice. In the infarct area, a lower collagen density was observed, which was accompanied by an increased number of macrophages, higher gelatinase activity and increased inflammatory cytokine expression. In conclusion, targeted deletion of NF-kappaB p50 results in enhanced cardiac remodeling and functional deterioration following myocardial infarction by increasing matrix remodeling and inflammation.
Collapse
Affiliation(s)
- Leo Timmers
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guo L, Urban JF, Zhu J, Paul WE. Elevating calcium in Th2 cells activates multiple pathways to induce IL-4 transcription and mRNA stabilization. THE JOURNAL OF IMMUNOLOGY 2008; 181:3984-93. [PMID: 18768853 DOI: 10.4049/jimmunol.181.6.3984] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PMA and ionomycin cause T cell cytokine production. We report that ionomycin alone induces IL-4 and IFN-gamma, but not IL-2, from in vivo- and in vitro-generated murine Th2 and Th1 cells. Ionomycin-induced cytokine production requires NFAT, p38, and calmodulin-dependent kinase IV (CaMKIV). Ionomycin induces p38 phosphorylation through a calcium-dependent, cyclosporine A-inhibitable pathway. Knocking down ASK1 inhibits ionomycin-induced p38 phosphorylation and IL-4 production. Ionomycin also activates CaMKIV, which, together with p38, induces AP-1. Cooperation between AP-1 and NFAT leads to Il4 gene transcription. p38 also regulates IL-4 production by mRNA stabilization. TCR stimulation also phosphorylates p38, partially through the calcium-dependent pathway; activated p38 is required for optimal IL-4 and IFN-gamma.
Collapse
Affiliation(s)
- Liying Guo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
46
|
Charital YM, van Haasteren G, Massiha A, Schlegel W, Fujita T. A functional NF-kappaB enhancer element in the first intron contributes to the control of c-fos transcription. Gene 2008; 430:116-22. [PMID: 19026727 DOI: 10.1016/j.gene.2008.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 11/28/2022]
Abstract
Eukaryotic gene transcription is controlled not only by gene promoters but also by intragenic cis-elements. Such regulation is important for the transcription of immediate early genes (IEGs) and in particular for the c-fos gene, the first intron of which contains many potential transcription factor binding elements. In the present study, we addressed the intronic control of c-fos transcription by the NF-kappaB signalling pathway in the neuroendocrine cell line GH4C1. Tumour necrosis factor alpha (TNFalpha) activating the NF-kappaB signalling pathway induced transcription of the c-fos gene and enhanced thyrotropin-releasing hormone-stimulated (TRH-stimulated) c-fos transcription. To examine the effects of NF-kappaB, the presumed NF-kappaB binding sequence in the first intron was mutated or deleted from c-fos reporter gene constructs. When GH4C1 cells transfected with the reporter constructs were stimulated by TNFalpha, the induced expression was significantly diminished. Double-stranded short DNA with the intronic NF-kappaB binding consensus sequence interacted directly with NF-kappaB p50 protein in vitro; mutation of 3 nucleotides destroying the consensus abolished the in vitro interaction. The importance of NF-kappaB for c-fos expression was also supported by RNA interference experiments; knock-down of NF-kappaB p50 suppressed TNFalpha-induced c-fos expression. In addition, chromatin immunoprecipitation indicated that NF-kappaB occupied the first intron of the c-fos gene in vivo. In conclusion, NF-kappaB enhances c-fos transcription via the direct binding to a response element situated in the first intron.
Collapse
|
47
|
Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology. Blood 2008; 113:377-88. [PMID: 18824599 DOI: 10.1182/blood-2008-04-151712] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic immune activation is a major cause for progressive immunodeficiency in human immunodeficiency virus type-1 (HIV) infection. The underlying trigger, however, remains largely unknown. HIV single-stranded RNA is a potent immune activator by triggering Toll-like receptor (TLR) 7/8. Thus, we hypothesized that sustained TLR7 triggering induces chronic immune activation and thereby contributes to progressive immunodeficiency. We used the synthetic compound R848 or a mixture of uridine-rich HIV single-stranded (ss) RNA oligonucleotides--both are potent TLR7/8 agonists--to explore the effects of sustained TLR7 triggering on the murine lymphoid system. Sustained TLR7 triggering induced an immunopathology reminiscent of progressive lymphoid destruction in HIV disease; we observed lymphopenia, elevated proinflammatory cytokines, splenomegaly, contracted lymphoid subsets, and lymphoid microarchitecture alteration with reduced marginal zone B-lymphocytes. Upon exposure to inactivated vesiculo-stomatitis virus, antibody production was abolished, although splenic lymphocytes were activated and total IgG was elevated. Our data imply that HIV itself may directly contribute to immune activation and dysfunction by stimulating TLR7. Thus, manipulation of TLR7 signaling may be a potential strategy to reduce chronic hyper-immune activation and, thereby, disease progression in HIV infection.
Collapse
|
48
|
Cristofanon S, Morceau F, Scovassi AI, Dicato M, Ghibelli L, Diederich M. Oxidative, multistep activation of the noncanonical NF-kappaB pathway via disulfide Bcl-3/p50 complex. FASEB J 2008; 23:45-57. [PMID: 18796561 DOI: 10.1096/fj.07-104109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Buthionine sulfoximine (BSO) is a well-known inhibitor of glutathione synthesis, producing slow glutathione (GSH) depletion and oxidative stress; some "responder" cells avoid BSO-induced death by trans-activating the prosurvival protein Bcl-2. Here we show that BSO activates a noncanonical, inhibitory NF-kappaB- and p65-independent NF-kappaB pathway via a multistep process leading to the up-regulation of Bcl-2. The slow BSO-induced GSH depletion allows separation of two redox-related phases, namely, early thiol disequilibrium and late frank oxidative stress; each phase contributes to the progressive activation of a p50-p50 homodimer. The early phase, coinciding with substantial thiol depletion, produces a cytosolic preparative complex, consisting of p50 and its interactor Bcl-3 linked by interprotein disulfide bridges. The late phase, coinciding with reactive oxygen species production, is responsible, probably via p38 activation, for nuclear targeting of the complex and trans-activation of Bcl-2.
Collapse
Affiliation(s)
- Silvia Cristofanon
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation Recherche sur le Cancer et les Maladies du Sang, Hôpital Kirchberg, Luxembourg
| | | | | | | | | | | |
Collapse
|
49
|
Uffort DG, Grimm EA, Ellerhorst JA. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma. J Invest Dermatol 2008; 129:148-54. [PMID: 18668140 DOI: 10.1038/jid.2008.205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor expression of inducible nitric oxide synthase (iNOS) predicts poor outcomes for melanoma patients. We have reported the regulation of melanoma iNOS by the mitogen-activated protein kinase (MAPK) pathway. In this study, we test the hypothesis that NF-kappaB mediates this regulation. Western blotting of melanoma cell lysates confirmed the constitutive expression of iNOS. Western blot detected baseline levels of activated nuclear extracellular signal-regulated kinase and NF-kappaB. Indirect immunofluorescence confirmed the presence of NF-kappaB p50 and p65 in melanoma cell nuclei, with p50 being more prevalent. Electrophoretic mobility shift assay demonstrated baseline NF-kappaB activity, the findings confirmed by supershift analysis. Treatment of melanoma cells with the MEK inhibitor U0126 decreased NF-kappaB binding to its DNA recognition sequence, implicating the MAPK pathway in NF-kappaB activation. Two specific NF-kappaB inhibitors suppressed iNOS expression, demonstrating regulation of iNOS by NF-kappaB. Several experiments indicated the presence of p50 homodimers, which lack a transactivation domain and rely on the transcriptional coactivator Bcl-3 to carry out this function. Bcl-3 was detected in melanoma cells and co-immunoprecipitated with p50. These data suggest that the constitutively activated melanoma MAPK pathway stimulates activation of NF-kappaB hetero- and homodimers, which, in turn, drive iNOS expression and support melanoma tumorigenesis.
Collapse
Affiliation(s)
- Deon G Uffort
- Department of Experimental Therapeutics, The University of Texas, M.D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
50
|
Trinh DV, Zhu N, Farhang G, Kim BJ, Huxford T. The nuclear I kappaB protein I kappaB zeta specifically binds NF-kappaB p50 homodimers and forms a ternary complex on kappaB DNA. J Mol Biol 2008; 379:122-35. [PMID: 18436238 DOI: 10.1016/j.jmb.2008.03.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/17/2022]
Abstract
Although they share sequence homology to classical cytoplasmic I kappaB inhibitors of transcription factor NF-kappaB, the proteins I kappaB zeta, Bcl-3, and I kappa BNS function in the nucleus as factors that influence NF-kappaB-dependent gene expression profiles. Through the use of purified recombinant proteins and by comparison with the classical I kappaB protein I kappaB alpha, we have discovered mechanistic details of the interaction between I kappaB zeta and functional NF-kappaB dimers. Whereas I kappaB alpha and other classical I kappaB proteins bind tightly to NF-kappaB dimers that possess the p65 subunit, I kappaB zeta binds preferentially to NF-kappaB p50 homodimers. This altered specificity is particularly interesting in light of the fact that both NF-kappaB subunits exhibit high sequence and structural homology, while the I kappaB alpha and I kappaB zeta proteins are also conserved in primary amino acid sequence. We further show that I kappaB zeta is capable of forming a stable ternary complex with the NF-kappaB p50 homodimer and kappaB DNA. Again, this is a stark contrast from I kappaB alpha, which inhibits NF-kappaB p65 homodimer binding to NF-kappaB target DNA sequences. Removal of the DNA sequences flanking the NF-kappaB binding site does not directly affect the interaction of p50 and I kappaB zeta. Rather, we have discovered that the carboxy-terminal glycine-rich region of the NF-kappaB p50 homodimer is involved in mediating high-affinity binding of I kappaB zeta and NF-kappaB p50. We conclude that the NF-kappaB p50 homodimer functions as a legitimate activator of gene expression through formation of a ternary complex between itself, I kappaB zeta, and DNA. The requirement for formation of this complex could explain why the nuclear I kappaB protein I kappaB zeta is absolutely required for expression of the pluripotent pro-inflammatory cytokine interleukin-6 in peritoneal macrophages.
Collapse
Affiliation(s)
- Dan V Trinh
- Structural Biochemistry Laboratory, Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | | | | | | | | |
Collapse
|