1
|
Peled-Avron L, Daood M, Ben-Hayun R, Nevat M, Aharon-Peretz J, Admon R, Tomer R. Methylphenidate reduces spatial attentional bias by modulating fronto-striatal connectivity. Cereb Cortex 2024; 34:bhae379. [PMID: 39331032 DOI: 10.1093/cercor/bhae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Spatial attention bias reflects tendency to direct attention to specific side in space. This bias reflects asymmetric dopamine (DA) signaling in the striatum. Administration of DA agonists reduces spatial bias, yet the underlying mechanism is not yet clear. To address this, the current study tested whether methylphenidate (MPH; an indirect DA agonist) reduces orienting bias by modulating fronto-striatal connectivity. 54 adults with consistent bias completed the greyscales task which detects subtle biases during fMRI scanning under MPH (20 mg) or placebo, in a double-blind design. As hypothesized, MPH reduced bias by increasing orienting towards non-preferred hemispace, regardless of whether the initial bias was left or right. MPH-induced increases were found in activation of the medial superior frontal gyrus (mSFG: F[1;53] = 4.632, cluster-defining threshold of P < 0.05, minimal cluster size = 0, p_FWE = 0.036, η2 = 0.08) and its functional connectivity with the caudate (left caudate: F[1;53] = 12.664, p_FWE = 0.001, η2 = 0.192; right caudate: F[1;53] = 11.069, p_FWE = 0.002, η2 = 0.172), when orienting towards the non-preferred hemispace. MPH also reduced mSFG activation and fronto-striatal connectivity for the preferred hemispace. Results suggest modulation of frontal excitability due to increased caudate-mSFG functional connectivity. This mechanism may underlie the positive effect of dopaminergic agonists on abnormal patterns of directing attention in space.
Collapse
Affiliation(s)
- Leehe Peled-Avron
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
- Department of Psychology & Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002 Ramat-Gan, Israel
| | - Maryana Daood
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| | - Rachel Ben-Hayun
- Stroke and Cognition Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa, 3200003 Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel Haifa, 3200003
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| | - Judith Aharon-Peretz
- Stroke and Cognition Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa, 3200003 Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel Haifa, 3200003
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838 Haifa, Israel
| |
Collapse
|
2
|
Isparta S, Töre-Yargın G, Wagner SC, Mundorf A, Cinar Kul B, Da Graça Pereira G, Güntürkün O, Ocklenburg S, Freund N, Salgirli Demirbas Y. Measuring paw preferences in dogs, cats and rats: Design requirements and innovations in methodology. Laterality 2024; 29:246-282. [PMID: 38669348 DOI: 10.1080/1357650x.2024.2341459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Studying behavioural lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviours between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioural lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioural lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species.
Collapse
Affiliation(s)
- Sevim Isparta
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gülşen Töre-Yargın
- Brunel Design School College of Engineering Design & Physical Sciences, Brunel University London, Uxbridge, UK
- METU/BILTIR-UTEST Product Usability Unit, Department of Industrial Design, Middle East Technical University, Ankara, Turkey
| | - Selina C Wagner
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bengi Cinar Kul
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Goncalo Da Graça Pereira
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
3
|
A study of turn bias in people with idiopathic Parkinson's disease. Exp Brain Res 2022; 240:1673-1685. [PMID: 35551430 DOI: 10.1007/s00221-022-06378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
The objective of the study is to explore whether people with Parkinson's disease (PwPD) display a preferential turn bias dependent upon disease asymmetry, and whether specific disease features predict turn bias. PwPD and age-matched controls were instructed to walk on an instrumented gait mat making "normal" turns. Trials were analyzed using Proto Kinetics Movement Analysis Software (PKMAS) and time-locked video recordings to obtain turn directionality and spatiotemporal turn measures. Turn bias was estimated using previously defined formulas. Seventy-two PwPD and 28 controls were included. One hundred percent of controls and 85% of PwPD had left turn bias. Turn bias was not significantly associated with age, gender, handedness, disease asymmetry, cognition, or disease severity. The Freezing of Gait Questionnaire (FOGQ) questions 5 and 6 showed linear-by-linear association with turn bias. In binary logistic and ordinal regression models, FOGQ question 6 (average duration of turn freezing) and turn width were predictive of turn bias. Rightward turns had greater frequency of freezing episodes. Turn bias in our PwPD cohort does not appear related to disease asymmetry or other disease features, except gait freezing. Whether freezing severity on turning leads to non-left turn bias or vice versa requires more focused studies. Physical therapy interventions targeting turning direction in PwPD could reduce freezing severity.
Collapse
|
4
|
Peled-Avron L, Gelbard Goren H, Brande-Eilat N, Dorman-Ilan S, Segev A, Feffer K, Gvirts Problovski HZ, Levkovitz Y, Barnea Y, Lewis YD, Tomer R. Methylphenidate reduces orienting bias in healthy individuals. J Psychopharmacol 2021; 35:760-767. [PMID: 33719709 DOI: 10.1177/0269881121996884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Healthy individuals show subtle orienting bias, a phenomenon known as pseudoneglect, reflected in a tendency to direct greater attention toward one hemispace. Accumulating evidence indicates that this bias is an individual trait, and attention is preferentially directed contralaterally to the hemisphere with higher dopamine signaling. Administration of methylphenidate (MPH), a dopamine transporter inhibitor, was shown to normalize aberrant spatial attention bias in psychiatric and neurological patients, suggesting that the reduced orienting bias following administration of MPH reflects an asymmetric effect of the drug, increasing extracellular dopamine in the hemisphere with lower dopamine signaling. AIM We predicted that, similarly to its effect on patients with brain pathology, MPH will reduce the orienting bias in healthy subjects. METHODS To test this hypothesis, we examined the behavioral effects of a single dose (20 mg) of MPH on orienting bias in 36 healthy subjects (18 females) in a randomized, double-blind placebo-controlled, within-subject design, using the greyscales task, which has been shown to detect subtle attentional biases in both patients and healthy individuals. RESULTS/OUTCOMES Results demonstrate that healthy individuals vary in both direction and magnitude of spatial orienting bias and show reduced magnitude of orienting bias following MPH administration, regardless of the initial direction of asymmetry. CONCLUSIONS/INTERPRETATIONS Our findings reveal, for the first time in healthy subjects, that MPH decreases spatial orienting bias in an asymmetric manner. Given the well-documented association between orienting bias and asymmetric dopamine signaling, these findings also suggest that MPH might exert a possible asymmetric neural effect in the healthy brain.
Collapse
Affiliation(s)
| | | | | | | | - Aviv Segev
- Shalvata Mental Health Center, Hod-Hasharon, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kfir Feffer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Yael Barnea
- Shalvata Mental Health Center, Hod-Hasharon, Israel
| | - Yael D Lewis
- Shalvata Mental Health Center, Hod-Hasharon, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Tomer
- Department of Psychology, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Pradel K, Drwiȩga G, Błasiak T. Superior Colliculus Controls the Activity of the Rostromedial Tegmental Nuclei in an Asymmetrical Manner. J Neurosci 2021; 41:4006-4022. [PMID: 33741724 PMCID: PMC8176749 DOI: 10.1523/jneurosci.1556-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022] Open
Abstract
Dopaminergic (DA) neurons of the midbrain are involved in controlling orienting and approach of animals toward relevant external stimuli. The firing of DA neurons is regulated by many brain structures; however, the sensory input is provided predominantly by the ipsilateral superior colliculus (SC). It is suggested that SC also innervates the contralateral rostromedial tegmental nucleus (RMTg)-the main inhibitory input to DA neurons. Therefore, this study aimed to describe the physiology and anatomy of the SC-RMTg pathway. To investigate the anatomic connections within the circuit of interest, anterograde, retrograde, and transsynaptic tract-tracing studies were performed on male Sprague Dawley rats. We have observed that RMTg is monosynaptically innervated predominantly by the lateral parts of the intermediate layer of the contralateral SC. To study the physiology of this neuronal pathway, we conducted in vivo electrophysiological experiments combined with optogenetics; the activity of RMTg neurons was recorded using silicon probes, while either contralateral or ipsilateral SC was optogenetically stimulated. Obtained results revealed that activation of the contralateral SC excites the majority of RMTg neurons, while stimulation of the ipsilateral SC evokes similar proportions of excitatory or inhibitory responses. Consequently, single-unit recordings showed that the activation of RMTg neurons innervated by the contralateral SC, or stimulation of contralateral SC-originating axon terminals within the RMTg, inhibits midbrain DA neurons. Together, the anatomy and physiology of the discovered brain circuit suggest its involvement in the orienting and motivation-driven locomotion of animals based on the direction of external sensory stimuli.SIGNIFICANCE STATEMENT Dopaminergic neurons are the target of predominantly ipsilateral, excitatory innervation originating from the superior colliculus. However, we demonstrate in our study that SC inhibits the activity of dopaminergic neurons on the contralateral side of the brain via the rostromedial tegmental nucleus. In this way, sensory information received by the animal from one hemifield could induce opposite effects on both sides of the dopaminergic system. It was shown that the side to which an animal directs its behavior is a manifestation of asymmetry in dopamine release between left and right striatum. Animals tend to move oppositely to the hemisphere with higher striatal dopamine concentration. This explains how the above-described circuit might guide the behavior of animals according to the direction of incoming sensory stimuli.
Collapse
Affiliation(s)
- Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Gniewosz Drwiȩga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
6
|
Segarra AB, Prieto I, Martínez-Cañamero M, Ramírez-Sánchez M. Is there a link between depression, neurochemical asymmetry and cardiovascular function? AIMS Neurosci 2020; 7:360-372. [PMID: 33263075 PMCID: PMC7701369 DOI: 10.3934/neuroscience.2020022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Although at present depression is one of the most disabling disorders in our social environment, the understanding of its pathogenesis and the resources for its treatment are still unsatisfactory. The importance of brain asymmetry in the pathogenesis of disorders in brain function, including mood disorders such as depression, is a highly unexplored, sometimes underrated, and even ignored topic. It is important to note that the basal and pathological functional lateralization must have an underlying neurochemical substrate. It is also necessary to indicate that the brain asymmetry extends to a neurovisceral integration whose behavior may also be lateralized. One of the most studied axis from the functional point of view is the brain-heart connection, in whose operation there are observations that suggest an asymmetric behavior in basal conditions that is modified by central and peripheral changes, as well as by pharmacological treatments. There are evidences that connect cardiovascular function, neurochemical asymmetries, and depression. A deep understanding of the bilateral behavior of the brain following pathophysiological changes in blood pressure as well as pharmacologically induced, can provide us with therapeutic suggestions for the treatment of depression. In this article, we analyze remarkable results of some representative selected contributions, with which we discuss our proposal on the relationship between hypertension, depression and neurochemical asymmetry.
Collapse
Affiliation(s)
- A B Segarra
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - I Prieto
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | |
Collapse
|
7
|
Ecevitoglu A, Soyman E, Canbeyli R, Unal G. Paw preference is associated with behavioural despair and spatial reference memory in male rats. Behav Processes 2020; 180:104254. [PMID: 32961284 DOI: 10.1016/j.beproc.2020.104254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023]
Abstract
Paw preference, one of the well-studied behavioural markers of asymmetry, has been associated with affective states and pathologies such as behavioural despair, a rodent model of clinical depression. However, a consistent differential effect of paw preference has not been observed for cognitive functions. In order to investigate the affective properties of paw preference together with its potential cognitive effects, we grouped male Wistar rats as left- or right-pawed, and tested them in the forced swim test and Morris water maze for behavioural despair and spatial memory performance, respectively. We found that left-pawed rats were significantly more susceptible to behavioural despair, while spatial learning performance of the two groups were not different over a five-day Morris water maze task. Left-pawed rats, however, displayed a better reference memory than the right-pawed ones on the subsequent probe trial when the hidden platform of the maze was removed. These findings indicate paw preference as a vulnerability factor for behavioural despair and reveal a previously unknown association between left-paw preference and reference memory performance as assessed in the probe trial of the Morris water maze.
Collapse
Affiliation(s)
- Alev Ecevitoglu
- Behavioral Neuroscience Laboratory, Department of Psychology, Bogazici University, 34342 Istanbul, Turkey
| | - Efe Soyman
- Behavioral Neuroscience Laboratory, Department of Psychology, Bogazici University, 34342 Istanbul, Turkey
| | - Resit Canbeyli
- Behavioral Neuroscience Laboratory, Department of Psychology, Bogazici University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
8
|
Segarra AB, Prieto-Gomez I, Banegas I, Martínez-Cañamero M, Luna JDD, de Gasparo M, Ramírez-Sánchez M. Functional and neurometabolic asymmetry in SHR and WKY rats following vasoactive treatments. Sci Rep 2019; 9:16098. [PMID: 31695104 PMCID: PMC6834850 DOI: 10.1038/s41598-019-52658-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
A lateralized distribution of neuropeptidase activities in the frontal cortex of normotensive and hypertensive rats has been described depending on the use of some vasoactive drugs and linked to certain mood disorders. Asymmetrical neuroperipheral connections involving neuropeptidases from the left or right hemisphere and aminopeptidases from the heart or plasma have been suggested to play a role in this asymmetry. We hypothesize that such asymmetries could be extended to the connection between the brain and physiologic parameters and metabolic factors from plasma and urine. To assess this hypothesis, we analyzed the possible correlation between neuropeptidases from the left and right frontal cortex with peripheral parameters in normotensive (Wistar Kyoto [WKY]) rats and hypertensive rats (spontaneously hypertensive rats [SHR]) untreated or treated with vasoactive drugs such as captopril, propranolol and L-nitro-arginine methyl ester. Neuropeptidase activities from the frontal cortex were analyzed fluorometrically using arylamide derivatives as substrates. Physiological parameters and metabolic factors from plasma and urine were determined using routine laboratory techniques. Vasoactive drug treatments differentially modified the asymmetrical neuroperipheral pattern by changing the predominance of the correlations between peripheral parameters and central neuropeptidase activities of the left and right frontal cortex. The response pattern also differed between SHR and WKY rats. These results support an asymmetric integrative function of the organism and suggest the possibility of a different neurometabolic response coupled to particular mood disorders, depending on the selected vasoactive drug.
Collapse
Affiliation(s)
- Ana B Segarra
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain
| | | | | | | | - Juan de Dios Luna
- Department of Biostatistic, Medical School, University of Granada, Granada, Spain
| | - Marc de Gasparo
- Cardiovascular & Metabolic Syndrome Adviser, Rue es Planches 5, 2842, Rossemaison, Switzerland
| | | |
Collapse
|
9
|
Barrett AM, Boukrina O, Saleh S. Ventral attention and motor network connectivity is relevant to functional impairment in spatial neglect after right brain stroke. Brain Cogn 2018; 129:16-24. [PMID: 30522777 DOI: 10.1016/j.bandc.2018.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/15/2022]
Abstract
Emerging research suggests spatial neglect after right stroke is linked to dysfunctional attention and motor networks. Advanced functional connectivity analysis clarified brain network recovery, however we need to know how networks participate in adaptive motor performance. We need to verify network changes associated with validated functional measures and spatial-motor performance in spatial neglect, especially in patients with large brain lesions and significant disability. This study tested whether disability-relevant spatial neglect associates with different patterns of resting state functional connectivity between motor, dorsal and ventral attention networks (MN, DAN and VAN). Right stroke patients had spatial neglect (n = 8) or not (n = 10) on the Behavioural Inattention Test-conventional. Spatial neglect patients had weaker intranetwork VAN connectivity, and reduced internetwork connectivity between VAN and left frontal eye field (DAN), and between VAN and the left primary motor area (MN). These network impairments might explain the co-occurrence of attention and motor deficits in spatial neglect, and open a path to assessing functional connectivity in clinical trials of combined spatial retraining and motor rehabilitation after stroke.
Collapse
Affiliation(s)
- A M Barrett
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; Rutgers New Jersey Medical School, Newark, NJ 07102, USA; Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA.
| | - Olga Boukrina
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; Rutgers New Jersey Medical School, Newark, NJ 07102, USA.
| | - Soha Saleh
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; Rutgers New Jersey Medical School, Newark, NJ 07102, USA.
| |
Collapse
|
10
|
Schintu S, Freedberg M, Alam ZM, Shomstein S, Wassermann EM. Left-shifting prism adaptation boosts reward-based learning. Cortex 2018; 109:279-286. [PMID: 30399479 PMCID: PMC7327780 DOI: 10.1016/j.cortex.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/08/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Visuospatial cognition has an inherent lateralized bias. Individual differences in the direction and magnitude of this bias are associated with asymmetrical D2/3 dopamine binding and dopamine system genotypes. Dopamine level affects feedback-based learning and dopamine signaling asymmetry is related to differential learning from reward and punishment. High D2 binding in the left hemisphere is associated with preference for reward. Prism adaptation (PA) is a simple sensorimotor technique, which modulates visuospatial bias according to the direction of the deviation. Left-deviating prism adaptation (LPA) induces rightward bias in healthy subjects. It is therefore possible that the right side of space increases in saliency along with left hemisphere dopaminergic activity. Right-deviating prism adaptation (RPA) has been used mainly as a control condition because it does not modulate behavior in healthy individuals. Since LPA induces a rightward visuospatial bias as a result of left hemisphere modulation, and higher dopaminergic activity in the left hemisphere is associated with preference for rewarding events we hypothesized that LPA would increase the preference for learning with reward. Healthy volunteers performed a computer-based probabilistic classification task before and after LPA or RPA. Consistent with our predictions, PA altered the preference for rewarded versus punished learning, with the LPA group exhibiting increased learning from reward. These results suggest that PA modulates dopaminergic activity in a lateralized fashion.
Collapse
Affiliation(s)
- Selene Schintu
- Behavioral Neurology Unit, National Institute for Neurological Disorders and Stroke, Bethesda, USA; Department of Psychology, George Washington University, Washington, USA.
| | - Michael Freedberg
- Behavioral Neurology Unit, National Institute for Neurological Disorders and Stroke, Bethesda, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA
| | - Zaynah M Alam
- Behavioral Neurology Unit, National Institute for Neurological Disorders and Stroke, Bethesda, USA
| | - Sarah Shomstein
- Department of Psychology, George Washington University, Washington, USA
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute for Neurological Disorders and Stroke, Bethesda, USA
| |
Collapse
|
11
|
Hunter DS, Hazel SJ, Kind KL, Liu H, Marini D, Giles LC, De Blasio MJ, Owens JA, Pitcher JB, Gatford KL. Effects of induced placental and fetal growth restriction, size at birth and early neonatal growth on behavioural and brain structural lateralization in sheep. Laterality 2016; 22:560-589. [PMID: 27759494 DOI: 10.1080/1357650x.2016.1243552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poor perinatal growth in humans results in asymmetrical grey matter loss in fetuses and infants and increased functional and behavioural asymmetry, but specific contributions of pre- and postnatal growth are unclear. We therefore compared strength and direction of lateralization in obstacle avoidance and maze exit preference tasks in offspring of placentally restricted (PR: 10M, 13F) and control (CON: 23M, 17F) sheep pregnancies at 18 and 40 weeks of age, and examined gross brain structure of the prefrontal cortex at 52 weeks of age (PR: 14M, 18F; CON: 23M, 25F). PR did not affect lateralization direction, but 40-week-old PR females had greater lateralization strength than CON (P = .021). Behavioural lateralization measures were not correlated with perinatal growth. PR did not alter brain morphology. In males, cross-sectional areas of the prefrontal cortex and left hemisphere correlated positively with skull width at birth, and white matter area correlated positively with neonatal growth rate of the skull (all P < .05). These studies reinforce the need to include progeny of both sexes in future studies of neurodevelopmental programming, and suggest that restricting in utero growth has relatively mild effects on gross brain structural or behavioural lateralization in sheep.
Collapse
Affiliation(s)
- Damien Seth Hunter
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia.,c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Susan J Hazel
- c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Karen L Kind
- a Robinson Research Institute , North Adelaide , Australia.,c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Hong Liu
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Danila Marini
- c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Lynne C Giles
- a Robinson Research Institute , North Adelaide , Australia.,d School of Population Health , University of Adelaide , Adelaide , South Australia , Australia
| | - Miles J De Blasio
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Julie A Owens
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Julia B Pitcher
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Kathryn L Gatford
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| |
Collapse
|
12
|
Kiyokawa Y, Takahashi D, Takeuchi Y, Mori Y. The right central amygdala shows greater activation in response to an auditory conditioned stimulus in male rats. J Vet Med Sci 2016; 78:1563-1568. [PMID: 27320818 PMCID: PMC5095625 DOI: 10.1292/jvms.16-0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pavlovian fear conditioning is an experimental procedure in which a conditioned stimulus (CS) acquires an ability to elicit fear responses. This type of
conditioning depends on the basolateral complex of the amygdala (BLA) and/or central amygdala (CeA). We previously found that rats showed reduced fear responses
to an auditory CS when they were subjected to a pre-training chemical lesion of the entire right amygdala as compared with the left amygdala. Based on this
finding, we hypothesize that the BLA and/or CeA in the right hemisphere will be more strongly activated by an auditory CS than those in the left hemisphere. To
test this hypothesis, we re-exposed fear-conditioned and non-conditioned rats to an auditory CS 1 day after fear conditioning. We assessed Fos expression in the
BLA and CeA in each hemisphere. We found that fear-conditioned subjects showed fear responses, such as increased freezing and decreased walking, as well as
increased Fos expression in the BLA and CeA. When we compared Fos expression between hemispheres, Fos expression in the CeA, but not the BLA, was greater in the
right hemisphere compared with the left hemisphere. These results suggest that the right CeA is more strongly activated by the auditory CS.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
13
|
Taylor MJD, Strike SC. The effect of stopping before turning on the direct observational measure of whole body turning bias. Hum Mov Sci 2016; 47:116-120. [PMID: 26974038 DOI: 10.1016/j.humov.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/21/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022]
Abstract
Turning bias, the preferential tendency to turn toward a given direction has been reported in both rodents and human participants. The observational gait method of determining turning bias in humans requires a stop prior to turning. This study removed the stop and hypothesised that turning bias would remain the same between stop and non-stop conditions if bias was solely under the control of neurochemical asymmetries. The results showed that statistically turning bias remained the same (to the left) regardless of method used but there was no agreement between the methods thus rejecting the hypothesis. It is likely that when not stopping biomechanical factors related to gait when turning influence the direction of turn rather than solely neurochemical asymmetries.
Collapse
Affiliation(s)
- M J D Taylor
- University of Essex, School of Biological Sciences, Colchester, Essex CO4 3SQ, UK.
| | - S C Strike
- University of Roehampton, Department of Life Sciences, Whitelands College, Holybourne Avenue, London SW15 4JD, UK
| |
Collapse
|
14
|
Wong JE, Cao J, Dorris DM, Meitzen J. Genetic sex and the volumes of the caudate-putamen, nucleus accumbens core and shell: original data and a review. Brain Struct Funct 2015; 221:4257-4267. [PMID: 26666530 DOI: 10.1007/s00429-015-1158-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
Sex differences are widespread across vertebrate nervous systems. Such differences are sometimes reflected in the neural substrate via neuroanatomical differences in brain region volume. One brain region that displays sex differences in its associated functions and pathologies is the striatum, including the caudate-putamen (dorsal striatum), nucleus accumbens core and shell (ventral striatum). The extent to which these differences can be attributed to alterations in volume is unclear. We thus tested whether the volumes of the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell differed by region, sex, and hemisphere in adult Sprague-Dawley rats. As a positive control for detecting sex differences in brain region volume, we measured the sexually dimorphic nucleus of the medial preoptic area (SDN-POA). As expected, SDN-POA volume was larger in males than in females. No sex differences were detected in the volumes of the caudate-putamen, nucleus accumbens core or shell. Nucleus accumbens core volume was larger in the right than left hemisphere across males and females. These findings complement previous reports of lateralized nucleus accumbens volume in humans, and suggest that this may possibly be driven via hemispheric differences in nucleus accumbens core volume. In contrast, striatal sex differences seem to be mediated by factors other than striatal region volume. This conclusion is presented within the context of a detailed review of studies addressing sex differences and similarities in striatal neuroanatomy.
Collapse
Affiliation(s)
- Jordan E Wong
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA. .,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA. .,Center for Human Health and the Environment, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Soyman E, Tunckol E, Lacin E, Canbeyli R. Right-but not left-paw use in female rats provides advantage in forced swim tests. Behav Brain Res 2015. [DOI: 10.1016/j.bbr.2015.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Ham JH, Lee JJ, Kim JS, Lee PH, Sohn YH. Is Dominant-Side Onset Associated With a Better Motor Compensation in Parkinson's Disease? Mov Disord 2015; 30:1921-5. [PMID: 26408124 DOI: 10.1002/mds.26418] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Unilateral onset and persistent asymmetry of motor signs are unique features of PD. The dominant hemisphere may have more efficient motor networks with greater neural reserve to cope with pathological changes. Therefore, this study compared dominant-side onset and non-dominant-side onset PD to evaluate whether dominant-side onset patients have greater neural reserve and fewer motor deficits despite similar pathological changes. METHODS We included the data of 157 consecutive, de novo PD patients with documented right-handedness who underwent dopamine transporter PET scans for an initial diagnostic workup. Among them, 118 patients with significant asymmetric motor deficits were selected for the analyses. RESULTS Dominant-side patients (i.e., the majority of motor deficits on the right side) showed significantly fewer motor deficits (i.e., the part III score of the UPDRS) than non-dominant-side patients (18.0 ± 8.1 and 22.9 ± 10.1, respectively; P = 0.005). Other variables, including symptom duration and striatal dopaminergic activities, were similar between the two groups. A general linear model showed that this difference in motor deficits remained statistically significant after controlling for patient age, sex, symptom duration, and striatal dopaminergic activity in the posterior putamen (P = 0.013). CONCLUSION These results suggest that dominant-side patients have greater neural reserve, allowing them to better cope with PD-related pathological changes (i.e., fewer motor deficits despite similar dopamine reduction) compared to non-dominant-side patients.
Collapse
Affiliation(s)
- Jee H Ham
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae J Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae S Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Phil H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Molochnikov I, Cohen D. Hemispheric differences in the mesostriatal dopaminergic system. Front Syst Neurosci 2014; 8:110. [PMID: 24966817 PMCID: PMC4052732 DOI: 10.3389/fnsys.2014.00110] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/24/2014] [Indexed: 11/20/2022] Open
Abstract
The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e., the capacity of animal training to alter DA imbalance for prolonged time periods) remains controversial, however, if confirmed, it may provide a valuable non-invasive therapeutic means for treating abnormal DA imbalance.
Collapse
Affiliation(s)
- Ilana Molochnikov
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
18
|
Yuan P, Daugherty AM, Raz N. Turning bias in virtual spatial navigation: age-related differences and neuroanatomical correlates. Biol Psychol 2014; 96:8-19. [PMID: 24192272 PMCID: PMC3946712 DOI: 10.1016/j.biopsycho.2013.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/24/2013] [Accepted: 10/27/2013] [Indexed: 11/26/2022]
Abstract
Rodents frequently exhibit rotational bias associated with asymmetry in lesions and neurotransmitters in the striatum. However, in humans, turning preference is inconsistent across studies, and its neural correlates are unclear. We examined turning bias in 140 right-handed healthy adults (18-77 years old), who navigated a virtual Morris Water Maze. On magnetic resonance images, we measured volumes of brain regions relevant to spatial navigation. We classified turns that occurred during virtual navigation as veering (less than 10°), true turns (between 10° and 90°) and course reversals (over 90°). The results showed that performance (time of platform search and distance traveled) was negatively related to age. The distance traveled was positively associated with volume of the orbito-frontal cortex but not with the volumes of the cerebellum, the hippocampus or the primary visual cortex. Examination of turning behavior showed that all participants veered to the right. In turns and reversals, although on average there was no consistent direction preference, we observed significant individual biases. Virtual turning preference correlated with volumetric asymmetry in the striatum, cerebellum, and hippocampus but not in the prefrontal cortex. Participants preferred to turn toward the hemisphere with larger putamen, cerebellum and (in younger adults only) hippocampus. Advanced age was associated with greater rightward turning preference. Men showed greater leftward preference whereas women exhibited stronger rightward bias.
Collapse
Affiliation(s)
- Peng Yuan
- Institute of Gerontology and Department of Psychology, Wayne State University, 87 East Ferry Street, 226 Knapp Building, Detroit, MI 48202, United States
| | - Ana M Daugherty
- Institute of Gerontology and Department of Psychology, Wayne State University, 87 East Ferry Street, 226 Knapp Building, Detroit, MI 48202, United States
| | - Naftali Raz
- Institute of Gerontology and Department of Psychology, Wayne State University, 87 East Ferry Street, 226 Knapp Building, Detroit, MI 48202, United States.
| |
Collapse
|
19
|
Nigrostriatal dopaminergic control of operant and spatial behavior in the rat. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03327012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
|
21
|
Simonyan K, Herscovitch P, Horwitz B. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage 2012; 70:21-32. [PMID: 23277111 DOI: 10.1016/j.neuroimage.2012.12.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/19/2012] [Accepted: 12/18/2012] [Indexed: 01/17/2023] Open
Abstract
Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D(2)/D(3) receptor radioligand [(11)C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in both its associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
22
|
Tomer R, Slagter HA, Christian BT, Fox AS, King CR, Murali D, Davidson RJ. Dopamine asymmetries predict orienting bias in healthy individuals. Cereb Cortex 2012; 23:2899-904. [PMID: 22941721 DOI: 10.1093/cercor/bhs277] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudoneglect is traditionally viewed as reflecting right hemisphere specialization for processing spatial information, resulting in orienting toward the contralateral, left, hemispace. Recent evidence suggests that healthy individuals differ from each other in both direction and magnitude of orienting bias, and moreover, the bias displayed by a person is consistent across time, suggesting that it may represent a trait of the individual. Animal studies reveal consistent orienting bias within an individual, which reflects asymmetry in dopaminergic brain systems. We measured basal D2-like receptor binding using positron emission tomography and the high-affinity ligand [F-18]fallypride, to test the hypothesis that asymmetry in dopaminergic neurotransmission in healthy humans modulates the orienting bias in humans. As predicted, we found that individual differences in the direction and magnitude of the orienting bias were strongly associated with the pattern of asymmetric binding of dopamine (DA) D2 receptors in the striatum, as well as clusters in the frontal and temporal cortex. These findings show for the first time that orienting bias reflects individual differences in the lateralization of DA systems in the healthy human brain.
Collapse
Affiliation(s)
- Rachel Tomer
- Department of Psychology, University of Haifa, Haifa 31905, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Newman DP, O'Connell RG, Nathan PJ, Bellgrove MA. Dopamine transporter genotype predicts attentional asymmetry in healthy adults. Neuropsychologia 2012; 50:2823-2829. [PMID: 22940645 DOI: 10.1016/j.neuropsychologia.2012.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/12/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
A number of recent studies suggest that DNA variation in the dopamine transporter gene (DAT1) influences spatial attention asymmetry in clinical populations such as ADHD, but confirmation in non-clinical samples is required. Since non-spatial factors such as attentional load have been shown to influence spatial biases in clinical conditions, here we sought to determine whether any association between DAT1 genotype and spatial bias might be moderated by non-spatial attentional load. Healthy adults were asked to react to sudden onset peripheral targets while demand on non-spatial attention was manipulated via a central task. Participants were genotyped for a DAT1 variable number of tandem repeat (VNTR) polymorphism. The 10-repeat allele of this variant is a replicated susceptibility allele for ADHD and has been shown to associate with spatial bias. As expected, an overall leftward asymmetry/pseudoneglect was observed when the data were averaged across the entire sample. When data were stratified by DAT1 genotype, individuals lacking homozygosity for the 10-repeat DAT1 allele (non-10/10) showed a pronounced leftward bias that was significantly different from zero. In line with past reports from children with ADHD, this leftward bias was attenuated in individuals who were homozygous for the DAT1 10-repeat allele (10/10), suggestive of relatively weaker right hemisphere dominance for spatial attention. This effect of DAT1 genotype on spatial bias was not modulated by non-spatial attention load. These data confirm in healthy adult participants both the existence and the direction of the relationship previously reported between DAT1 genotype and spatial bias in children with ADHD. These data add to a growing body of evidence showing that spatial attentional asymmetry is a stable quantitative trait, with individual differences in this trait significantly predicted by common DNA variation in the DAT1 gene.
Collapse
Affiliation(s)
- Daniel P Newman
- Monash University, School of Psychology and Psychiatry, Victoria, Australia.
| | - Redmond G O'Connell
- Trinity College Dublin, School of Psychology and Trinity College Institute of Neuroscience, Dublin, Ireland
| | - Pradeep J Nathan
- Monash University, School of Psychology and Psychiatry, Victoria, Australia; University of Cambridge, Department of Psychiatry, Brain Mapping Unit, Cambridge, United Kingdom; GlaxoSmithKline, Clinical Unit Cambridge, Cambridge, United Kingdom
| | - Mark A Bellgrove
- Monash University, School of Psychology and Psychiatry, Victoria, Australia
| |
Collapse
|
24
|
Garner KG, Dux PE, Wagner J, Cummins TDR, Chambers CD, Bellgrove MA. Attentional asymmetries in a visual orienting task are related to temperament. Cogn Emot 2012; 26:1508-15. [PMID: 22650182 DOI: 10.1080/02699931.2012.666205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Spatial asymmetries are an intriguing feature of directed attention. Recent observations indicate an influence of temperament upon the direction of these asymmetries. It is unknown whether this influence generalises to visual orienting behaviour. The aim of the current study was therefore to explore the relationship between temperament and measures of spatial orienting as a function of target hemifield. An exogenous cueing task was administered to 92 healthy participants. Temperament was assessed using Carver and White's (1994) Behavioural Inhibition System and Behavioural Activation System (BIS/BAS) scales. Individuals with high sensitivity to punishment and low sensitivity to reward showed a leftward asymmetry of directed attention when there was no informative spatial cue provided. This asymmetry was not present when targets were preceded by spatial cues that were either valid or invalid. The findings support the notion that individual variations in temperament influence spatial asymmetries in visual orienting, but only when lateral targets are preceded by a non-directional (neutral) cue. The results are discussed in terms of hemispheric asymmetries and dopamine activity.
Collapse
Affiliation(s)
- Kelly G Garner
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Gene L, Esteban S, González J, Akâarir M, Gamundí A, Rial RV, Llobera MCN. Asymmetric sleep in rats. Laterality 2012; 17:1-17. [DOI: 10.1080/1357650x.2010.517849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Martin-Soelch C, Szczepanik J, Nugent A, Barhaghi K, Rallis D, Herscovitch P, Carson RE, Drevets WC. Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum. Eur J Neurosci 2011; 33:1706-15. [PMID: 21453423 DOI: 10.1111/j.1460-9568.2011.07642.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrophysiological studies have shown that mesostriatal dopamine (DA) neurons increase activity in response to unpredicted rewards. With respect to other functions of the mesostriatal dopaminergic system, dopamine's actions show prominent laterality effects. Whether changes in DA transmission elicited by rewards also are lateralized, however, has not been investigated. Using [¹¹C]raclopride-PET to assess the striatal DA response to unpredictable monetary rewards, we hypothesized that such rewards would induce an asymmetric reduction in [¹¹C]raclopride binding in the ventral striatum, reflecting lateralization of endogenous dopamine release. In 24 healthy volunteers, differences in the regional D₂/₃ receptor binding potential (ΔBP) between an unpredictable reward condition and a sensorimotor control condition were measured using the bolus-plus-constant-infusion [¹¹C]raclopride method. During the reward condition subjects randomly received monetary awards while performing a 'slot-machine' task. The ΔBP between conditions was assessed in striatal regions-of-interest and compared between left and right sides. We found a significant condition × lateralization interaction in the ventral striatum. A significant reduction in binding potential (BP(ND) ) in the reward condition vs. the control condition was found only in the right ventral striatum, and the ΔBP was greater in the right than the left ventral striatum. Unexpectedly, these laterality effects appeared to be partly accounted for by gender differences, as our data showed a significant bilateral BP(ND) reduction in women while in men the reduction reached significance only in the right ventral striatum. These data suggest that DA release in response to unpredictable reward is lateralized in the human ventral striatum, particularly in males.
Collapse
Affiliation(s)
- Chantal Martin-Soelch
- Department of Psychiatry and Psychotherapy, University Hospital Zurich, Culmannstrasse 8, CH-8091, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Meitzen J, Pflepsen KR, Stern CM, Meisel RL, Mermelstein PG. Measurements of neuron soma size and density in rat dorsal striatum, nucleus accumbens core and nucleus accumbens shell: differences between striatal region and brain hemisphere, but not sex. Neurosci Lett 2010; 487:177-81. [PMID: 20951763 DOI: 10.1016/j.neulet.2010.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/27/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022]
Abstract
Both hemispheric bias and sex differences exist in striatal-mediated behaviors and pathologies. The extent to which these dimorphisms can be attributed to an underlying neuroanatomical difference is unclear. We therefore quantified neuron soma size and density in the dorsal striatum (CPu) as well as the core (AcbC) and shell (AcbS) subregions of the nucleus accumbens to determine whether these anatomical measurements differ by region, hemisphere, or sex in adult Sprague-Dawley rats. Neuron soma size was larger in the CPu than the AcbC or AcbS. Neuron density was greatest in the AcbS, intermediate in the AcbC, and least dense in the CPu. CPu neuron density was greater in the left in comparison to the right hemisphere. No attribute was sexually dimorphic. These results provide the first evidence that hemispheric bias in the striatum and striatal-mediated behaviors can be attributed to a lateralization in neuronal density within the CPu. In contrast, sexual dimorphisms appear mediated by factors other than gross anatomical differences.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The two major points of Denenberg's article are (1) that animals have lateralized brains, and (2) that the pattern of cerebral lateralization is consistent across species (i.e., “the left hemisphere will be primarily involved in communicative functions,” the right hemisphere with processing “spatial and affective information.” In addition, there is an unstated assumption that the pattern of lateralization is consistent within species. The evidence reviewed by Denenberg leaves little doubt that nonhuman animals have asymmetrically organized brains. However, there are problems with the suggestion that there is a consistent pattern of cerebral lateralization within or across different populations of species.
Collapse
|
29
|
Sex-related differences in functional human brain asymmetry: verbal function - no; spatial function - maybe. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00004696] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
|
31
|
|
32
|
|
33
|
|
34
|
The effect of brain asymmetry on cognitive functions depends upon what ability, for which sex, at what point in development. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00004623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Abstract
In his target article as well as in other writings, Denenberg presents a view of lateralization with which I fundamentally disagree: namely, that an affirmation of lateralization in a population is to be based primarily, if not exclusively, on observing a nonequiprobable distribution of asymmetric forms in that population.
Collapse
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
Abstract
The enigma of hemispheric specialization of the human brain continues to attract the attention of BBS readers. Although the lateralization of language is obviously specific to man, some scientists find the idea of human uniqueness unacceptable. Corballis and Morgan (1978) presented hemispheric dominance in man as a special case of a left-right maturational gradient, examples of which can be found throughout the animal kingdom. According to Denenberg, brain laterality can be induced in animals by nonlateralized environmental factors such as handling. Since nonlateralized influences can only unmask latent asymmetries, Denenberg's position is essentially similar to the views espoused by Corballis and Morgan (1978) and can, therefore, be criticized on the same grounds.
Collapse
|
41
|
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
|