1
|
Strnad J, Soural M, Šebela M. A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules 2024; 29:4878. [PMID: 39459245 PMCID: PMC11509957 DOI: 10.3390/molecules29204878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Copper-containing diamine oxidases are ubiquitous enzymes that participate in many important biological processes. These processes include the regulation of cell growth and division, programmed cell death, and responses to environmental stressors. Natural substrates include, for example, putrescine, spermidine, and histamine. Enzymatic activity is typically assayed using spectrophotometric, electrochemical, or fluorometric methods. The aim of this study was to develop a method for measuring activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based on the intensity ratio of product to product-plus-substrate signals in the reaction mixtures. For this purpose, an enzyme purified to homogeneity from pea (Pisum sativum) seedlings was used. The method employed α-cyano-4-hydroxycinnamic acid as a matrix with the addition of cetrimonium bromide. Product signal intensities with pure compounds were evaluated in the presence of equal substrate amounts to determine intensity correction factors for data processing calculations. The kinetic parameters kcat and Km for the oxidative deamination of selected substrates were determined. These results were compared to parallel measurements using an established spectrophotometric method, which involved a coupled reaction of horseradish peroxidase and guaiacol, and were discussed in the context of data from the literature and the BRENDA database. It was found that the method provides accurate results that are well comparable with parallel spectrophotometry. This method offers advantages such as low sample consumption, rapid serial measurements, and potential applicability in assays where colored substances interfere with spectrophotometry.
Collapse
Affiliation(s)
- Jan Strnad
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic;
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic;
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic;
| |
Collapse
|
2
|
Koehn EM, Lang A, Flores A, Lambert C, Klinman J. Replacement of Tyrosines by Unnatural Amino Acid Aminophenylalanine Leads to Metal-Mediated Aniline Free Radical Formation in a Copper Amine Oxidase. ACS Chem Biol 2024; 19:1525-1532. [PMID: 38889186 PMCID: PMC11407504 DOI: 10.1021/acschembio.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Copper amine oxidases (CAOs) catalyze the oxidative deamination of primary amines to aldehyde, ammonia, and hydrogen peroxide as products and are widely distributed in bacteria, plants, and eukaryotes. These enzymes initiate the single turnover, post-translational conversion of an active site tyrosine to the redox cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ), subsequently employing TPQ to catalyze steady-state amine oxidation. The mechanisms of TPQ biogenesis and steady-state amine oxidation have been studied extensively, with consensus mechanisms proposed for both reactions. One unresolved issue has been whether the Cu2+ center must undergo formal reduction to Cu1+ in the course of the reaction. Herein, we investigate the properties of the active site of a yeast (Hansenula polymorpha) amine oxidase (HPAO) that has undergone site-specific insertion of a para-aminophenylalanine (pAF) into the position of either the precursor tyrosine to TPQ (Y405) or the two strictly conserved neighboring tyrosines (Y305 and Y407). While our original intention was to interrogate cofactor biogenesis using a precursor unnatural amino acid (UAA) of altered redox potential and pKa, we instead observe an unanticipated reaction assigned to an intramolecular electron transfer from pAF to the active site copper ion. We establish the generality of the observed active site chemistry using exogenously added, aniline-containing substrates under conditions that prevent side chain amine oxidation. The results support previous proposals that the activation of the TPQ precursor occurs in the absence of a formal valence change at the active site copper site. The described reaction of pAFs with the active site redox Cu2+ center of HPAO provides a prototype for either the engineering of the enzymatic oxidation of exogenous anilines or the insertion of site-specific free radical probes within proteins.
Collapse
Affiliation(s)
- Eric M Koehn
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720-3220, United States
| | - Albert Lang
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3220, United States
| | - Allison Flores
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720-3220, United States
| | - Claudia Lambert
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720-3220, United States
| | - Judith Klinman
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720-3220, United States
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3220, United States
| |
Collapse
|
3
|
Kundu S, Ghosh C, Metya A, Banerjee A, Maji MS. Carbazoquinocin Analogues as Small Molecule Biomimetic Organocatalysts in Dehydrogenative Coupling of Amines. Org Lett 2024; 26:1705-1710. [PMID: 38373273 DOI: 10.1021/acs.orglett.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A new series of carbazole-cored biomimetic ortho-quinone catalysts structurally resembling carbazoquinocin alkaloids have been introduced to promote tunable, metal cocatalyst-free, organocatalytic, dehydrogenative amine oxidation under aerobic conditions. Differently substituted benzyl amines were tolerated under optimized conditions to provide imines in excellent yields. Further efficacy of the catalyst was demonstrated by synthesizing cross-coupled imines efficiently. Control experiments and in-depth DFT studies disclosed a covalent transamination pathway as a plausible mechanism for this newly developed catalytic system.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Chayan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhisek Metya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Sugumaran M, Evans JJ. Catecholamine Derivatives as Novel Crosslinkers for the Synthesis of Versatile Biopolymers. J Funct Biomater 2023; 14:449. [PMID: 37754863 PMCID: PMC10531651 DOI: 10.3390/jfb14090449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Catecholamine metabolites are not only involved in primary metabolism, but also in secondary metabolism, serving a diverse array of physiologically and biochemically important functions. Melanin, which originates from dopa and dopamine, found in the hair, eye, and skin of all animals, is an important biopolymeric pigment. It provides protection against damaging solar radiation to animals. N-Acetyldopamine and N-β-alanyldopamine play a crucial role in the hardening of the exoskeletons of all insects. In addition, insects and other arthropods utilize the melanogenic process as a key component of their defense systems. Many marine organisms utilize dopyl peptides and proteins as bonding materials to adhere to various substrata. Moreover, the complex dopa derivatives that are precursors to the formation of the exoskeletons of numerous marine organisms also exhibit antibiotic properties. The biochemistry and mechanistic transformations of different catecholamine derivatives to produce various biomaterials with antioxidant, antibiotic, crosslinking, and gluing capabilities are highlighted. These reactivities are exhibited through the transient and highly reactive quinones, quinone methides, and quinone methide imine amide intermediates, as well as chelation to metal ions. A careful consideration of the reactivities summarized in this review will inspire numerous strategies for synthesizing novel biomaterials for future medical and industrial use.
Collapse
Affiliation(s)
- Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA;
| | - Jason J. Evans
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
5
|
Meier AA, Moon HJ, Sabuncu S, Singh P, Ronnebaum TA, Ou S, Douglas JT, Jackson TA, Moënne-Loccoz P, Mure M. Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu 2+ in the Active Site of Lysyl Oxidase-like 2. Int J Mol Sci 2022; 23:ijms232213966. [PMID: 36430446 PMCID: PMC9694262 DOI: 10.3390/ijms232213966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lysyl oxidase-2 (LOXL2) is a Cu2+ and lysine tyrosylquinone (LTQ)-dependent amine oxidase that catalyzes the oxidative deamination of peptidyl lysine and hydroxylysine residues to promote crosslinking of extracellular matrix proteins. LTQ is post-translationally derived from Lys653 and Tyr689, but its biogenesis mechanism remains still elusive. A 2.4 Å Zn2+-bound precursor structure lacking LTQ (PDB:5ZE3) has become available, where Lys653 and Tyr689 are 16.6 Å apart, thus a substantial conformational rearrangement is expected to take place for LTQ biogenesis. However, we have recently shown that the overall structures of the precursor (no LTQ) and the mature (LTQ-containing) LOXL2s are very similar and disulfide bonds are conserved. In this study, we aim to gain insights into the spatial arrangement of LTQ and the active site Cu2+ in the mature LOXL2 using a recombinant LOXL2 that is inhibited by 2-hydrazinopyridine (2HP). Comparative UV-vis and resonance Raman spectroscopic studies of the 2HP-inhibited LOXL2 and the corresponding model compounds and an EPR study of the latter support that 2HP-modified LTQ serves as a tridentate ligand to the active site Cu2. We propose that LTQ resides within 2.9 Å of the active site of Cu2+ in the mature LOXL2, and both LTQ and Cu2+ are solvent-exposed.
Collapse
Affiliation(s)
- Alex A. Meier
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Hee-Jung Moon
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Sinan Sabuncu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Priya Singh
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Trey A. Ronnebaum
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Siyu Ou
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Justin T. Douglas
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Timothy A. Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
6
|
Ragno R, Minarini A, Proia E, Lorenzo A, Milelli A, Tumiatti V, Fiore M, Fino P, Rutigliano L, Fioravanti R, Tahara T, Pacella E, Greco A, Canettieri G, Di Paolo ML, Agostinelli E. Bovine Serum Amine Oxidase and Polyamine Analogues: Chemical Synthesis and Biological Evaluation Integrated with Molecular Docking and 3-D QSAR Studies. J Chem Inf Model 2022; 62:3910-3927. [PMID: 35948439 DOI: 10.1021/acs.jcim.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural polyamines (PAs) are key players in cellular homeostasis by regulating cell growth and proliferation. Several observations highlight that PAs are also implicated in pathways regulating cell death. Indeed, the PA accumulation cytotoxic effect, maximized with the use of bovine serum amine oxidase (BSAO) enzyme, represents a valuable strategy against tumor progression. In the present study, along with the design, synthesis, and biological evaluation of a series of new spermine (Spm) analogues (1-23), a mixed structure-based (SB) and ligand-based (LB) protocol was applied. Binding modes of BSAO-PA modeled complexes led to clarify electrostatic and steric features likely affecting the BSAO-PA biochemical kinetics. LB and SB three-dimensional quantitative structure-activity relationship (Py-CoMFA and Py-ComBinE) models were developed by means of the 3d-qsar.com portal, and their analysis represents a strong basis for future design and synthesis of PA BSAO substrates for potential application in oxidative stress-induced chemotherapy.
Collapse
Affiliation(s)
- Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Proia
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Antonini Lorenzo
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Marco Fiore
- Department Institute of Biochemistry and Cell Biology, IBBC-CNR, Via E. Ramarini, 32, Monterotondo Scalo Rome 00015, Italy
| | - Pasquale Fino
- UOC of Dermatology, Policlinico Umberto I Hospital, Sapienza Medical School of Rome, Viale del Policlinico 155, Rome I-00161, Italy
| | - Lavinia Rutigliano
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Tomoaki Tahara
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Elena Pacella
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University Padua, Via G. Colombo 3, Padova 35131, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy.,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, Rome I-00159, Italy
| |
Collapse
|
7
|
Daniels PN, van der Donk WA. Substrate Specificity of the Flavoenzyme BhaC 1 That Converts a C-Terminal Trp to a Hydroxyquinone. Biochemistry 2022; 62:378-387. [PMID: 35613706 PMCID: PMC9850906 DOI: 10.1021/acs.biochem.2c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The preparation of protein-protein, protein-peptide, and protein-small molecule conjugates is important for a variety of applications, such as vaccine production, immunotherapies, preparation of antibody-drug conjugates, and targeted delivery of therapeutics. To achieve site-selective conjugation, selective chemical or enzymatic functionalization of proteins is required. We have recently reported biosynthetic pathways in which small, catalytic scaffold peptides are utilized for the generation of amino acid-derived natural products called pearlins. In these systems, peptide amino-acyl tRNA ligases (PEARLs) append amino acids to the C-terminus of a scaffold peptide, and tailoring enzymes encoded in the biosynthetic gene clusters modify the PEARL-appended amino acid to generate a variety of natural products. Herein, we investigate the substrate selectivity of one such tailoring enzyme, BhaC1, that participates in pyrroloiminoquinone biosynthesis. BhaC1 converts the indole of a C-terminal tryptophan into an o-hydroxy-p-quinone, a promising moiety for site-selective bioconjugation. Our studies demonstrate that BhaC1 requires a 20-amino acid peptide for substrate recognition. When this peptide was appended at the C-terminus of proteins, the C-terminal Trp was modified by BhaC1. The enzyme is sufficiently selective that only small changes to the sequence of the peptide are tolerated. An AlphaFold model for substrate recognition explains the selectivity of the enzyme, which may be used to install a reactive handle onto the C-terminus of proteins.
Collapse
Affiliation(s)
- Page N. Daniels
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States,Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,. Phone: (217) 244-5360. Fax: (217) 244-8533
| |
Collapse
|
8
|
Kano K. Fundamental insight into redox enzyme-based bioelectrocatalysis. Biosci Biotechnol Biochem 2022; 86:141-156. [PMID: 34755834 DOI: 10.1093/bbb/zbab197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022]
Abstract
Redox enzymes can work as efficient electrocatalysts. The coupling of redox enzymatic reactions with electrode reactions is called enzymatic bioelectrocatalysis, which imparts high reaction specificity to electrode reactions with nonspecific characteristics. The key factors required for bioelectrocatalysis are hydride ion/electron transfer characteristics and low specificity for either substrate in redox enzymes. Several theoretical features of steady-state responses are introduced to understand bioelectrocatalysis and to extend the performance of bioelectrocatalytic systems. Applications of the coupling concept to bioelectrochemical devices are also summarized with emphasis on the achievements recorded in the research group of the author.
Collapse
Affiliation(s)
- Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
9
|
Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand. Nat Commun 2022; 13:428. [PMID: 35058479 PMCID: PMC8776754 DOI: 10.1038/s41467-022-28102-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidation reactions are fundamental transformations in organic synthesis and chemical industry. With oxygen or air as terminal oxidant, aerobic oxidation catalysis provides the most sustainable and economic oxidation processes. Most aerobic oxidation catalysis employs redox metal as its active center. While nature provides non-redox metal strategy as in pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenases (MDH), such an effective chemical version is unknown. Inspired by the recently discovered rare earth metal-dependent enzyme Ln-MDH, here we show that an open-shell semi-quinone anionic radical species in complexing with lanthanum could serve as a very efficient aerobic oxidation catalyst under ambient conditions. In this catalyst, the lanthanum(III) ion serves only as a Lewis acid promoter and the redox process occurs exclusively on the semiquinone ligand. The catalysis is initiated by 1e--reduction of lanthanum-activated ortho-quinone to a semiquinone-lanthanum complex La(SQ-.)2, which undergoes a coupled O-H/C-H (PCHT: proton coupled hydride transfer) dehydrogenation for aerobic oxidation of alcohols with up to 330 h−1 TOF. A decade ago the first rare-earth-metal dependent enzyme was discovered, in which a non-redox lanthanide ion is central in the active site of a methanol dehydrogenase. Inspired by this discovery, here the authors show that an open-shell semi-quinone anionic radical species, complexed with lanthanum, could serve as a very efficient aerobic oxidation catalyst under ambient conditions.
Collapse
|
10
|
Shoji M, Murakawa T, Nakanishi S, Boero M, Shigeta Y, Hayashi H, Okajima T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem Sci 2022; 13:10923-10938. [PMID: 36320691 PMCID: PMC9491219 DOI: 10.1039/d2sc01356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Copper amine oxidase from Arthrobacter globiformis (AGAO) catalyses the oxidative deamination of primary amines via a large conformational change of a topaquinone (TPQ) cofactor during the semiquinone formation step. This conformational change of TPQ occurs in the presence of strong hydrogen bonds and neighboring bulky amino acids, especially the conserved Asn381, which restricts TPQ conformational changes over the catalytic cycle. Whether such a semiquinone intermediate is catalytically active or inert has been a matter of debate in copper amine oxidases. Here, we show that the reaction rate of the Asn381Ala mutant decreases 160-fold, and the X-ray crystal structures of the mutant reveals a TPQ-flipped conformation in both the oxidized and reduced states, preceding semiquinone formation. Our hybrid quantum mechanics/molecular mechanics (QM/MM) simulations show that the TPQ conformational change is realized through the sequential steps of the TPQ ring-rotation and slide. We determine that the bulky side chain of Asn381 hinders the undesired TPQ ring-rotation in the oxidized form, favoring the TPQ ring-rotation in reduced TPQ by a further stabilization leading to the TPQ semiquinone form. The acquired conformational flexibility of TPQ semiquinone promotes a high reactivity of Cu(i) to O2, suggesting that the semiquinone form is catalytically active for the subsequent oxidative half-reaction in AGAO. The ingenious molecular mechanism exerted by TPQ to achieve the “state-specific” reaction sheds new light on a drastic environmental transformation around the catalytic center. The large conformational change of topaquinone in bacterial copper amine oxidase occurs through the TPQ ring rotation and slide, which are essential to stabilize the semiquinone form.![]()
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
- JST-PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Saitama Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Shota Nakanishi
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504 23 rue du Loess F-67034 France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Hideyuki Hayashi
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| |
Collapse
|
11
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Kanamori Y, Finotti A, Di Magno L, Canettieri G, Tahara T, Timeus F, Greco A, Tirassa P, Gasparello J, Fino P, Di Liegro CM, Proia P, Schiera G, Di Liegro I, Gambari R, Agostinelli E. Enzymatic Spermine Metabolites Induce Apoptosis Associated with Increase of p53, caspase-3 and miR-34a in Both Neuroblastoma Cells, SJNKP and the N-Myc-Amplified Form IMR5. Cells 2021; 10:1950. [PMID: 34440719 PMCID: PMC8393918 DOI: 10.3390/cells10081950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is a common malignant solid tumor in children and accounts for 15% of childhood cancer mortality. Amplification of the N-Myc oncogene is a well-established poor prognostic marker in NB patients and strongly correlates with higher tumor aggression and resistance to treatment. New therapies for patients with N-Myc-amplified NB need to be developed. After treating NB cells with BSAO/SPM, the detection of apoptosis was determined after annexin V-FITC labeling and DNA staining with propidium iodide. The mitochondrial membrane potential activity was checked, labeling cells with the probe JC-1 dye. We analyzed, by real-time RT-PCR, the transcript of genes involved in the apoptotic process, to determine possible down- or upregulation of mRNAs after the treatment on SJNKP and the N-Myc-amplified IMR5 cell lines with BSAO/SPM. The experiments were carried out considering the proapoptotic genes Tp53 and caspase-3. After treatment with BSAO/SPM, both cell lines displayed increased mRNA levels for all these proapoptotic genes. Western blotting analysis with PARP and caspase-3 antibody support that BSAO/SPM treatment induces high levels of apoptosis in cells. The major conclusion is that BSAO/SPM treatment leads to antiproliferative and cytotoxic activity of both NB cell lines, associated with activation of apoptosis.
Collapse
Affiliation(s)
- Yuta Kanamori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, 44121 Ferrara, Italy; (A.F.); (J.G.); (R.G.)
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.M.); (G.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.M.); (G.C.)
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Tomoaki Tahara
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy; (A.G.); (T.T.)
| | - Fabio Timeus
- Paediatric Onco-haematology, Regina Margherita Children’s Hospital and Paediatric Department, Chivasso Hospital, 10034 Turin, Italy;
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy; (A.G.); (T.T.)
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Research Council of Italy (CNR), 00161 Rome, Italy;
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, 44121 Ferrara, Italy; (A.F.); (J.G.); (R.G.)
| | - Pasquale Fino
- UOC of Dermatology, Policlinico Umberto I Hospital, Sapienza Medical School of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell’Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy;
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, 44121 Ferrara, Italy; (A.F.); (J.G.); (R.G.)
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy; (A.G.); (T.T.)
- International Polyamines Foundation ‘ETS-ONLUS’ Via del Forte Tiburtino 98, 00159 Rome, Italy
| |
Collapse
|
13
|
Suzuki T, Sato A, Oshita H, Yajima T, Tani F, Abe H, Mieda-Higa K, Yanagisawa S, Ogura T, Shimazaki Y. Formation of Ni(II)-phenoxyl radical complexes by O 2: a mechanistic insight into the reaction of Ni(II)-phenol complexes with O 2. Dalton Trans 2021; 50:5161-5170. [PMID: 33881085 DOI: 10.1039/d1dt00105a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A reaction of Ni(ClO4)2·6H2O with a tripodal ligand having two di(tert-butyl)phenol moieties, H2tbuL, and 1 equivalent of triethylamine in CH2Cl2/CH3OH (1 : 1, v/v) under N2 gave a NiII-(phenol)(phenolate) complex, [Ni(HtbuL)(CH3OH)2]ClO4. The formation of the NiII-phenoxyl radical complex by O2 was observed in the reaction of this complex in the solid state. On the other hand, the NiII-phenoxyl radical complex [Ni(Me2NL)(CH3OH)2]ClO4 was obtained by the reaction of H2Me2NL having a p-(dimethylamino)phenol moiety with Ni(ClO4)2·6H2O in a similar procedure under O2, through the oxidation of the NiII-(phenol)(phenolate) complex. However, a direct redox reaction of the NiII ion could not be detected in the phenoxyl radical formation. The results of the reaction kinetics, XAS and X-ray structure analyses suggested that the O2 oxidation from the NiII-(phenol)(phenolate) complex to the NiII-phenoxyl radical complex occurs via the proton transfer-electron transfer (PT-ET) type mechanism of the phenol moiety weakly coordinated to the nickel ion.
Collapse
Affiliation(s)
- Takashi Suzuki
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.
| | - Akari Sato
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.
| | - Hiromi Oshita
- Faculty of Chemistry of Functional Molecules, Konan University, Higashinada-ku, Kobe 658-8501, Japan
| | - Tatsuo Yajima
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hitoshi Abe
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan. and Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kaoru Mieda-Higa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.
| |
Collapse
|
14
|
Chan SI, Chuankhayan P, Reddy Nareddy PK, Tsai IK, Tsai YF, Chen KHC, Yu SSF, Chen CJ. Mechanism of Pyrroloquinoline Quinone-Dependent Hydride Transfer Chemistry from Spectroscopic and High-Resolution X-ray Structural Studies of the Methanol Dehydrogenase from Methylococcus capsulatus (Bath). J Am Chem Soc 2021; 143:3359-3372. [PMID: 33629832 DOI: 10.1021/jacs.0c11414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The active site of methanol dehydrogenase (MDH) contains a rare disulfide bridge between adjacent cysteine residues. As a vicinal disulfide, the structure is highly strained, suggesting it might work together with the pyrroloquinoline quinone (PQQ) prosthetic group and the Ca2+ ion in the catalytic turnover during methanol (CH3OH) oxidation. We purify MDH from Methylococcus capsulatus (Bath) with the disulfide bridge broken into two thiols. Spectroscopic and high-resolution X-ray crystallographic studies of this form of MDH indicate that the disulfide bridge is redox active. We observe an internal redox process within the holo-MDH that produces a disulfide radical anion concomitant with a companion PQQ radical, as evidenced by an optical absorption at 408 nm and a magnetically dipolar-coupled biradical in the EPR spectrum. These observations are corroborated by electron-density changes between the two cysteine sulfurs of the disulfide bridge as well as between the bound Ca2+ ion and the O5-C5 bond of the PQQ in the high-resolution X-ray structure. On the basis of these findings, we propose a mechanism for the controlled redistribution of the two electrons during hydride transfer from the CH3OH in the alcohol oxidation without formation of the reduced PQQ ethenediol, a biradical mechanism that allows for possible recovery of the hydride for transfer to an external NAD+ oxidant in the regeneration of the PQQ cofactor for multiple catalytic turnovers. In support of this mechanism, a steady-state level of the disulfide radical anion is observed during turnover of the MDH in the presence of CH3OH and NAD+.
Collapse
Affiliation(s)
- Sunney I Chan
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | | | - I-Kuen Tsai
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Yi-Fang Tsai
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
15
|
K Bains A, Ankit Y, Adhikari D. Bioinspired Radical-Mediated Transition-Metal-Free Synthesis of N-Heterocycles under Visible Light. CHEMSUSCHEM 2021; 14:324-329. [PMID: 33210460 DOI: 10.1002/cssc.202002161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/16/2020] [Indexed: 06/11/2023]
Abstract
A redox-active iminoquinone motif connected with π-delocalized pyrene core has been reported that can perform efficient two-electron oxidation of a class of substrates. The design of the molecule was inspired by the organic redox cofactor topaquinone (TPQ), which executes amine oxidation in the enzyme, copper amine oxidase. Easy oxidation of both primary and secondary alcohols happened in the presence of catalytic KOtBu, which could reduce the ligand backbone to its iminosemiquinonate form under photoinduced conditions. Moreover, this easy oxidation of alcohols under aerobic condition could be elegantly extended to multi-component, one-pot coupling for the synthesis of quinoline and pyrimidine. This organocatalytic approach is very mild (70 °C, 8 h) compared to a multitude of transition-metal catalysts that have been used to prepare these heterocycles. A detailed mechanistic study proves the intermediacy of the iminosemiquinonate-type radical and a critical hydrogen atom transfer step to be involved in the dehydrogenation reaction.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| | - Yadav Ankit
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| |
Collapse
|
16
|
Berger KJ, Levin MD. Reframing primary alkyl amines as aliphatic building blocks. Org Biomol Chem 2021; 19:11-36. [PMID: 33078799 DOI: 10.1039/d0ob01807d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While primary aliphatic amines are ubiquitous in natural products, they are traditionally considered inert to substitution chemistry. This review highlights historical and recent advances in the field of aliphatic deamination chemistry which demonstrate these moieties can be harnessed as valuable C(sp3) synthons. Cross-coupling and photocatalyzed transformations proceeding through polar and radical mechanisms are compared with oxidative deamination and other transition metal catalyzed reactions.
Collapse
Affiliation(s)
- Kathleen J Berger
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
17
|
Ito S, Sugumaran M, Wakamatsu K. Chemical Reactivities of ortho-Quinones Produced in Living Organisms: Fate of Quinonoid Products Formed by Tyrosinase and Phenoloxidase Action on Phenols and Catechols. Int J Mol Sci 2020; 21:ijms21176080. [PMID: 32846902 PMCID: PMC7504153 DOI: 10.3390/ijms21176080] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Tyrosinase catalyzes the oxidation of phenols and catechols (o-diphenols) to o-quinones. The reactivities of o-quinones thus generated are responsible for oxidative browning of plant products, sclerotization of insect cuticle, defense reaction in arthropods, tunichrome biochemistry in tunicates, production of mussel glue, and most importantly melanin biosynthesis in all organisms. These reactions also form a set of major reactions that are of nonenzymatic origin in nature. In this review, we summarized the chemical fates of o-quinones. Many of the reactions of o-quinones proceed extremely fast with a half-life of less than a second. As a result, the corresponding quinone production can only be detected through rapid scanning spectrophotometry. Michael-1,6-addition with thiols, intramolecular cyclization reaction with side chain amino groups, and the redox regeneration to original catechol represent some of the fast reactions exhibited by o-quinones, while, nucleophilic addition of carboxyl group, alcoholic group, and water are mostly slow reactions. A variety of catecholamines also exhibit side chain desaturation through tautomeric quinone methide formation. Therefore, quinone methide tautomers also play a pivotal role in the fate of numerous o-quinones. Armed with such wide and dangerous reactivity, o-quinones are capable of modifying the structure of important cellular components especially proteins and DNA and causing severe cytotoxicity and carcinogenic effects. The reactivities of different o-quinones involved in these processes along with special emphasis on mechanism of melanogenesis are discussed.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| |
Collapse
|
18
|
Aizenman E, Loring RH, Reynolds IJ, Rosenberg PA. The Redox Biology of Excitotoxic Processes: The NMDA Receptor, TOPA Quinone, and the Oxidative Liberation of Intracellular Zinc. Front Neurosci 2020; 14:778. [PMID: 32792905 PMCID: PMC7393236 DOI: 10.3389/fnins.2020.00778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
This special issue of Frontiers in Neuroscience-Neurodegeneration celebrates the 50th anniversary of John Olney's seminal work introducing the concept of excitotoxicity as a mechanism for neuronal cell death. Since that time, fundamental research on the pathophysiological activation of glutamate receptors has played a central role in our understanding of excitotoxic cellular signaling pathways, leading to the discovery of many potential therapeutic targets in the treatment of acute or chronic/progressive neurodegenerative disorders. Importantly, excitotoxic signaling processes have been found repeatedly to be closely intertwined with oxidative cellular cascades. With this in mind, this review looks back at long-standing collaborative efforts by the authors linking cellular redox status and glutamate neurotoxicity, focusing first on the discovery of the redox modulatory site of the N-methyl-D-aspartate (NMDA) receptor, followed by the study of the oxidative conversion of 3,4-dihydroxyphenylalanine (DOPA) to the non-NMDA receptor agonist and neurotoxin 2,4,5-trihydroxyphenylalanine (TOPA) quinone. Finally, we summarize our work linking oxidative injury to the liberation of zinc from intracellular metal binding proteins, leading to the uncovering of a signaling mechanism connecting excitotoxicity with zinc-activated cell death-signaling cascades.
Collapse
Affiliation(s)
- Elias Aizenman
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ralph H. Loring
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States
| | | | - Paul A. Rosenberg
- Program in Neuroscience, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Chen YH, Li HH, Zhang X, Xiang SH, Li S, Tan B. Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl-p-Quinones: Platform Molecules for Diversity-Oriented Synthesis of Biaryldiols. Angew Chem Int Ed Engl 2020; 59:11374-11378. [PMID: 32277551 DOI: 10.1002/anie.202004671] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 01/30/2023]
Abstract
Presented here is a class of novel axially chiral aryl-p-quinones as platform molecules for the preparation of non-C2 symmetric biaryldiols. Two sets of aryl-p-quinone frameworks were synthesized with remarkable enantiocontrol by means of chiral phosphoric acid catalyzed enantioselective arylation of p-quinones by central-to-axial chirality conversion. These aryl-p-quinones were then used to access a wide spectrum of highly functionalized non-C2 symmetric biaryldiols with excellent retention of the enantiopurity.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heng-Hui Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shaoyu Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Chen Y, Li H, Zhang X, Xiang S, Li S, Tan B. Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl‐
p
‐Quinones: Platform Molecules for Diversity‐Oriented Synthesis of Biaryldiols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye‐Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Heng‐Hui Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shao‐Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Shaoyu Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
21
|
Neutron crystallography of copper amine oxidase reveals keto/enolate interconversion of the quinone cofactor and unusual proton sharing. Proc Natl Acad Sci U S A 2020; 117:10818-10824. [PMID: 32371483 DOI: 10.1073/pnas.1922538117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent advances in neutron crystallographic studies have provided structural bases for quantum behaviors of protons observed in enzymatic reactions. Thus, we resolved the neutron crystal structure of a bacterial copper (Cu) amine oxidase (CAO), which contains a prosthetic Cu ion and a protein-derived redox cofactor, topa quinone (TPQ). We solved hitherto unknown structures of the active site, including a keto/enolate equilibrium of the cofactor with a nonplanar quinone ring, unusual proton sharing between the cofactor and the catalytic base, and metal-induced deprotonation of a histidine residue that coordinates to the Cu. Our findings show a refined active-site structure that gives detailed information on the protonation state of dissociable groups, such as the quinone cofactor, which are critical for catalytic reactions.
Collapse
|
22
|
Abstract
This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA;
| |
Collapse
|
23
|
Abstract
AbstractThe goal of sustainable development has been accepted as a common policy in current society. In response to this challenge, the development of green processes which utilize environmentally benign oxidants, reduce chemical waste and handling costs, is highly desirable. Given the widespread importance of imines as pivotal synthetic intermediates and essential pharmacophores in numerous biologically active compounds, various catalytic methods allowing the aerobic oxidation of amines to imines have been developed. Recently, noticeable progress has arisen from the discovery of various quinone-based catalytic systems, inspired by copper amine oxidase enzymes (CuAOs), which are able to reproduce the selectivity of CuAOs for primary amines and even to expand the amine substrates scope. However, the need for synthesizing these catalysts prior use adversely affects the economics as well as the eco-friendly nature of the method. To surpass these drawbacks, the “second-order” biomimicry idea has been recently advanced to describe a system in which in situ modification of pre-catalyst components affords the active biomimetic catalyst. This minireview especially covers our recent contribution to the design of bioinspired quinone-based catalysts for the aerobic oxidation of amines to imines which has culminated in a dual bioinspired protocol as an example of “second-order” biomimicry.
Collapse
Affiliation(s)
- Martine Largeron
- UMR 8038 CNRS-Université Paris Descartes (Paris 5), Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 avenue de l’Observatoire, 75270 Paris cedex 06, France
| |
Collapse
|
24
|
Fujieda N. His-Cys and Trp-Cys cross-links generated by post-translational chemical modification. Biosci Biotechnol Biochem 2019; 84:445-454. [PMID: 31771431 DOI: 10.1080/09168451.2019.1696178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Galactose oxidase and amine oxidase contain a cofactor which is generated by post-translational chemical modification to the corresponding amino acid side chains near the copper active center. Such cofactors provide proteins unusual catalytic ability that canonical amino acids cannot exert as well as their structural stability, and thereby are called as protein-derived cofactors. These cofactors and modifications are mostly derived from aromatic amino acid residues, especially Tyr, Trp, and His. Current information about unusual cofactors derived from two of those, heteroaromatic residues (Trp and His) is summarized, especially chemical properties and maturation process of the cross-links between cysteine and heteroaromatic amino acids (His-Cys and Trp-Cys cross-links).Abbreviations: FMN: flavin mononucleotide; FAD: flavin adenine nucleotide; RNA: ribonucleic acid; PDC: protein-derived cofactor; GFP: green fluorescent protein; MIO: 3,5-dihydro-5-methylidene-4-imidazol-4-one; LTQ: lysyl tyrosylquinone; CTQ: cysteine tryptophylquinone; TTQ: tryptophan tryptophylquinone; E.coli: Escherichia coli; WT: wild type.
Collapse
Affiliation(s)
- Nobutaka Fujieda
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
25
|
Characterization of PlGoxB, a flavoprotein required for cysteine tryptophylquinone biosynthesis in glycine oxidase from Pseudoalteromonas luteoviolacea. Arch Biochem Biophys 2019; 674:108110. [PMID: 31541619 DOI: 10.1016/j.abb.2019.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022]
Abstract
LodA-like proteins are oxidases with a protein-derived cysteine tryptophylquinone (CTQ) prosthetic group. In Pseudoalteromonas luteoviolacea glycine oxidase (PlGoxA), CTQ biosynthesis requires post-translational modifications catalyzed by a modifying enzyme encoded by PlgoxB. The PlGoxB protein was expressed and shown to possess a flavin cofactor. PlGoxB was unstable in solution as it readily lost the flavin and precipitated. PlGoxB precipitation was significantly reduced by incubation with either excess FAD or an equal concentration of prePlGoxA, the precursor protein that is its substrate. In contrast, the mature CTQ-bearing PlGoxA had no stabilizing effect. A homology model of PlGoxB was generated using the structure of Alkylhalidase CmIS. The FAD-binding site of PlGoxB in the model was nearly identical to that of the template structure. The bound FAD in PlGoxB had significant solvent exposure, consistent with the observed tendency to lose FAD. This also suggested that interaction of prePlGoxA with PlGoxB at the exposed FAD-binding site could prevent the observed loss of FAD and subsequent precipitation of PlGoxB. A docking model of the putative PlGoxB-prePlGoxA complex was consistent with these hypotheses. The experimental results and computational analysis implicate structural features of PlGoxB that contribute to its stability and function.
Collapse
|
26
|
Lopes de Carvalho L, Bligt-Lindén E, Ramaiah A, Johnson MS, Salminen TA. Evolution and functional classification of mammalian copper amine oxidases. Mol Phylogenet Evol 2019; 139:106571. [PMID: 31351182 DOI: 10.1016/j.ympev.2019.106571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Mammalian copper-containing amine oxidases (CAOs), encoded by four genes (AOC1-4) and catalyzing the oxidation of primary amines to aldehydes, regulate many biological processes and are linked to various diseases including inflammatory conditions and histamine intolerance. Despite the known differences in their substrate preferences, CAOs are currently classified based on their preference for either primary monoamines (EC 1.4.3.21) or diamines (EC 1.4.3.22). Here, we present the first extensive phylogenetic study of CAOs that, combined with structural analyses of the CAO active sites, provides in-depth knowledge of their relationships and guidelines for classification of mammalian CAOs into AOC1-4 sub-families. The phylogenetic results show that CAOs can be classified based on two residues, X1 and X2, from the active site motif: T/S-X1-X2-N-Y-D. Residue X2 discriminates among the AOC1 (Tyr), AOC2 (Gly), and AOC3/AOC4 (Leu) proteins, while residue X1 further classifies the AOC3 (Leu) and AOC4 (Met) proteins that so far have been poorly identified and annotated. Residues X1 and X2 conserved within each sub-family and located in the catalytic site seem to be the key determinants for the unique substrate preference of each CAO sub-family. Furthermore, one residue located at 10 Å distance from the catalytic site is different between the sub-families but highly conserved within each sub-family (Asp in AOC1, His in AOC2, Thr in AOC3 and Asn in AOC4) and likely contributes to substrate selectivity. Altogether, our results will benefit the design of new sub-family specific inhibitors and the design of in vitro tests to detect individual CAO levels for diagnostic purposes.
Collapse
Affiliation(s)
- Leonor Lopes de Carvalho
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eva Bligt-Lindén
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Arunachalam Ramaiah
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627412, India
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
27
|
Ohkubo S, Mancinelli R, Miglietta S, Cona A, Angelini R, Canettieri G, Spandidos DA, Gaudio E, Agostinelli E. Maize polyamine oxidase in the presence of spermine/spermidine induces the apoptosis of LoVo human colon adenocarcinoma cells. Int J Oncol 2019; 54:2080-2094. [PMID: 31081059 PMCID: PMC6521933 DOI: 10.3892/ijo.2019.4780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Amine oxidases, which contribute to the regulation of polyamine levels, catalyze the oxidative deamination of polyamines to generate H2O2 and aldehyde(s). In this study, and at least to the best of our knowledge, maize polyamine oxidase (ZmPAO) was used for the first time with the aim of identifying a novel strategy for cancer therapy. The cytotoxicity and the mechanisms of cell death induced by the enzymatic oxidation products of polyamine generated by ZmPAO were investigated. Exogenous spermine and ZmPAO treatment decreased cell viability in a spermine dose‑ and time‑dependent manner, particularly, the viability of the multidrug‑resistant (MDR) colon adenocarcinoma cells, LoVo DX, when compared with drug‑sensitive ones (LoVo WT). Further analyses revealed that H2O2 derived from spermine was mainly responsible for the cytotoxicity. Flow cytometric analysis revealed that treatment with ZmPAO and spermine increased the apoptotic population of LoVo WT and LoVo DX cells. In addition, we found that treatment with ZmPAO and spermine markedly reduced mitochondrial membrane potential in the LoVo DX cells, in agreement with the results of cell viability and apoptosis assays. Transmission electron microscopic observations supported the involvement of mitochondrial depolarization in the apoptotic process. Therefore, the dysregulation of polyamine metabolism in tumor cells may be a potential therapeutic target. In addition, the development of MDR tumor cells is recognized as a major obstacle in cancer therapy. Therefore, the design of a novel therapeutic strategy based on the use of this combination may be taken into account, making this approach attractive mainly in treating MDR cancer patients.
Collapse
Affiliation(s)
- Shinji Ohkubo
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, I-00185 Rome
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, I-00161 Rome
| | - Selenia Miglietta
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, I-00161 Rome
| | | | | | - Gianluca Canettieri
- Pasteur Laboratory, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, University of Crete School of Medicine, Heraklion 71003, Greece
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, I-00161 Rome
| | - Enzo Agostinelli
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, I-00185 Rome
- International Polyamines Foundation - ONLUS, I-00159 Rome, Italy
| |
Collapse
|
28
|
Zhang R, Qin Y, Zhang L, Luo S. Mechanistic Studies on Bioinspired Aerobic C-H Oxidation of Amines with an ortho-Quinone Catalyst. J Org Chem 2019; 84:2542-2555. [PMID: 30753779 DOI: 10.1021/acs.joc.8b02948] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein our mechanistic studies of the ortho-quinone-catalyzed aerobic oxidation of primary, secondary, and tertiary amines. Two different catalytic pathways were discovered for the reductive half reactions: for primary amines, the reaction was found to proceed via a transamination pathway, while the reactions with secondary amines and tertiary amines proceeded via hydride transfer. We also found that the amine substrates could significantly promote the regeneration of the ortho-quinone catalyst in the oxidative half reaction, in which a proton transfer occurs between the amine substrates and catechol derivatives (the reduced form of the ortho-quinone catalyst).
Collapse
Affiliation(s)
- Ruipu Zhang
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , The Chinese Academy of Sciences and University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Qin
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , The Chinese Academy of Sciences and University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Long Zhang
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , The Chinese Academy of Sciences and University of Chinese Academy of Sciences , Beijing 100049 , China.,Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| | - Sanzhong Luo
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry , The Chinese Academy of Sciences and University of Chinese Academy of Sciences , Beijing 100049 , China.,Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| |
Collapse
|
29
|
Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines. Nat Commun 2019; 10:413. [PMID: 30679427 PMCID: PMC6345859 DOI: 10.1038/s41467-018-08280-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/28/2018] [Indexed: 01/26/2023] Open
Abstract
Although cyclic imines are present in various bioactive secondary metabolites, their degradative metabolism remains unknown. Here, we report that copper amine oxidases, which are important in metabolism of primary amines, catalyze a cyclic imine cleavage reaction. We isolate a microorganism (Arthrobacter sp. C-4A) which metabolizes a β-carboline alkaloid, harmaline. The harmaline-metabolizing enzyme (HarA) purified from strain C-4A is found to be copper amine oxidase and catalyze a ring-opening reaction of cyclic imine within harmaline, besides oxidative deamination of amines. Growth experiments on strain C-4A and Western blot analysis indicate that the HarA expression is induced by harmaline. We propose a reaction mechanism of the cyclic imine cleavage by HarA containing a post-translationally-synthesized cofactor, topaquinone. Together with the above results, the finding of the same activity of copper amine oxidase from E. coli suggests that, in many living organisms, these enzymes may play crucial roles in metabolism of ubiquitous cyclic imines.
Collapse
|
30
|
Takeda K, Umezawa K, Várnai A, Eijsink VG, Igarashi K, Yoshida M, Nakamura N. Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis. Curr Opin Chem Biol 2018; 49:113-121. [PMID: 30580186 DOI: 10.1016/j.cbpa.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
In 2014, the first fungal pyrroloquinoline-quinone (PQQ)-dependent enzyme was discovered as a pyranose dehydrogenase from the basidiomycete Coprinopsis cinerea (CcPDH). This discovery laid the foundation for a new Auxiliary Activities (AA) family, AA12, in the Carbohydrate-Active enZymes (CAZy) database and revealed a novel enzymatic activity potentially involved in biomass conversion. This review summarizes recent progress made in research on this fungal oxidoreductase and related enzymes. CcPDH consists of the catalytic PQQ-binding AA12 domain, an N-terminal cytochrome b AA8 domain, and a C-terminal family 1 carbohydrate-binding module (CBM1). CcPDH oxidizes 2-keto-d-glucose (d-glucosone), l-fucose, and rare sugars such as d-arabinose and l-galactose, and can activate lytic polysaccharide monooxygenases (LPMOs). Bioinformatic studies suggest a widespread occurrence of quinoproteins in eukaryotes as well as prokaryotes.
Collapse
Affiliation(s)
- Kouta Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kiwamu Umezawa
- Department of Applied Biological Chemistry, Kindai University, Nara 631-8505, Japan
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Vincent Gh Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
31
|
Yukl ET, Davidson VL. Diversity of structures, catalytic mechanisms and processes of cofactor biosynthesis of tryptophylquinone-bearing enzymes. Arch Biochem Biophys 2018; 654:40-46. [PMID: 30026025 PMCID: PMC6098718 DOI: 10.1016/j.abb.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
Tryptophyquinone-bearing enzymes contain protein-derived cofactors formed by posttranslational modifications of Trp residues. Tryptophan tryptophylquinone (TTQ) is comprised of a di-oxygenated Trp residue, which is cross-linked to another Trp residue. Cysteine tryptophylquinone (CTQ) is comprised of a di-oxygenated Trp residue, which is cross-linked to a Cys residue. Despite the similarity of these cofactors, it has become evident in recent years that the overall structures of the enzymes that possess these cofactors vary, and that the gene clusters that encode the enzymes are quite diverse. While it had been long assumed that all tryptophylquinone enzymes were dehydrogenases, recently discovered classes of these enzymes are oxidases. A common feature of enzymes that have these cofactors is that the posttranslational modifications that form the mature cofactors are catalyzed by a modifying enzyme. However, it is now clear that modifying enzymes are different for different tryptophylquinone enzymes. For methylamine dehydrogenase a di-heme enzyme, MauG, is needed to catalyze TTQ biosynthesis. However, no gene similar to mauG is present in the gene clusters that encode the other enzymes, and the recently characterized family of CTQ-dependent oxidases, termed LodA-like proteins, require a flavoenzyme for cofactor biosynthesis.
Collapse
Affiliation(s)
- Erik T Yukl
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
32
|
|
33
|
Davidson VL. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions. Biochemistry 2018; 57:3115-3125. [PMID: 29498828 DOI: 10.1021/acs.biochem.8b00123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A protein-derived cofactor is a catalytic or redox-active site in a protein that is formed by post-translational modification of one or more amino acid residues. These post-translational modifications are irreversible and endow the modified amino acid residues with new functional properties. This Perspective focuses on the following advances in this area that have occurred during recent years. The biosynthesis of the tryptophan tryptophylquinone cofactor is catalyzed by a diheme enzyme, MauG. A bis-FeIV redox state of the hemes performs three two-electron oxidations of specific Trp residues via long-range electron transfer. In contrast, a flavoenzyme catalyzes the biosynthesis of the cysteine tryptophylquinone (CTQ) cofactor present in a newly discovered family of CTQ-dependent oxidases. Another carbonyl cofactor, the pyruvoyl cofactor found in classes of decarboxylases and reductases, is formed during an apparently autocatalytic cleavage of a precursor protein at the N-terminus of the cleavage product. It has been shown that in at least some cases, the cleavage is facilitated by binding to an accessory protein. Tyrosylquinonine cofactors, topaquinone and lysine tyrosylquinone, are found in copper-containing amine oxidases and lysyl oxidases, respectively. The physiological roles of different families of these enzymes in humans have been more clearly defined and shown to have significant implications with respect to human health. There has also been continued characterization of the roles of covalently cross-linked amino acid side chains that influence the reactivity of redox-active metal centers in proteins. These include Cys-Tyr species in galactose oxidase and cysteine dioxygenase and the Met-Tyr-Trp species in the catalase-peroxidase KatG.
Collapse
Affiliation(s)
- Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , Florida 32827 , United States
| |
Collapse
|
34
|
Zhang N, Zoltner M, Leung KF, Scullion P, Hutchinson S, del Pino RC, Vincent IM, Zhang YK, Freund YR, Alley MRK, Jacobs RT, Read KD, Barrett MP, Horn D, Field MC. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog 2018; 14:e1006850. [PMID: 29425238 PMCID: PMC5823473 DOI: 10.1371/journal.ppat.1006850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. Human African Trypanomiasis (HAT) is among a list of Neglected Tropical Diseases (NTDs) that impose devastating burdens on both public health and economy of some of the most unprivileged societies across the world. To secure the long-term global control of the disease, it is critical to understand the mechanisms underlying the interactions of drugs and drug candidates with the causative agents as well as resistance potentially arising from use of the compounds. We demonstrated here a metabolic enzymatic cascade dependent on a host-pathogen interaction that determines potency against T. brucei of a series of benzoxaborole compounds. More importantly, this pathway represents a metabolic interaction network between host and pathogen, illuminating an important perspective on understanding mechanism of action.
Collapse
Affiliation(s)
- Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Zoltner
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Scullion
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sebastian Hutchinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ricardo C. del Pino
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yong-Kang Zhang
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Yvonne R. Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael R. K. Alley
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Robert T. Jacobs
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Andreo-Vidal A, Mamounis KJ, Sehanobish E, Avalos D, Campillo-Brocal JC, Sanchez-Amat A, Yukl ET, Davidson VL. Structure and Enzymatic Properties of an Unusual Cysteine Tryptophylquinone-Dependent Glycine Oxidase from Pseudoalteromonas luteoviolacea. Biochemistry 2018; 57:1155-1165. [PMID: 29381339 DOI: 10.1021/acs.biochem.8b00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine oxidase from Pseudoalteromonas luteoviolacea (PlGoxA) is a cysteine tryptophylquinone (CTQ)-dependent enzyme. Sequence analysis and phylogenetic analysis place it in a newly designated subgroup (group IID) of a recently identified family of LodA-like proteins, which are predicted to possess CTQ. The crystal structure of PlGoxA reveals that it is a homotetramer. It possesses an N-terminal domain with no close structural homologues in the Protein Data Bank. The active site is quite small because of intersubunit interactions, which may account for the observed cooperativy toward glycine. Steady-state kinetic analysis yielded the following values: kcat = 6.0 ± 0.2 s-1, K0.5 = 187 ± 18 μM, and h = 1.77 ± 0.27. In contrast to other quinoprotein amine dehydrogenases and oxidases that exhibit anomalously large primary kinetic isotope effects on the rate of reduction of the quinone cofactor by the amine substrate, no significant primary kinetic isotope effect was observed for this reaction of PlGoxA. The absorbance spectrum of glycine-reduced PlGoxA exhibits features in the range of 400-650 nm that have not previously been seen in other quinoproteins. Thus, in addition to the unusual structural features of PlGoxA, the kinetic and chemical reaction mechanisms of the reductive half-reaction of PlGoxA appear to be distinct from those of other amine dehydrogenases and amine oxidases that use tryptophylquinone and tyrosylquinone cofactors.
Collapse
Affiliation(s)
- Andres Andreo-Vidal
- Department of Genetics and Microbiology, University of Murcia , Murcia 30100, Spain
| | - Kyle J Mamounis
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | - Esha Sehanobish
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | - Dante Avalos
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | | | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia , Murcia 30100, Spain
| | - Erik T Yukl
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| |
Collapse
|
36
|
Zhang R, Qin Y, Zhang L, Luo S. Oxidative Synthesis of Benzimidazoles, Quinoxalines, and Benzoxazoles from Primary Amines by ortho-Quinone Catalysis. Org Lett 2017; 19:5629-5632. [DOI: 10.1021/acs.orglett.7b02786] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ruipu Zhang
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qin
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhang
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanzhong Luo
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Barek H, Evans J, Sugumaran M. Unraveling complex molecular transformations of N-β-alanyldopamine that account for brown coloration of insect cuticle. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1363-1373. [PMID: 28557057 DOI: 10.1002/rcm.7914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE N-β-Alanyldopamine (NBAD) and N-acetyldopamine (NADA) are catecholamines that are used by insects as sclerotizing precursors to harden their cuticle. They share a common pathway utilizing the same set of sclerotizing enzymes. Yet, cuticles using NBAD are brown, while cuticles using NADA are colorless. To identify the cause of this major unresolved color difference, molecular transformations of NBAD with cuticular enzymes were investigated. METHODS Reactions of NBAD and NADA with native cuticle isolated from the wandering stages of Sarcophaga bullata larvae as well as the reactions of NBAD with cuticular sclerotization enzymes - phenoloxidase, quinone isomerase and quinone methide isomerase - were investigated using UV-Vis spectroscopy, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). In addition, the reactivity of enzymatically generated NBAD quinone was investigated by MS. RESULTS Reactions of NBAD with sclerotizing enzymes isolated from Sarcophaga bullata larvae generate colorless products such as N-β-alanylnorepinephrine, N-β-alanylarterenone, dehydro NBAD, the benzodioxan dimers of dehydro NBAD and other minor adducts, the same kind of compounds generated by NADA reaction with cuticular enzymes. However, oxidation of NBAD produces colored quinone adducts, in addition. NADA, which lacks the amino group, did not produce these quinone adducts. CONCLUSIONS LC/MS analysis of the reaction mixture of NBAD-cuticular enzyme reactions reveals the novel production of colored quinone adducts that are not possible for NADA. Therefore, our results suggest that the brown coloration of cuticle formed through NBAD crosslinking is likely due to the formation and accumulation of NBAD quinone and its adducts, while NADA quinone adducts tend not to form during NADA crosslinking, producing a nearly colorless cuticle.
Collapse
Affiliation(s)
- Hanine Barek
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jason Evans
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
38
|
Houen G. Mammalian Cu-containing amine oxidases (CAOs): New methods of analysis, structural relationships, and possible functions. APMIS 2017; 107:5-46. [DOI: 10.1111/apm.1999.107.s96.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Gillet N, Lévy B, Moliner V, Demachy I, de la Lande A. Theoretical estimation of redox potential of biological quinone cofactors. J Comput Chem 2017; 38:1612-1621. [PMID: 28470751 DOI: 10.1002/jcc.24802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/10/2022]
Abstract
Redox potentials are essential to understand biological cofactor reactivity and to predict their behavior in biological media. Experimental determination of redox potential in biological system is often difficult due to complexity of biological media but computational approaches can be used to estimate them. Nevertheless, the quality of the computational methodology remains a key issue to validate the results. Instead of looking to the best absolute results, we present here the calibration of theoretical redox potential for quinone derivatives in water coupling QM + MM or QM/MM scheme. Our approach allows using low computational cost theoretical level, ideal for long simulations in biological systems, and determination of the uncertainties linked to the calculations. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natacha Gillet
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France.,Departament de Química Física i Analítica, Universitat Jaume I, Castellón, 12071, Spain
| | - Bernard Lévy
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, Castellón, 12071, Spain.,Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Isabelle Demachy
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| | - Aurélien de la Lande
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| |
Collapse
|
40
|
Largeron M, Fleury MB. A Bioinspired Organocatalytic Cascade for the Selective Oxidation of Amines under Air. Chemistry 2017; 23:6763-6767. [DOI: 10.1002/chem.201701402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Martine Largeron
- UMR 8638 CNRS-Université Paris Descartes (Paris 5); Sorbonne Paris Cité; Faculté de Pharmacie de Paris; 4 avenue de l'Observatoire 75270 Paris cedex 06 France
| | - Maurice-Bernard Fleury
- UMR 8638 CNRS-Université Paris Descartes (Paris 5); Sorbonne Paris Cité; Faculté de Pharmacie de Paris; 4 avenue de l'Observatoire 75270 Paris cedex 06 France
| |
Collapse
|
41
|
Amani M, Barzegar A, Mazani M. Osmolytic Effect of Sucrose on Thermal Denaturation of Pea Seedling Copper Amine Oxidase. Protein J 2017; 36:147-153. [PMID: 28315108 DOI: 10.1007/s10930-017-9706-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Protein stability is a subject of interest by many researchers. One of the common methods to increase the protein stability is using the osmolytes. Many studies and theories analyzed and explained osmolytic effect by equilibrium thermodynamic while most proteins undergo an irreversible denaturation. In current study we investigated the effect of sucrose as an osmolyte on the thermal denaturation of pea seedlings amine oxidase by the enzyme activity, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry. All experiments are in agreement that pea seedlings amine oxidase denaturation is controlled kinetically and its kinetic stability is increased in presence of sucrose. Differential scanning calorimetry experiments at different scanning rates showed that pea seedlings amine oxidase unfolding obeys two-state irreversible model. Fitting the differential scanning calorimetry data to two-state irreversible model showed that unfolding enthalpy and T *, temperature at which rate constant equals unit per minute, are increased while activation energy is not affected by increase in sucrose concentration. We concluded that osmolytes decrease the molecular oscillation of irreversible proteins which leads to decline in unfolding rate constant.
Collapse
Affiliation(s)
- Mojtaba Amani
- Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences (ArUMS), Daneshgah Street, Ardabil, 5618985991, Iran.
| | - Aboozar Barzegar
- Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences (ArUMS), Daneshgah Street, Ardabil, 5618985991, Iran
| | - Mohammad Mazani
- Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences (ArUMS), Daneshgah Street, Ardabil, 5618985991, Iran
| |
Collapse
|
42
|
Williamson HR, Sehanobish E, Shiller AM, Sanchez-Amat A, Davidson VL. Roles of Copper and a Conserved Aspartic Acid in the Autocatalytic Hydroxylation of a Specific Tryptophan Residue during Cysteine Tryptophylquinone Biogenesis. Biochemistry 2017; 56:997-1004. [PMID: 28140566 DOI: 10.1021/acs.biochem.6b01137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first posttranslational modification step in the biosynthesis of the tryptophan-derived quinone cofactors is the autocatalytic hydroxylation of a specific Trp residue at position C-7 on the indole side chain. Subsequent modifications are catalyzed by modifying enzymes, but the mechanism by which this first step occurs is unknown. LodA possesses a cysteine tryptophylquinone (CTQ) cofactor. Metal analysis as well as spectroscopic and kinetic studies of the mature and precursor forms of a D512A LodA variant provides evidence that copper is required for the initial hydroxylation of the precursor protein and that if alternative metals are bound, the modification does not occur and the precursor is unstable. It is shown that the mature native LodA also contains loosely bound copper, which affects the visible absorbance spectrum and quenches the fluorescence spectrum that is attributed to the mature CTQ cofactor. When copper is removed, the fluorescence appears, and when it is added back to the protein, the fluorescence is quenched, indicating that copper reversibly binds in the proximity of CTQ. Removal of copper does not diminish the enzymatic activity of LodA. This distinguishes LodA from enzymes with protein-derived tyrosylquinone cofactors in which copper is present near the cofactor and is absolutely required for activity. Mechanisms are proposed for the role of copper in the hydroxylation of the unactivated Trp side chain. These results demonstrate that the reason that the highly conserved Asp512 is critical for LodA, and possibly all tryptophylquinone enzymes, is not because it is required for catalysis but because it is necessary for CTQ biosynthesis, more specifically to facilitate the initial copper-dependent hydroxylation of a specific Trp residue.
Collapse
Affiliation(s)
- Heather R Williamson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | - Esha Sehanobish
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | - Alan M Shiller
- Division of Marine Science, The University of Southern Mississippi, Stennis Space Center , Mississippi 39529, United States
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia , Murcia 30100, Spain
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| |
Collapse
|
43
|
Largeron M. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications. Org Biomol Chem 2017; 15:4722-4730. [DOI: 10.1039/c7ob00507e] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, chemists have developed aerobic quinone-based catalytic systems in order to reproduce enzymatic activity and selectivity of copper amine oxidases but also to expand the scope of amine substrates.
Collapse
Affiliation(s)
- Martine Largeron
- UMR 8638 CNRS-Université Paris Descartes
- Sorbonne Paris Cité
- Faculté de Pharmacie de Paris
- 75270 Paris cedex 06
- France
| |
Collapse
|
44
|
Cervelli M, Leonetti A, Cervoni L, Ohkubo S, Xhani M, Stano P, Federico R, Polticelli F, Mariottini P, Agostinelli E. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase. Amino Acids 2016; 48:2283-91. [PMID: 27295021 DOI: 10.1007/s00726-016-2273-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process.
Collapse
Affiliation(s)
- Manuela Cervelli
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Alessia Leonetti
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Laura Cervoni
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Shinji Ohkubo
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marla Xhani
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pasquale Stano
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Rodolfo Federico
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146, Rome, Italy
| | - Paolo Mariottini
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
45
|
Sugumaran M. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis. Int J Mol Sci 2016; 17:ijms17091576. [PMID: 27657049 PMCID: PMC5037842 DOI: 10.3390/ijms17091576] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Melanin is an important biopolymeric pigment produced in a vast majority of organisms. Tyrosine and its hydroxylated product, dopa, form the starting material for melanin biosynthesis. Earlier studies by Raper and Mason resulted in the identification of dopachrome and dihydroxyindoles as important intermediates and paved way for the establishment of well-known Raper-Mason pathway for the biogenesis of brown to black eumelanins. Tyrosinase catalyzes the oxidation of tyrosine as well as dopa to dopaquinone. Dopaquinone thus formed, undergoes intramolecular cyclization to form leucochrome, which is further oxidized to dopachrome. Dopachrome is either converted into 5,6-dihydroxyindole by decarboxylative aromatization or isomerized into 5,6-dihydroxyindole-2-carboxylic acid. Oxidative polymerization of these two dihydroxyindoles eventually produces eumelanin pigments via melanochrome. While the role of quinones in the biosynthetic pathway is very well acknowledged, that of isomeric quinone methides, however, remained marginalized. This review article summarizes the key role of quinone methides during the oxidative transformation of a vast array of catecholamine derivatives and brings out the importance of these transient reactive species during the melanogenic process. In addition, possible reactions of quinone methides at various stages of melanogenesis are discussed.
Collapse
Affiliation(s)
- Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
46
|
Characterization of Quinohemoprotein Amine Dehydrogenase from Pseudomonas putida. Biosci Biotechnol Biochem 2016; 62:469-78. [PMID: 27315927 DOI: 10.1271/bbb.62.469] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quinohemoprotein amine dehydrogenase (AMDH) was purified and crystallized from the soluble fraction of Pseudomonas putida IFO 15366 grown on n-butylamine medium. AMDH gave a single component in analytical ultracentrifugation showing an intrinsic sedimentation coefficient of 5.8s. AMDH showed a typical absorption spectrum of cytochrome c showing maxima at 554, 522, 420, and 320 nm in the reduced form and one peak at 410 nm, a shoulder at 350 nm, and a broad hill around 530 nm in the oxidized form. The oxidized enzyme was specifically reduced by the addition of amine substrate. AMDH was composed of three different subunits, 60, 40, and 20 kDa, with the total molecular weight of 120,000. Two moles of heme c were detected per mole of AMDH and the 60-kDa subunit was found to be the heme c-carrying subunit. By redox-cycling quinone staining, a positive reaction band corresponding to the 20-kDa subunit was detected after developed by SDS-PAGE, but the 20 kDa band was scarcely stained by conventional protein staining. Only a silver staining method was possible to detect the subunit after the protein was developed by SDS-PAGE. p-Nitrophenylhydrazine-inhibited AMDH was dissociated into subunits and the 20-kDa subunit showed an absorption maximum at 455 nm, indicating Schiff base formation between the carbonyl cofactor in AMDH and the carbonyl reagent. Thus, AMDH is different from nonheme quinoprotein methylamine dehydrogenase and aromatic amine dehydrogenase in many respects. The presence of an azurin-like blue protein was identified and purified from the same cell-free extract of P. putida as AMDH was purified. The blue protein was reduced specifically during AMDH reaction, suggesting that the blue protein is the direct electron acceptor in amine oxidation. The amine oxidation system was reconstituted successfully only by AMDH, the blue protein, and the cytoplasmic membranes of the organism. The function of the 40-kDa subunit is unknown at the moment. The properties of AMDH were compared with other bacterial amine dehydrogenases so far reported.
Collapse
|
47
|
Abstract
CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs.
Collapse
|
48
|
Sehanobish E, Campillo-Brocal JC, Williamson HR, Sanchez-Amat A, Davidson VL. Interaction of GoxA with Its Modifying Enzyme and Its Subunit Assembly Are Dependent on the Extent of Cysteine Tryptophylquinone Biosynthesis. Biochemistry 2016; 55:2305-8. [PMID: 27064961 DOI: 10.1021/acs.biochem.6b00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GoxA is a glycine oxidase bearing a protein-derived cysteine tryptophylquinone (CTQ) cofactor that is formed by posttranslational modifications catalyzed by a flavoprotein, GoxB. Two forms of GoxA were isolated: an active form with mature CTQ and an inactive precursor protein that lacked CTQ. The active GoxA was present as a homodimer with no detectable affinity for GoxB, whereas the precursor was isolated as a monomer in a tight complex with one GoxB. Thus, the interaction of GoxA with GoxB and subunit assembly of mature GoxA are each dependent on the extent of CTQ biosynthesis.
Collapse
Affiliation(s)
- Esha Sehanobish
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | | | - Heather R Williamson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia , Murcia 30100, Spain
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| |
Collapse
|
49
|
Mirshafian R, Wei W, Israelachvili JN, Waite JH. α,β-Dehydro-Dopa: A Hidden Participant in Mussel Adhesion. Biochemistry 2016; 55:743-50. [PMID: 26745013 DOI: 10.1021/acs.biochem.5b01177] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopa (l-3,4-dihydroxyphenylalanine) is a key chemical signature of mussel adhesive proteins, but its susceptibility to oxidation has limited mechanistic investigations as well as practical translation to wet adhesion technology. To investigate peptidyl-Dopa oxidation, the highly diverse chemical environment of Dopa in mussel adhesive proteins was simplified to a peptidyl-Dopa analogue, N-acetyl-Dopa ethyl ester. On the basis of cyclic voltammetry and UV-vis spectroscopy, the Dopa oxidation product at neutral to alkaline pH was shown to be α,β-dehydro-Dopa (ΔD), a vinylcatecholic tautomer of Dopa-quinone. ΔD exhibited an adsorption capacity on TiO2 20-fold higher than that of the Dopa homologue in the quartz crystal microbalance. Cyclic voltammetry confirmed the spontaneity of ΔD formation in mussel foot protein 3F at neutral pH that is coupled to a change in protein secondary structure from random coil to β-sheet. A more complete characterization of ΔD reactivity adds a significant new perspective to mussel adhesive chemistry and the design of synthetic bioinspired adhesives.
Collapse
Affiliation(s)
- Razieh Mirshafian
- Marine Science Institute, University of California , Santa Barbara, California 93106, United States
| | - Wei Wei
- Marine Science Institute, University of California , Santa Barbara, California 93106, United States
| | - Jacob N Israelachvili
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - J Herbert Waite
- Marine Science Institute, University of California , Santa Barbara, California 93106, United States.,Department of Molecular, Cell & Developmental Biology, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
50
|
Murray AT, King R, Donnelly JVG, Dowley MJH, Tuna F, Sells D, John MP, Carbery DR. Symbiotic Transition-Metal and Organocatalysis for Catalytic Ambient Amine Oxidation and Alkene Reduction Reactions. ChemCatChem 2015. [DOI: 10.1002/cctc.201501153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Rose King
- Department of Chemistry; University of Bath; Claverton Down Bath BA2 7AY UK
| | | | - Myles J. H. Dowley
- Department of Chemistry; University of Bath; Claverton Down Bath BA2 7AY UK
| | - Floriana Tuna
- EPSRC National EPR Facility; Alan Turing Building; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Daniel Sells
- EPSRC National EPR Facility; Alan Turing Building; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Matthew P. John
- GlaxoSmithKline Research and Development; Gunnels Wood Road Stevenage SG1 2NY UK
| | - David R. Carbery
- Department of Chemistry; University of Bath; Claverton Down Bath BA2 7AY UK
| |
Collapse
|