1
|
Deng Z, Wang H, Zhong K, Li Y, Deng H, Gao B, Huang K, Tong A, Zhou L. The Role of Choroid Plexus in Hydrocephalus from the Perspective of Structure and Function: a Therapeutic Target. Mol Neurobiol 2025:10.1007/s12035-025-04823-7. [PMID: 40085357 DOI: 10.1007/s12035-025-04823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Hydrocephalus is one of the most common neurological diseases, characterized by abnormal excessive accumulation of cerebrospinal fluid (CSF) in the ventricular system. Its pathophysiological mechanism is believed to be related to the imbalance of CSF circulation and homeostasis. As the main source of CSF secretion, the choroid plexus is closely related to hydrocephalus. The choroid plexus is a specialized vascularized tissue located within the cerebral ventricles. It has multiple physiological functions including regulating CSF, immune response, endocrine metabolism, etc. Strategies that reduce choroid plexus CSF secretion have been shown to be effective in the treatment of hydrocephalus. However, the role of other physiological functions of the choroid plexus in hydrocephalus is still unclear. Recent studies on the choroid plexus and the blood-CSF barrier have deepened our understanding of the structure and function of the choroid plexus. The idea of targeting the choroid plexus to treat hydrocephalus has spawned many branches: choroid plexus epithelial cells, choroid plexus immune cells, choroid plexus peptides, and choroid plexus cilia, etc. This review introduces the basic structure and function of the choroid plexus, summarizes their changes in hydrocephalus, and analyzes the possibility of the choroid plexus as a therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Ziang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyou Li
- Department of Pediatric Neurosurgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Sichuan Province, Luzhou City, China
| | - Baocheng Gao
- Department of Neurosurgery, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology) Kunming, Yunan, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia, Shizuishan, China.
| |
Collapse
|
2
|
Israelsen IME, Kamp-Jensen C, Westgate CSJ, Styrishave B, Jensen RH, Eftekhari S. Cycle-dependent sex differences in expression of membrane proteins involved in cerebrospinal fluid secretion at rat choroid plexus. BMC Neurosci 2023; 24:60. [PMID: 37946101 PMCID: PMC10633912 DOI: 10.1186/s12868-023-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Female sex is a known risk factor of brain disorders with raised intracranial pressure (ICP) and sex hormones have been suggested to alter cerebrospinal fluid (CSF) dynamics, thus impairing ICP regulation in CSF disorders such as idiopathic intracranial hypertension (IIH). The choroid plexus (CP) is the tissue producing CSF and it has been hypothesized that altered hormonal composition could affect the activity of transporters involved in CSF secretion, thus affecting ICP. Therefore, we aimed to investigate if expression of various transporters involved in CSF secretion at CP were different between males and females and between females in different estrous cycle states. Steroid levels in serum was also investigated. METHODS Female and male rats were used to determine sex-differences in the genes encoding for the transporters Aqp1 and 4, NKCC1, NBCe2, NCBE; carbonic anhydrase enzymes II and III (CA), subunits of the Na+/K+-ATPase including Atp1a1, Atp1b1 and Fxyd1 at CP. The estrous cycle stage metestrus (MET) and estrous (ES) were determined before euthanasia. Serum and CP were collected and subjected to RT-qPCR analysis and western blots. Serum was used to measure steroid levels using liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Significant differences in gene expression and steroid levels between males and ES females were found, while no differences were found between male and MET females. During ES, expression of Aqp1 was lower (p < 0.01) and NKCC1 was higher in females compared to males. CAII was lower while CAIII was higher in ES females (p < 0.0001). Gene expression of Atp1a1 was lower in ES compared to male (p = 0.0008). Several of these choroidal genes were also significantly different in MET compared to females in ES. Differences in gene expression during the estrus cycle were correlated to serum level of steroid hormones. Protein expression of AQP1 (p = 0.008) and CAII (p = 0.035) was reduced in ES females compared to males. CONCLUSIONS This study demonstrates for the first time that expression at CP is sex-dependent and markedly affected by the estrous cycle in female rats. Further, expression was related to hormone levels in serum. This opens a completely new avenue for steroid regulation of the expression of CSF transporters and the close link to the understanding of CSF disorders such as IIH.
Collapse
Affiliation(s)
- Ida Marchen Egerod Israelsen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Christina Kamp-Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Bjarne Styrishave
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| |
Collapse
|
3
|
Hussain R, Graham U, Elder A, Nedergaard M. Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci 2023; 46:901-911. [PMID: 37777345 PMCID: PMC11934145 DOI: 10.1016/j.tins.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Epidemiological evidence demonstrates a link between air pollution exposure and the onset and progression of cognitive impairment and Alzheimer's disease (AD). However, current understanding of the underlying pathophysiological mechanisms is limited. This opinion article examines the hypothesis that air pollution-induced impairment of glymphatic clearance represents a crucial etiological event in the development of AD. Exposure to airborne particulate matter (PM) leads to systemic inflammation and neuroinflammation, increased metal load, respiratory and cardiovascular dysfunction, and sleep abnormalities. All these factors are known to reduce the efficiency of glymphatic clearance. Rescuing glymphatic function by restricting the impact of causative agents, and improving sleep and cardiovascular system health, may increase the efficiency of waste metabolite clearance and subsequently slow the progression of AD. In sum, we introduce air pollution-mediated glymphatic impairment as an important mechanistic factor to be considered when interpreting the etiology and progression of AD as well as its responsiveness to therapeutic interventions.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.
| | | | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Liu G, Ladrón-de-Guevara A, Izhiman Y, Nedergaard M, Du T. Measurements of cerebrospinal fluid production: a review of the limitations and advantages of current methodologies. Fluids Barriers CNS 2022; 19:101. [PMID: 36522656 PMCID: PMC9753305 DOI: 10.1186/s12987-022-00382-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cerebrospinal fluid (CSF) is an essential and critical component of the central nervous system (CNS). According to the concept of the "third circulation" originally proposed by Cushing, CSF is mainly produced by the choroid plexus and subsequently leaves the cerebral ventricles via the foramen of Magendie and Luschka. CSF then fills the subarachnoid space from whence it disperses to all parts of the CNS, including the forebrain and spinal cord. CSF provides buoyancy to the submerged brain, thus protecting it against mechanical injury. CSF is also transported via the glymphatic pathway to reach deep interstitial brain regions along perivascular channels; this CSF clearance pathway promotes transport of energy metabolites and signaling molecules, and the clearance of metabolic waste. In particular, CSF is now intensively studied as a carrier for the removal of proteins implicated in neurodegeneration, such as amyloid-β and tau. Despite this key function of CSF, there is little information about its production rate, the factors controlling CSF production, and the impact of diseases on CSF flux. Therefore, we consider it to be a matter of paramount importance to quantify better the rate of CSF production, thereby obtaining a better understanding of CSF dynamics. To this end, we now review the existing methods developed to measure CSF production, including invasive, noninvasive, direct, and indirect methods, and MRI-based techniques. Depending on the methodology, estimates of CSF production rates in a given species can extend over a ten-fold range. Throughout this review, we interrogate the technical details of CSF measurement methods and discuss the consequences of minor experimental modifications on estimates of production rate. Our aim is to highlight the gaps in our knowledge and inspire the development of more accurate, reproducible, and less invasive techniques for quantitation of CSF production.
Collapse
Affiliation(s)
- Guojun Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yara Izhiman
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Ting Du
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Atchley TJ, Vukic B, Vukic M, Walters BC. Review of Cerebrospinal Fluid Physiology and Dynamics: A Call for Medical Education Reform. Neurosurgery 2022; 91:1-7. [PMID: 35522666 DOI: 10.1227/neu.0000000000002000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/05/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The flow of cerebrospinal fluid (CSF) has been described as a unidirectional system with the choroid plexus serving as the primary secretor of CSF and the arachnoid granulations as primary reabsorption site. This theory of neurosurgical forefathers has been universally adopted and taught as dogma. Many neuroscientists have found difficulty reconciling this theory with common pathologies, and recent studies have found that this "classic" hypothesis may not represent the full picture. OBJECTIVE To review modern CSF dynamic theories and to call for medical education reform. METHODS We reviewed the literature from January 1990 to December 2020. We searched the PubMed database using key terms "cerebrospinal fluid circulation," "cerebrospinal fluid dynamics," "cerebrospinal fluid physiology," "glymphatic system," and "glymphatic pathway." We selected articles with a primary aim to discuss either CSF dynamics and/or the glymphatic system. RESULTS The Bulat-Klarica-Orešković hypothesis purports that CSF is secreted and reabsorbed throughout the craniospinal axis. CSF demonstrates similar physiology to that of water elsewhere in the body. CSF "circulates" throughout the subarachnoid space in a pulsatile to-and-fro fashion. Osmolarity plays a critical role in CSF dynamics. Aquaporin-4 and the glymphatic system contribute to CSF volume and flow by establishing osmolarity gradients and facilitating CSF movement. Multiple studies demonstrate that the choroid plexus does not play any significant role in CSF circulation. CONCLUSION We have highlighted major studies to illustrate modern principles of CSF dynamics. Despite these, the medical education system has been slow to reform curricula and update learning resources.
Collapse
Affiliation(s)
- Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barbara Vukic
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Vukic
- Department of Neurosurgery, Sisters of Mercy University Hospital, Zagreb, Croatia
| | - Beverly C Walters
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
MacAulay N, Keep RF, Zeuthen T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 2022; 19:26. [PMID: 35317823 PMCID: PMC8941821 DOI: 10.1186/s12987-022-00323-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) envelops the brain and fills the central ventricles. This fluid is continuously replenished by net fluid extraction from the vasculature by the secretory action of the choroid plexus epithelium residing in each of the four ventricles. We have known about these processes for more than a century, and yet the molecular mechanisms supporting this fluid secretion remain unresolved. The choroid plexus epithelium secretes its fluid in the absence of a trans-epithelial osmotic gradient, and, in addition, has an inherent ability to secrete CSF against an osmotic gradient. This paradoxical feature is shared with other 'leaky' epithelia. The assumptions underlying the classical standing gradient hypothesis await experimental support and appear to not suffice as an explanation of CSF secretion. Here, we suggest that the elusive local hyperosmotic compartment resides within the membrane transport proteins themselves. In this manner, the battery of plasma membrane transporters expressed in choroid plexus are proposed to sustain the choroidal CSF secretion independently of the prevailing bulk osmotic gradient.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Zeuthen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
7
|
Jaskiw GE, Xu D, Obrenovich ME, Donskey CJ. Small phenolic and indolic gut-dependent molecules in the primate central nervous system: levels vs. bioactivity. Metabolomics 2022; 18:8. [PMID: 34989922 DOI: 10.1007/s11306-021-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A rapidly growing body of data documents associations between disease of the brain and small molecules generated by gut-microbiota (GMB). While such metabolites can affect brain function through a variety of mechanisms, the most direct action would be on the central nervous system (CNS) itself. OBJECTIVE Identify indolic and phenolic GMB-dependent small molecules that reach bioactive concentrations in primate CNS. METHODS We conducted a PubMed search for metabolomic studies of the primate CNS [brain tissue or cerebrospinal fluid (CSF)] and then selected for phenolic or indolic metabolites that (i) had been quantified, (ii) were GMB-dependent. For each chemical we then conducted a search for studies of bioactivity conducted in vitro in human cells of any kind or in CNS cells from the mouse or rat. RESULTS 36 metabolites of interests were identified in primate CNS through targeted metabolomics. Quantification was available for 31/36 and in vitro bioactivity for 23/36. The reported CNS range for 8 metabolites 2-(3-hydroxyphenyl)acetic acid, 2-(4-hydroxyphenyl)acetic acid, 3-(3-hydroxyphenyl)propanoic acid, (E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid [caffeic acid], 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2-acetamido-3-(1H-indol-3-yl)propanoic acid [N-acetyltryptophan], 1H-indol-3-yl hydrogen sulfate [indoxyl-3-sulfate] overlapped with a bioactive concentration. However, the number and quality of relevant studies of CNS neurochemistry as well as of bioactivity were highly limited. Structural isomers, multiple metabolites and potential confounders were inadequately considered. CONCLUSION The potential direct bioactivity of GMB-derived indolic and phenolic molecules on primate CNS remains largely unknown. The field requires additional strategies to identify and prioritize screening of the most promising small molecules that enter the CNS.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Dongyan Xu
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark E Obrenovich
- Pathology and Laboratory Medicine Service, VANEOHS, Cleveland, OH, USA
- Research Service, VANEOHS, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis J Donskey
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Research, Education and Clinical Center (GRECC), VANEOHS, Cleveland, OH, USA
| |
Collapse
|
8
|
Bilateral hyperplasia of choroid plexus with severe CSF production: a case report and review of the glymphatic system. Childs Nerv Syst 2021; 37:3521-3529. [PMID: 34410450 DOI: 10.1007/s00381-021-05325-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND An important feature of hydrocephalus is the alteration of the cerebral spinal fluid (CSF) homeostasis. New insights in the understanding of production, secretion, and absorption of CSF, along with the discovery of the glymphatic system (GS), can be useful for a better understanding and treatment of hydrocephalus in disorders with CSF overproduction. CASE DESCRIPTION A 1-year-old patient was diagnosed with communicating hydrocephalus; ventricle peritoneal shunt (VPS) is installed and ascites developed. VPS is exposed, yielding volumes of 1000-1200ml/day CSF per day. MRI is performed showing generalized choroidal plexus hyperplasia. Bilateral endoscopic coagulation of thechoroid plexus was performed in 2 stages (CPC) however the high rate of CSF production persisted, needing a bilateral plexectomy through septostomy, which finally decreased the CSF outflow. DISCUSSION New knowledge about the CSF physiology will help to propose better treatment depending on the cause of the hydrocephalus. The GS is becoming an additional reason to better study and develop new therapies focused of the modulation of alternative CSF reabsorption. CONCLUSION Despite the current knowledge about hydrocephalus, we remain without a complete understanding of the pathophysiology of this condition. GS could be more important than conventional concept of reabsorption of CSF in the arachnoid villi, therefore GS could be a new key point, which will guide future investigations.
Collapse
|
9
|
Abdelhakiem MAH, Hussein HA. Collection of cerebrospinal fluid in 50 adult healthy donkeys (Equus asinus): clinical complications, and cytological and biochemical constituents. BMC Vet Res 2021; 17:302. [PMID: 34503510 PMCID: PMC8428111 DOI: 10.1186/s12917-021-03007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Background Diseases of the central nervous system are a well-recognized cause of morbidity and mortality in equine. Collection and analysis of cerebrospinal fluid (CSF) give information about the type and stage of degenerative and inflammatory diseases in central nervous system (CNS). The present research aimed to assess the clinical complications of CSF collections and to establish range values of cytological and biochemical parameters of CSF in adult healthy donkeys (Equus asinus). The CSF samples were collected from fifty healthy donkeys at the lumbosacral (LS) and atlanto-occipital (AO) sites. Results Hypothermia, tachycardia, ataxia and recumbency may develop post-puncture. Erythrocytes were noticed in 35 of 50 CSF samples. Total nucleated cell counts ranged from 0 to 6 cells/μL, and lymphocytes predominated the cells (61%). The concentration of glucose (1.2 to 5.3 mmol/L) was lower than that of serum (P < 0.05). The CSF sodium concentration (123 to 160 mmol/L) was approximately like that of serum, but potassium (1.5–3 mmol/L) was lower than that of serum (P < 0.01). Urea concentrations (1.1–2.9 mmol/L) were markedly lower than serum (P < 0.001). Concentrations of CSF total proteins, and albumin ranged from 0.1 to 0.6 g/dL, and from 0.002 to 0.013 g/dL, respectively. The albumin quotient ranged from 0.06 to 0.56. Conclusions Transient hypothermia, tachycardia, ataxia and recumbency may develop as clinical complications of CSF puncture procedures. The collection site has no impact on the constituents in CSF. Furthermore, this study presented the range values for normal cytological and biochemical constituents of CSF in donkeys (Equus asinus) that can provide a basis in comparison when evaluating CSF from donkeys with neurologic diseases.
Collapse
Affiliation(s)
- Mohammed A H Abdelhakiem
- Department of Animal Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hussein Awad Hussein
- Internal Veterinary Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
10
|
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front Neurosci 2021; 15:639140. [PMID: 33633540 PMCID: PMC7900543 DOI: 10.3389/fnins.2021.639140] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The classic concept of the absence of lymphatic vessels in the central nervous system (CNS), suggesting the immune privilege of the brain in spite of its high metabolic rate, was predominant until recent times. On the other hand, this idea left questioned how cerebral interstitial fluid is cleared of waste products. It was generally thought that clearance depends on cerebrospinal fluid (CSF). Not long ago, an anatomically and functionally discrete paravascular space was revised to provide a pathway for the clearance of molecules drained within the interstitial space. According to this model, CSF enters the brain parenchyma along arterial paravascular spaces. Once mixed with interstitial fluid and solutes in a process mediated by aquaporin-4, CSF exits through the extracellular space along venous paravascular spaces, thus being removed from the brain. This process includes the participation of perivascular glial cells due to a sieving effect of their end-feet. Such draining space resembles the peripheral lymphatic system, therefore, the term "glymphatic" (glial-lymphatic) pathway has been coined. Specific studies focused on the potential role of the glymphatic pathway in healthy and pathological conditions, including neurodegenerative diseases. This mainly concerns Alzheimer's disease (AD), as well as hemorrhagic and ischemic neurovascular disorders; other acute degenerative processes, such as normal pressure hydrocephalus or traumatic brain injury are involved as well. Novel morphological and functional investigations also suggested alternative models to drain molecules through perivascular pathways, which enriched our insight of homeostatic processes within neural microenvironment. Under the light of these considerations, the present article aims to discuss recent findings and concepts on nervous lymphatic drainage and blood-brain barrier (BBB) in an attempt to understand how peripheral pathological conditions may be detrimental to the CNS, paving the way to neurodegeneration.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
11
|
Li Q, Aalling NN, Förstera B, Ertürk A, Nedergaard M, Møllgård K, Xavier ALR. Aquaporin 1 and the Na +/K +/2Cl - cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids Barriers CNS 2020; 17:15. [PMID: 32046744 PMCID: PMC7014736 DOI: 10.1186/s12987-020-0176-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background The classical view of cerebrospinal fluid (CSF) production posits the choroid plexus as its major source. Although previous studies indicate that part of CSF production occurs in the subarachnoid space (SAS), the mechanisms underlying extra-choroidal CSF production remain elusive. We here investigated the distributions of aquaporin 1 (AQP1) and Na+/K+/2Cl− cotransporter 1 (NKCC1), key proteins for choroidal CSF production, in the adult rodent brain and spinal cord. Methods We have accessed AQP1 distribution in the intact brain using uDISCO tissue clearing technique and by Western blot. AQP1 and NKCC1 cellular localization were accessed by immunohistochemistry in brain and spinal cord obtained from adult rodents. Imaging was performed using light-sheet, confocal and bright field light microscopy. Results We determined that AQP1 is widely distributed in the leptomeningeal vasculature of the intact brain and that its glycosylated isoform is the most prominent in different brain regions. Moreover, AQP1 and NKCC1 show specific distributions in the smooth muscle cell layer of penetrating arterioles and veins in the brain and spinal cord, and in the endothelia of capillaries and venules, restricted to the SAS vasculature. Conclusions Our results shed light on the molecular framework that may underlie extra-choroidal CSF production and we propose that AQP1 and NKCC1 within the leptomeningeal vasculature, specifically at the capillary level, are poised to play a role in CSF production throughout the central nervous system.
Collapse
Affiliation(s)
- Qianliang Li
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nadia N Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich (LMU), 81377, Munich, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich (LMU), 81377, Munich, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark.,Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anna L R Xavier
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
12
|
Naessens DMP, de Vos J, VanBavel E, Bakker ENTP. Blood-brain and blood-cerebrospinal fluid barrier permeability in spontaneously hypertensive rats. Fluids Barriers CNS 2018; 15:26. [PMID: 30244677 PMCID: PMC6151927 DOI: 10.1186/s12987-018-0112-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/23/2018] [Indexed: 12/04/2022] Open
Abstract
Background Hypertension is an important risk factor for cerebrovascular disease, including stroke and dementia. Both in humans and animal models of hypertension, neuropathological features such as brain atrophy and oedema have been reported. We hypothesised that cerebrovascular damage resulting from chronic hypertension would manifest itself in a more permeable blood–brain barrier and blood–cerebrospinal fluid barrier. In addition, more leaky barriers could potentially contribute to an enhanced interstitial fluid and cerebrospinal fluid formation, which could, in turn, lead to an elevated intracranial pressure. Methods To study this, we monitored intracranial pressure and estimated the cerebrospinal fluid production rate in spontaneously hypertensive (SHR) and normotensive rats (Wistar Kyoto, WKY) at 10 months of age. Blood–brain barrier and blood–cerebrospinal fluid barrier integrity was determined by measuring the leakage of fluorescein from the circulation into the brain and cerebrospinal fluid compartment. Prior to sacrifice, a fluorescently labelled lectin was injected into the bloodstream to visualise the vasculature and subsequently study a number of specific vascular characteristics in six different brain regions. Results Blood and brain fluorescein levels were not different between the two strains. However, cerebrospinal fluid fluorescein levels were significantly lower in SHR. This could not be explained by a difference in cerebrospinal fluid turnover, as cerebrospinal fluid production rates were similar in SHR and WKY, but may relate to a larger ventricular volume in the hypertensive strain. Also, intracranial pressure was not different between SHR and WKY. Morphometric analysis of capillary volume fraction, number of branches, capillary diameter, and total length did not reveal differences between SHR and WKY. Conclusion In conclusion, we found no evidence for blood–brain barrier or blood–cerebrospinal fluid barrier leakage to a small solute, fluorescein, in rats with established hypertension. Electronic supplementary material The online version of this article (10.1186/s12987-018-0112-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daphne M P Naessens
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ed VanBavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Linninger AA, Xu C, Tangen K, Hartung G. Starling forces drive intracranial water exchange during normal and pathological states. Croat Med J 2018; 58:384-394. [PMID: 29308830 PMCID: PMC5778682 DOI: 10.3325/cmj.2017.58.384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM To quantify the exchange of water between cerebral compartments, specifically blood, tissue, perivascular pathways, and cerebrospinal fluid-filled spaces, on the basis of experimental data and to propose a dynamic global model of water flux through the entire brain to elucidate functionally relevant fluid exchange phenomena. METHODS The mechanistic computer model to predict brain water shifts is discretized by cerebral compartments into nodes. Water and species flux is calculated between these nodes across a network of arcs driven by Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling's Law (transmembrane fluid exchange). Compartment compliance is accounted for using a pressure-volume relationship to enforce the Monro-Kellie doctrine. This nonlinear system of differential equations is solved implicitly using MATLAB software. RESULTS The model predictions of intraventricular osmotic injection caused a pressure rise from 10 to 22 mmHg, followed by a taper to 14 mmHg over 100 minutes. The computational results are compared to experimental data with R2=0.929. Moreover, simulated osmotic therapy of systemic (blood) injection reduced intracranial pressure from 25 to 10 mmHg. The modeled volume and intracranial pressure changes following cerebral edema agree with experimental trends observed in animal models with R2=0.997. CONCLUSION The model successfully predicted time course and the efficacy of osmotic therapy for clearing cerebral edema. Furthermore, the mathematical model implicated the perivascular pathways as a possible conduit for water and solute exchange. This was a first step to quantify fluid exchange throughout the brain.
Collapse
Affiliation(s)
- Andreas A Linninger
- Andreas A. Linninger, Department of Bioengineering, Neurosurgery, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607, USA,
| | | | | | | |
Collapse
|
14
|
Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol 2018; 135:387-407. [PMID: 29428972 DOI: 10.1007/s00401-018-1812-4] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K+, Ca2+, and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with CNS microvessels, and, finally, a mixture of CSF/ISF/waste products is normally cleared along the PVS of venules/veins as well as other pathways; such a system may or may not constitute a true 'circulation', but, at the least, suggests a comprehensive re-evaluation of the previously proposed 'glymphatic' concepts in favour of a new system better taking into account basic cerebrovascular physiology and fluid transport considerations.
Collapse
Affiliation(s)
- N Joan Abbott
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building 3.82, 150 Stamford St, London, SE1 9NH, UK.
| | - Michelle E Pizzo
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison School of Pharmacy, Madison, WI, USA
- Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jane E Preston
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building 3.82, 150 Stamford St, London, SE1 9NH, UK
| | - Damir Janigro
- Flocel Inc., Cleveland, OH, USA
- Department of Physiology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert G Thorne
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison School of Pharmacy, Madison, WI, USA.
- Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, USA.
- , 5113 Rennebohm Hall, 777 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
15
|
Cerebrospinal Fluid Dynamics and Intrathecal Delivery. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience 2017; 354:69-87. [DOI: 10.1016/j.neuroscience.2017.04.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
|
17
|
Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, Rice H, DiLuna ML, Gerzanich V, Marc Simard J, Kahle KT. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 2017; 41:E10. [PMID: 27798982 DOI: 10.3171/2016.8.focus16278] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrocephalus, despite its heterogeneous causes, is ultimately a disease of disordered CSF homeostasis that results in pathological expansion of the cerebral ventricles. Our current understanding of the pathophysiology of hydrocephalus is inadequate but evolving. Over this past century, the majority of hydrocephalus cases has been explained by functional or anatomical obstructions to bulk CSF flow. More recently, hydrodynamic models of hydrocephalus have emphasized the role of abnormal intracranial pulsations in disease pathogenesis. Here, the authors review the molecular mechanisms of CSF secretion by the choroid plexus epithelium, the most efficient and actively secreting epithelium in the human body, and provide experimental and clinical evidence for the role of increased CSF production in hydrocephalus. Although the choroid plexus epithelium might have only an indirect influence on the pathogenesis of many types of pediatric hydrocephalus, the ability to modify CSF secretion with drugs newer than acetazolamide or furosemide would be an invaluable component of future therapies to alleviate permanent shunt dependence. Investigation into the human genetics of developmental hydrocephalus and choroid plexus hyperplasia, and the molecular physiology of the ion channels and transporters responsible for CSF secretion, might yield novel targets that could be exploited for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey; and
| | | | | | | | - J Marc Simard
- Departments of 3 Neurosurgery and.,Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristopher T Kahle
- Departments of 1 Neurosurgery and.,Pediatrics, Cellular, and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
18
|
MATSUMAE M, SATO O, HIRAYAMA A, HAYASHI N, TAKIZAWA K, ATSUMI H, SORIMACHI T. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System. Neurol Med Chir (Tokyo) 2016; 56:416-41. [PMID: 27245177 PMCID: PMC4945600 DOI: 10.2176/nmc.ra.2016-0020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.
Collapse
Affiliation(s)
- Mitsunori MATSUMAE
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | | | - Akihiro HIRAYAMA
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Naokazu HAYASHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Ken TAKIZAWA
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Hideki ATSUMI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Takatoshi SORIMACHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| |
Collapse
|
19
|
Miyajima M, Arai H. Evaluation of the Production and Absorption of Cerebrospinal Fluid. Neurol Med Chir (Tokyo) 2015; 55:647-56. [PMID: 26226980 PMCID: PMC4628155 DOI: 10.2176/nmc.ra.2015-0003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The traditional hypothesis of cerebrospinal fluid (CSF) hydrodynamics presumes that CSF is primarily produced in the choroid plexus (CP), then flows from the ventricles into the subarachnoid spaces, and mainly reabsorbed in the arachnoid granulations. This hypothesis is necessary to reconsider in view of recent research and clinical observations. This literature review presents numerous evidence for a new hypothesis of CSF hydrodynamics-(1) A significantly strong relationship exists between the CSF and interstitial fluid (IF), (2) CSF and IF are mainly produced and absorbed in the parenchymal capillaries of the brain and spinal cord. A considerable amount of CSF and IF are also absorbed by the lymphatic system, and (3) CSF movement is not unidirectional flow. It is only local mixing and diffusion.
Collapse
Affiliation(s)
- Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine
| | | |
Collapse
|
20
|
Kleine TO. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: Revealed with the New Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 2015; 87:227-43. [DOI: 10.1002/cyto.a.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Tilmann O. Kleine
- Department of Laboratory Medicine and Molecular Diagnostics of the University Hospital Marburg. Dependance: Cerebrospinal-Fluid References Labor, Baldingerstraße; 35043 Marburg Germany
| |
Collapse
|
21
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014; 11:26. [PMID: 25678956 PMCID: PMC4326185 DOI: 10.1186/2045-8118-11-26] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
22
|
Warf BC. Three Steps Forward and 2 Steps Back: The Echternach Procession Toward Optimal Hydrocephalus Treatment. Neurosurgery 2014; 61 Suppl 1:105-10. [DOI: 10.1227/neu.0000000000000376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Benjamin C. Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
23
|
Krishnamurthy S, Li J. New concepts in the pathogenesis of hydrocephalus. Transl Pediatr 2014; 3:185-94. [PMID: 26835336 PMCID: PMC4729848 DOI: 10.3978/j.issn.2224-4336.2014.07.02] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/20/2014] [Indexed: 12/28/2022] Open
Abstract
Hydrocephalus is a central nervous system disorder characterized by excessive accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain. Cognitive and physical handicap can occur as a result of hydrocephalus. The disorder can present at any age as a result of a wide variety of different diseases. The pathophysiology of hydrocephalus is unclear. While circulation theory is widely accepted as a hypothesis for the development of hydrocephalus, there is a lack of adequate proof in clinical situations and in experimental settings. However, there is growing evidence that osmotic gradients are responsible for the water content of the ventricles of the brain, similar to their presence in other water permeable organs in the body. Therefore, brain disorders that results in excess macromolecules in the ventricular CSF will change the osmotic gradient and result in hydrocephalus. This review encompasses several key findings that have been noted to be important in the genesis of hydrocephalus, including but not limited to the drainage of CSF through the olfactory pathways and cervical lymphatics, the paravascular pathways and the role of venous system. We propose that as osmotic gradients play an important role in the water transport into the ventricles, the transport of osmotically active macromolecules play a critical role in the genesis of hydrocephalus. Therefore, we can view hydrocephalus as a disorder of macromolecular clearance, rather than circulation. Current evidence points to a paravascular and/or lymphatic clearance of these macromolecules out of the ventricles and the brain into the venous system. There is substantial evidence to support this theory, and further studies may help solidify the merit of this hypothesis.
Collapse
Affiliation(s)
- Satish Krishnamurthy
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jie Li
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
24
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014. [PMID: 25678956 DOI: 10.1186/10.1186/2045-8118-11-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
25
|
|
26
|
Updated physiology and pathophysiology of CSF circulation--the pulsatile vector theory. Childs Nerv Syst 2013; 29:1811-25. [PMID: 23832074 DOI: 10.1007/s00381-013-2219-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Hydrocephalus is still a not well-understood diagnostic and a therapeutic dilemma because of the lack of sufficient and comprehensive model of cerebrospinal fluid circulation and pathological alterations. CONCLUSIONS Based on current studies, reviews, and knowledge of cerebrospinal fluid dynamics, brain water dynamics, intracranial pressure, and cerebral perfusion physiology, a new concept is deducted that can describe normal and pathological changes of cerebrospinal fluid circulation and pathophysiology of idiopathic intracranial hypertension.
Collapse
|
27
|
Chikly B, Quaghebeur J. Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther 2013; 17:344-54. [PMID: 23768280 DOI: 10.1016/j.jbmt.2013.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/27/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
The traditional model of cerebrospinal fluid (CSF) hydrodynamics is being increasingly challenged in view of recent scientific evidences. The established model presumes that CSF is primarily produced in the choroid plexuses (CP), then flows from the ventricles to the subarachnoid spaces, and is mainly reabsorbed into arachnoid villi (AV). This model is seemingly based on faulty research and misinterpretations. This literature review presents numerous evidence for a new hypothesis of CSF physiology, namely, CSF is produced and reabsorbed throughout the entire CSF-Interstitial fluid (IF) functional unit. IF and CSF are mainly formed and reabsorbed across the walls of CNS blood capillaries. CP, AV and lymphatics become minor sites for CSF hydrodynamics. The lymphatics may play a more significant role in CSF absorption when CSF-IF pressure increases. The consequences of this complete reformulation of CSF hydrodynamics may influence applications in research, publications, including osteopathic manual treatments.
Collapse
|
28
|
Dynamics of hydrocephalus: a physical approach. J Biol Phys 2013; 38:251-66. [PMID: 23449459 DOI: 10.1007/s10867-011-9239-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022] Open
Abstract
As brain ventricles lose their ability to regulate the cerebrospinal fluid (CSF) pressure, serious brain conditions collectively named hydrocephalus can appear. By modelling ventricular dynamics with the laws of physics, dynamical instabilities are evidenced, caused by either CSF transport dysregulations or abnormal properties of the elasticity of the ependyma. We show that these instabilities would lead, in most cases, to dilation of the ventricles, establishing a close connection to hydrocephalus, or in some other cases to a ventricular contraction as observed in the slit ventricle syndrome. Signs seem to indicate the possibility of phase transitions occurring as a result of these instabilities, which might have important clinical consequences, such as the inability to recover a healthy state. Even so, our dynamical approach could allow the development of a unified view of these complex intracranial conditions along with a classification that might be clinically relevant.
Collapse
|
29
|
Orešković D, Klarica M. Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Prog Neurobiol 2011; 94:238-58. [PMID: 21641963 DOI: 10.1016/j.pneurobio.2011.05.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 11/30/2022]
Abstract
According to the classical hypothesis of the cerebrospinal fluid (CSF) hydrodynamics, CSF is produced inside the brain ventricles, than it circulates like a slow river toward the cortical subarachnoid space, and finally it is absorbed into the venous sinuses. Some pathological conditions, primarily hydrocephalus, have also been interpreted based on this hypothesis. The development of hydrocephalus is explained as an imbalance between CSF formation and absorption, where more CSF is formed than is absorbed, which results in an abnormal increase in the CSF volume inside the cranial CSF spaces. It is believed that the reason for the imbalance is the obstruction of the CSF pathways between the site of CSF formation and the site of its absorption, which diminishes or prevents CSF outflow from the cranium. In spite of the general acceptance of the classical hypothesis, there are a considerable number of experimental results that do not support such a hypothesis and the generally accepted pathophysiology of hydrocephalus. A recently proposed new working hypothesis suggests that osmotic and hydrostatic forces at the central nervous system microvessels are crucial for the regulation of interstial fluid and CSF volume which constitute a functional unit. Based on that hypothesis, the generally accepted mechanisms of hydrocephalus development are not plausible. Therefore, the recent understanding of the correlation between CSF physiology and the development of hydrocephalus has been thoroughly presented, analyzed and evaluated, and new insights into hydrocephalus etiopathology have been proposed, which are in accordance with the experimental data and the new working hypothesis.
Collapse
Affiliation(s)
- D Orešković
- Ruđer Bošković Institute, Department of Molecular Biology, Bijenička 54, 10 000 Zagreb, Croatia.
| | | |
Collapse
|
30
|
The formation of cerebrospinal fluid: Nearly a hundred years of interpretations and misinterpretations. ACTA ACUST UNITED AC 2010; 64:241-62. [DOI: 10.1016/j.brainresrev.2010.04.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 11/17/2022]
|
31
|
Eide PK, Saehle T. Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure? Acta Neurochir (Wien) 2010; 152:989-95. [PMID: 20130957 DOI: 10.1007/s00701-010-0605-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/12/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE In patients with idiopathic normal pressure hydrocephalus (iNPH) and ventriculomegaly, examine whether there is a gradient in pulsatile intracranial pressure (ICP) from within the cerebrospinal fluid (CSF) of cerebral ventricles (ICP(IV)) to the subdural (ICP(SD)) compartment. We hypothesized that pulsatile ICP is higher within the ventricular CSF. METHODS The material includes 10 consecutive iNPH patients undergoing diagnostic ICP monitoring as part of pre-operative work-up. Eight patients had simultaneous ICP(IV) and ICP(SD) signals, and two patients had simultaneous signals from the lateral ventricle (ICP(IV)) and the brain parenchyma (ICP(PAR)). Intracranial pulsatility was characterized by the wave amplitude, rise time, and rise time coefficient; static ICP was characterized by mean ICP. RESULTS None of the patients demonstrated gradients in pulsatile ICP, that is, we found no evidence of higher pulsatile ICP within the CSF of the cerebral ventricles (ICP(IV)), as compared to either the subdural (ICP(SD)) compartment or within the brain parenchyma (ICP(PAR)). During ventricular infusion testing in one patient, the ventricular ICP (ICP(IV)) was artificially increased, but this increase in ICP(IV) produced no gradient in pulsatile ICP from the ventricular CSF (ICP(IV)) to the parenchyma (ICP(PAR)). CONCLUSIONS In this cohort of iNPH patients, we found no evidence of transmantle gradient in pulsatile ICP. The data gave no support to the hypothesis that pulsatile ICP is higher within the CSF of the cerebral ventricles (ICP(IV)) than within the subdural (ICP(SD)) compartment or the brain parenchyma (ICP(PAR)) in iNPH patients.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet HF, 0027 Oslo, Norway.
| | | |
Collapse
|
32
|
Wouda W, Vandevelde M, Kihm U. Internal hydrocephalus of suspected infectious origin in young dogs. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE A 2010; 28:481-93. [PMID: 6800159 DOI: 10.1111/j.1439-0442.1981.tb01216.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Pendyala G, Trauger SA, Kalisiak E, Ellis RJ, Siuzdak G, Fox HS. Cerebrospinal fluid proteomics reveals potential pathogenic changes in the brains of SIV-infected monkeys. J Proteome Res 2009; 8:2253-60. [PMID: 19281240 DOI: 10.1021/pr800854t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HIV-1-associated neurocognitive disorder occurs in approximately one-third of infected individuals. It has persisted in the current era of antiretroviral therapy, and its study is complicated by the lack of biomarkers for this condition. Since the cerebrospinal fluid is the most proximal biofluid to the site of pathology, we studied the cerebrospinal fluid in a nonhuman primate model for HIV-1-associated neurocognitive disorder. Here we present a simple and efficient liquid chromatography-coupled mass spectrometry-based proteomics approach that utilizes small amounts of cerebrospinal fluid. First, we demonstrate the validity of the methodology using human cerebrospinal fluid. Next, using the simian immunodeficiency virus-infected monkey model, we show its efficacy in identifying proteins such as alpha-1-antitrypsin, complement C3, hemopexin, IgM heavy chain, and plasminogen, whose increased expression is linked to disease. Finally, we find that the increase in cerebrospinal fluid proteins is linked to increased expression of their genes in the brain parenchyma, revealing that the cerebrospinal fluid alterations identified reflect changes in the brain itself and not merely leakage of the blood-brain or blood-cerebrospinal fluid barriers. This study reveals new central nervous system alterations in lentivirus-induced neurological disease, and this technique can be applied to other systems in which limited amounts of biofluids can be obtained.
Collapse
Affiliation(s)
- Gurudutt Pendyala
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5800, USA
| | | | | | | | | | | |
Collapse
|
34
|
Klarica M, Orešković D, Božić B, Vukić M, Butković V, Bulat M. New experimental model of acute aqueductal blockage in cats: Effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 2009; 158:1397-405. [DOI: 10.1016/j.neuroscience.2008.11.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 11/11/2008] [Accepted: 11/25/2008] [Indexed: 11/26/2022]
|
35
|
Davson H. Dynamic aspects of cerebrospinal fluid. DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY. SUPPLEMENT 2008; 27:1-16. [PMID: 4630265 DOI: 10.1111/j.1469-8749.1972.tb09767.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Fernández-Pérez AM, Peralta-Ramírez MI, Pilat A, Villaverde C. Effects of Myofascial Induction Techniques on Physiologic and Psychologic Parameters: A Randomized Controlled Trial. J Altern Complement Med 2008; 14:807-11. [DOI: 10.1089/acm.2008.0117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | | | - Andrzej Pilat
- Director of School of Myofascial Therapy, San Lorenzo del Escorial, Madrid, Spain
| | - Carmen Villaverde
- Department of Physiotherapy, School of Health Sciences, University of Granada, Spain
| |
Collapse
|
37
|
Park JH, Yoon SH. New concept of cerebrospinal fluid dynamics in cerebral venous sinus thrombosis. Med Hypotheses 2008; 70:143-7. [PMID: 17570605 DOI: 10.1016/j.mehy.2007.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 11/27/2022]
Abstract
Cerebral venous sinus thrombosis develops as a consequence of sinus obstruction, leading to hindering of venous drainage, gradual edema and increased intracranial pressure (ICP). Intracerebral hemorrhage occurs, of which the symptoms may be alleviated by cerebrospinal fluid (CSF) drainage. Clinical brain function improvement may be directly attributed to the effect of the decreased ICP, or to the decreased pressure on the venous sinus which alleviates venous blood flow and sinus thrombosis. However, worsening, rather than improvement of symptoms are occasionally observed in patients after CSF drainage, and therefore it is as yet difficult to determine the precise indications for CSF drainage. The authors of this study suggest that external CSF drainage of sagittal sinus thrombosis may accelerate the sinus thrombosis and aggravate symptoms in such a patient. In other words, the sagittal sinus differs from other sinuses in that when sinus thrombosis develops, CSF absorption is impeded from the early stages, leading to a higher likelihood of ventricular dilatation, because most of the CSF are normally absorbed through the arachnoid villi and drain into the sagittal sinus. External CSF drainage and subsequently decreased ICP will improve sinus thrombosis after implementation of CSF drainage of the sagittal sinus thrombosis, but on the other hand, this decreased CSF drainage leads to decreased venous sinus blood flow, both of which may result in aggravation of the sinus thrombosis. However, it is also suggested that CSF drainage may be accomplished safely on the unilateral lateral sinus thrombosis because CSF drainage may alleviate venous sinus obstruction, and does not influence the sinus blood flow. We, authors of this study suggest that caution should be taken when external CSF drainage of the sagittal sinus thrombosis is performed to prevent further aggravation of intracranial pressure elevation.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Neurosurgery, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | | |
Collapse
|
38
|
Scott DE, Bergevin M. Fine structural correlates of the choroid plexus of the lateral cerebral ventricle of the human fetal brain. ACTA ACUST UNITED AC 2005; 282:8-12. [PMID: 15470665 DOI: 10.1002/ar.a.20104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The germinal matrix neuroepithelium and the choroidal fissure of the fetal choroid plexus commonly possess microvessels that are often poorly developed. There may be a reduction of type IV collagen that surrounds these fragile microvessels. During the first and second trimester of neural development, these microvessels are friable and can undergo intraventricular hemorrhage under a number of circumstances. Early subtle changes in the integrity of germinal matrix epithelium are not easily visualized by ultrasound. The current investigation employing scanning electron microscopy clearly defines subtle hemorrhagic events and tearing of the germinal matrix neuroepithelium in the brains of human fetuses. A 23-week-old fetus survived for 11 days but died from other causes. The choroid plexus of this fetus was compared with the choroid plexus and germinal matrix epithelium of a 22-week-old fetus that was the product of an elective termination due to severe anhydramnios of unknown origin and a 19-week-old male fetus from an elective termination. All tissues were autopsy material not requiring institutional review board approval.
Collapse
Affiliation(s)
- David E Scott
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | |
Collapse
|
39
|
Timothy J, Chumas P, Chakrabarty A, Drake JM, Morrison E. Destruction of choroid plexus cells in vitro: a new concept for the treatment of hydrocephalus? Neurosurgery 2004; 54:727-32; discussion 732-3. [PMID: 15028150 DOI: 10.1227/01.neu.0000109536.52432.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Accepted: 09/04/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The current treatment of hydrocephalus using ventriculoperitoneal shunts and third ventriculostomies remains problematic. We revisited the concept of destruction of the choroid plexus for the treatment of hydrocephalus by using an immunotoxin-based technique to specifically destroy this tissue. This approach was based on the observation that, as an epithelial tissue, choroid plexus expresses a number of specific cell-surface proteins that represent excellent potential targets for the creation of a choroid plexus-specific immunotoxin. METHODS In this study, we characterized sheep and human choroid plexus cells (including atypical and carcinoma cell lines) using fluorescence microscopy in combination with histochemical staining of rat brain and confirmed the presence of a number of epithelium-specific proteins in choroid plexus cells. Immunotoxins were then manufactured by linking these antibodies to ricin A chain and ricin A-B chain. These immunotoxins were delivered to choroid plexus-derived cells in culture, and the results were compared with results of exposure to a nonspecific immunotoxin. RESULTS Complete cell death of choroid plexus cells was seen after only a 1-hour exposure to the specific immunotoxin, as opposed to the minimal cell death seen with a nonspecific immunotoxin after several hours of exposure. CONCLUSION These results suggest that immunotoxin-mediated ablation of choroid plexus may be a viable method of treating hydrocephalus and choroid plexus-derived tumors.
Collapse
Affiliation(s)
- Jake Timothy
- Department of Neurosurgery, Leeds General Infirmary, Leeds, England
| | | | | | | | | |
Collapse
|
40
|
Oresković D, Klarica M, Vukić M. The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion? Neurosci Lett 2002; 327:103-6. [PMID: 12098646 DOI: 10.1016/s0304-3940(02)00395-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formation and circulation of cerebrospinal fluid (CSF) have been studied in the isolated brain ventricles of anesthetized cats by a new approach and under direct observation. A plastic cannula was introduced into the aqueduct of Sylvius through the vermis cerebelli and the outflow of CSF from the cannula was used as the CSF formation and circulation index. During the 60 min of observation at a physiological CSF pressure not a single drop of CSF escaped out of the end of the cannula. This indicates that CSF net formation and circulation inside the brain ventricles, proposed by classical hypothesis regarding CSF dynamics, should be at least re-evaluated.
Collapse
Affiliation(s)
- Darko Oresković
- Department of Molecular Genetics, Laboratory of Neurochemistry and Molecular Neurobiology, Ruder Bosković Institute, Bijenicka c. 54, Zagreb, Croatia.
| | | | | |
Collapse
|
41
|
|
42
|
|
43
|
Pople IK, Ettles D. The role of endoscopic choroid plexus coagulation in the management of hydrocephalus. Neurosurgery 1995; 36:698-701; discussion 701-2. [PMID: 7596499 DOI: 10.1227/00006123-199504000-00009] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Endoscopic choroid plexus coagulation has been used for the treatment of hydrocephalus at this unit for the past 20 years, and 156 operations have been performed on 116 patients. These patients were analyzed retrospectively to determine the rate of long-term clinical control of hydrocephalus, factors associated with successful control, change in ventricular size after surgery, and rate of surgical complications. Data were found for 104 patients with a median age at surgery of 5 months (range, 1 wk-30 yr) and a mean follow-up of 10.5 years. Control of hydrocephalus by choroid plexus coagulation was found to be best in children with communicating hydrocephalus and a slow to moderate rate of increase in head circumference (18 of 28, 64% long-term control), whereas those who presented with tense fontanels and rapidly progressive hydrocephalus had the lowest rate of success. Overall, 36 of 104 (35%) achieved long-term control without cerebrospinal fluid shunts. The ventricular size was not significantly reduced by choroid plexus coagulation (ventricular index before and after surgery, 0.64 and 0.58, respectively; P = 0.13), although sulcal markings became more prominent in all successfully treated patients, indicating reduced intracranial pressure. There were no deaths resulting from surgery, and serious morbidity was low. Eight patients developed infections (five meningitis and three implant infections). Other complications included postoperative fits (two patients), respiratory arrest in a premature infant (one patient), low-pressure state (one patient), ventricular drain displacement or blockage (eight patients), subdural effusion (one patient), and intraoperative minor ventricular bleeding, forcing abandonment of the procedure (two patients).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I K Pople
- Department of Neurosurgery, Frenchay Hospital, Bristol, England
| | | |
Collapse
|
44
|
Abstract
Hydrocephalus can occur in conjunction with large acoustic neuromas. Cerebral tentorial herniation and brainstem compression can be a complication of surgical excision. Three cases of hydrocephalus and acoustic neuroma are presented and therapeutic options are discussed. Ventriculoperitoneal shunting 1 to 2 weeks before translabyrinthine or suboccipital excision of acoustic neuroma is recommended.
Collapse
|
45
|
Oresković D, Whitton PS, Lupret V. Effect of intracranial pressure on cerebrospinal fluid formation in isolated brain ventricles. Neuroscience 1991; 41:773-7. [PMID: 1870711 DOI: 10.1016/0306-4522(91)90367-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of intracranial pressure on cerebrospinal fluid formation has been studied in cats by ventricular perfusion with the aqueduct of Sylvius blocked (isolated ventricular perfusion). It has been found that intracranial pressure has a considerable effect on the rate of cerebrospinal fluid formation, while increases in pressure cause a significant and prolonged decrease in cerebrospinal fluid formation. The effect was observed in animals whether they were initially perfused under lower or under higher intracranial pressure. Cerebrospinal fluid absorption has been studied under the above conditions and it has been noted that the ventricles are capable of significant cerebrospinal fluid absorption, since in isolated ventricles cerebrospinal fluid formation and absorption were in balance at physiological intracranial pressure. In addition, cerebrospinal fluid formation rate within the isolated brain ventricles has been compared with the formation rate in the whole cerebrospinal fluid system. Since only about 30% of the total cerebrospinal fluid formation was observed by isolated ventricular perfusion, it seems that the brain ventricles are not the exclusive site of cerebrospinal fluid formation.
Collapse
Affiliation(s)
- D Oresković
- Department of Experimental Biology and Medicine, Ruder Bosković Institute, Zagreb, Yugoslavia
| | | | | |
Collapse
|
46
|
Zlokovic BV, Davson H, Preston JE, Segal MB. The effects of aluminum chloride on the rate of secretion of the cerebrospinal fluid. Exp Neurol 1987; 98:436-52. [PMID: 2444450 DOI: 10.1016/0014-4886(87)90253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The claim that AlCl3 could produce 100% inhibition of cerebrospinal fluid secretion was investigated using ventriculocisternal perfusion in the rabbit, and it was shown that a large part of this inhibition was an artefact due to a pH sensitivity of Blue Dextran, used as an indiffusible marker, caused by AlCl3. Thus the true inhibition found by us, using [3H]labeled markers, was about 33% and usually only partly reversible. Penetration of 22Na from blood into the perfused ventricles was partially inhibited by AlCl3. The effects of some other acid buffer systems, namely acetate and phosphate, on rate of secretion were measured; the results were highly variable. When mean arterial pressure was measured, it was found to be unaffected by AlCl3 but elevated with acetate and phosphate buffer mixtures.
Collapse
Affiliation(s)
- B V Zlokovic
- Sherrington School of Physiology, St. Thomas' Hospital Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
47
|
Abstract
The examination of cerebrospinal fluid (CSF) is often part of the diagnostic work-up of a patient exhibiting signs of disease involving the central nervous system. Awareness of the capabilities and limitations of these laboratory tests is important in assessing the benefit-to-risk ratio of performing such procedures. Collection of CSF is a relatively simple procedure, and together with a thorough history, physical examination, and other diagnostic tests, may be a valuable aid in arriving at a diagnosis or prognosis.
Collapse
|
48
|
Brown PN, Jackson PC, Staddon GE, Richardson RB, Griffith HB. Compartmental analysis of cerebrospinal fluid transfer and absorption in simulated hydrocephalus. Phys Med Biol 1985; 30:1113-21. [PMID: 4070367 DOI: 10.1088/0031-9155/30/10/010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A mathematical model of the cerebrospinal fluid (CSF) flow dynamics found in hydrocephalic infants with myelomeningocele lesions was constructed using criteria obtained from analogous clinical situations where 125I-labelled and 131I-labelled ortho-iodobenzoyl-amino-acetic acid (hippuran) had been employed to measure CSF flow dynamics. The quantitative results from this study allowed clinical data to be assessed and the importance of various CSF transfer mechanisms to be discussed. Our mathematical model indicates that the majority of radiopharmaceutical passes from the cerebral reservoir (the ventricles) into the blood. Experimental evidence indicates that the principal mechanism responsible for this movement is the bulk flow of CSF between its sites of production in the choroid plexus and absorption by the arachnoid villi.
Collapse
|
49
|
Hildebrandt G, Werner M, Kaps M, Busse O. Acute non-communicating hydrocephalus after spontaneous subarachnoid haemorrhage. Acta Neurochir (Wien) 1985; 76:58-61. [PMID: 4003129 DOI: 10.1007/bf01403830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Five patients, who developed progressive neurological deterioration within hours due to subarachnoid haemorrhage (SAH) are reported. The computertomographic (CT) appearance of a noncommunicating hydrocephalus (n.c.h.) was a unique feature in 4 cases. CT during the early phase of neurological deterioration after SAH permits the differentiation between an ischaemic, an oedematous, a haemorrhagic-compressive lesion and an increase in intracranial pressure (ICP) due to n.c.h.
Collapse
|
50
|
Page LK. Cerebrospinal fluid and extracellular fluid: their relationship to pressure and duration of canine hydrocephalus. Childs Nerv Syst 1985; 1:12-7. [PMID: 3986838 DOI: 10.1007/bf00706724] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fifteen greyhound dogs were made hydrocephalic by the transsphenoidal injection of silicone into the basal cisterns at the level of the tentorial incisura. Six of these animals had ventriculocisternal perfusions 4 weeks later and six at 8 weeks, half at 150 and half at 100 mm H2O. Three 12-week dogs were perfused at 150 mm H2O. Serial sections of brain from the ependyma of the left frontal horn to the overlying pia were counted for 14C inulin and 3H methotrexate uptake. Tissue concentrations of both markers varied indirectly with distance from ependyma and from pia, and varied directly with perfusion pressure. The data indicate that the diffusional pathway between cerebrospinal fluid (CSF) and extracellular fluid (ECF) can be modified by CSF pressure changes, i.e., CSF flows from the ventricles and subarachnoid space into the extracellular space when CSF pressures are raised. Brain uptake of inulin and methotrexate was significantly increased in the dogs made hydrocephalic 4 weeks prior to perfusion, but was less so in the 8-week hydrocephalics. Uptake of the tracers in three 12-week animals was similar to that found previously in normal dogs at elevated pressures. These findings correspond in location and time to the periventricular lucencies that are seen by computed tomography in human subacute hydrocephalus. They are apparently due to pressure-related changes in the volume of the ECF.
Collapse
|