1
|
Zimmermann HB, Macintosh BR, Pupo JD. The Relationship Between Length and Active Force for Submaximal Skeletal Muscle Contractions: a Review. Sports Med 2025; 55:37-47. [PMID: 39543073 DOI: 10.1007/s40279-024-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
The force-length relationship is usually obtained for isometric contractions with maximal activation, but less is known about how sarcomere length affects force during submaximal activation. During submaximal activation, length-dependent alterations in calcium sensitivity, owing to changes in cross-bridge kinetics (rate of attachment and/or detachment), result in an activation-dependent shift in optimal length to longer sarcomere lengths. It is known that sarcomere length, as well as temperature and phosphorylation of the regulatory light chains of myosin, can modify Ca2⁺ sensitivity by altering the probability of cross-bridge interaction. This altered calcium sensitivity is particularly important for submaximal force levels, as it can change the shape of the length dependence of force, with peak force occurring at sarcomere lengths longer than those associated with maximal filament overlap. In athletic contexts, contractions typically do not reach maximal intensity. Therefore, understanding that the ability to produce force under both maximal and submaximal conditions can differ, and that peak force can be generated at different lengths, could influence the development of targeted training regimens optimal for each sport.
Collapse
Affiliation(s)
- Haiko Bruno Zimmermann
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Brian R Macintosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Juliano Dal Pupo
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
2
|
Cass JA, Williams CD, Irving TC, Lauga E, Malingen S, Daniel TL, Sponberg SN. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. Biophys J 2021; 120:4079-4090. [PMID: 34384761 DOI: 10.1016/j.bpj.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
During muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction. If the lattice is isovolumetric, it must expand when the muscle shortens. If, however, the spacing is constant or has a different pattern of axial and radial motion, then the lattice changes volume during contraction, driving fluid motion and assisting in the transport of molecules between the contractile lattice and the surrounding intracellular space. We first create an advective-diffusive-reaction flow model and show that the flow into and out of the sarcomere lattice would be significant in the absence of lattice expansion. Advective transport coupled to diffusion has the potential to substantially enhance metabolite exchange within the crowded sarcomere. Using time-resolved x-ray diffraction of contracting muscle, we next show that the contractile lattice is neither isovolumetric nor constant in spacing. Instead, lattice spacing is time varying, depends on activation, and can manifest as an effective time-varying Poisson ratio. The resulting fluid flow in the sarcomere lattice of synchronous insect flight muscles is even greater than expected for constant lattice spacing conditions. Lattice spacing depends on a variety of factors that produce radial force, including cross-bridges, titin-like molecules, and other structural proteins. Volume change and advective transport varies with the phase of muscle stimulation during periodic contraction but remains significant at all conditions. Although varying in magnitude, advective transport will occur in all cases in which the sarcomere is not isovolumetric. Akin to "breathing," advective-diffusive transport in sarcomeres is sufficient to promote metabolite exchange and may play a role in the regulation of contraction itself.
Collapse
Affiliation(s)
- Julie A Cass
- Allen Institute for Cell Science, Seattle, Washington; Department of Biology, University of Washington, Seattle, Washington
| | - C David Williams
- Department of Biology, University of Washington, Seattle, Washington; Applied ML Group, Microsoft CSE, Redmond, Washington
| | - Thomas C Irving
- BioCAT and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Sage Malingen
- Department of Biology, University of Washington, Seattle, Washington
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington.
| | - Simon N Sponberg
- School of Physics & School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
3
|
Effect of Active Lengthening and Shortening on Small-Angle X-ray Reflections in Skinned Skeletal Muscle Fibres. Int J Mol Sci 2021; 22:ijms22168526. [PMID: 34445232 PMCID: PMC8395229 DOI: 10.3390/ijms22168526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
Our purpose was to use small-angle X-ray diffraction to investigate the structural changes within sarcomeres at steady-state isometric contraction following active lengthening and shortening, compared to purely isometric contractions performed at the same final lengths. We examined force, stiffness, and the 1,0 and 1,1 equatorial and M3 and M6 meridional reflections in skinned rabbit psoas bundles, at steady-state isometric contraction following active lengthening to a sarcomere length of 3.0 µm (15.4% initial bundle length at 7.7% bundle length/s), and active shortening to a sarcomere length of 2.6 µm (15.4% bundle length at 7.7% bundle length/s), and during purely isometric reference contractions at the corresponding sarcomere lengths. Compared to the reference contraction, the isometric contraction after active lengthening was associated with an increase in force (i.e., residual force enhancement) and M3 spacing, no change in stiffness and the intensity ratio I1,1/I1,0, and decreased lattice spacing and M3 intensity. Compared to the reference contraction, the isometric contraction after active shortening resulted in decreased force, stiffness, I1,1/I1,0, M3 and M6 spacings, and M3 intensity. This suggests that residual force enhancement is achieved without an increase in the proportion of attached cross-bridges, and that force depression is accompanied by a decrease in the proportion of attached cross-bridges. Furthermore, the steady-state isometric contraction following active lengthening and shortening is accompanied by an increase in cross-bridge dispersion and/or a change in the cross-bridge conformation compared to the reference contractions.
Collapse
|
4
|
Malingen SA, Hood K, Lauga E, Hosoi A, Daniel TL. Fluid flow in the sarcomere. Arch Biochem Biophys 2021; 706:108923. [PMID: 34029559 DOI: 10.1016/j.abb.2021.108923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention. It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis used analytical models of fluid flow in the molecular machinery that could not capture its full complexity. By building a finite element model of the sarcomere, we estimate the explicit flow field, and contrast it with analytical models. Our results demonstrate that viscous drag forces on sliding filaments are surprisingly small in contrast to the forces generated by single myosin molecular motors. This model also indicates that the energetic cost of fluid flow through viscous shearing with lattice proteins is likely minimal. The model also highlights a steep velocity gradient between sliding filaments and demonstrates that the maximal radial fluid velocity occurs near the tips of the filaments. To our knowledge, this is the first computational analysis of fluid flow within the highly structured sarcomere.
Collapse
Affiliation(s)
- Sage A Malingen
- Department of Biology, University of Washington, Seattle, WA 98195, United States.
| | - Kaitlyn Hood
- Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02138, United States
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Anette Hosoi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02138, United States
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
5
|
Powers JD, Malingen SA, Regnier M, Daniel TL. The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research. Annu Rev Biophys 2021; 50:373-400. [PMID: 33637009 DOI: 10.1146/annurev-biophys-110320-062613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sage A Malingen
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| |
Collapse
|
6
|
Fouré A, Gondin J. Skeletal Muscle Damage Produced by Electrically Evoked Muscle Contractions. Exerc Sport Sci Rev 2021; 49:59-65. [PMID: 33122596 DOI: 10.1249/jes.0000000000000239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the physiological/mechanical mechanisms leading to skeletal muscle damage remains one of the challenges in muscle physiology. This review presents the functional, structural, and cellular consequences of electrically evoked submaximal isometric contractions that can elicit severe and localized skeletal muscle damage. Hypotheses related to underlying physiological and mechanical processes involved in severe and localized muscle damage also are discussed.
Collapse
Affiliation(s)
- Alexandre Fouré
- Inter-university Laboratory of Human Mouvement Biology (LIBM), University of Lyon, UCBL-Lyon1, EA 7424, Villeurbanne, France
| | - Julien Gondin
- NeuroMyoGene Institute, Univ Lyon, CNRS 5310, INSERM U1217, UCBL 1, Lyon, France
| |
Collapse
|
7
|
Tune TC, Ma W, Irving T, Sponberg S. Nanometer-scale structure differences in the myofilament lattice spacing of two cockroach leg muscles correspond to their different functions. J Exp Biol 2020; 223:jeb212829. [PMID: 32205362 PMCID: PMC7225125 DOI: 10.1242/jeb.212829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/09/2020] [Indexed: 01/21/2023]
Abstract
Muscle is highly organized across multiple length scales. Consequently, small changes in the arrangement of myofilaments can influence macroscopic mechanical function. Two leg muscles of a cockroach have identical innervation, mass, twitch responses, length-tension curves and force-velocity relationships. However, during running, one muscle is dissipative (a 'brake'), while the other dissipates and produces significant positive mechanical work (bifunctional). Using time-resolved X-ray diffraction in intact, contracting muscle, we simultaneously measured the myofilament lattice spacing, packing structure and macroscopic force production of these muscles to test whether structural differences in the myofilament lattice might correspond to the muscles' different mechanical functions. While the packing patterns are the same, one muscle has 1 nm smaller lattice spacing at rest. Under isometric stimulation, the difference in lattice spacing disappeared, consistent with the two muscles' identical steady-state behavior. During periodic contractions, one muscle undergoes a 1 nm greater change in lattice spacing, which correlates with force. This is the first identified structural feature in the myofilament lattice of these two muscles that shares their whole-muscle dynamic differences and quasi-static similarities.
Collapse
Affiliation(s)
- Travis Carver Tune
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Weikang Ma
- Biophysics Collaborative Access Team and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, 60616 USA
| | - Thomas Irving
- Biophysics Collaborative Access Team and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, 60616 USA
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| |
Collapse
|
8
|
Caremani M, Brunello E, Linari M, Fusi L, Irving TC, Gore D, Piazzesi G, Irving M, Lombardi V, Reconditi M. Low temperature traps myosin motors of mammalian muscle in a refractory state that prevents activation. J Gen Physiol 2019; 151:1272-1286. [PMID: 31554652 PMCID: PMC6829559 DOI: 10.1085/jgp.201912424] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
The active force of mammalian skeletal muscle is reduced at low temperatures. Caremani et al. reveal that this is due to the rise of a population of myosin motors captured in a refractory state insensitive to muscle activation. Myosin motors in the thick filament of resting striated (skeletal and cardiac) muscle are trapped in an OFF state, in which the motors are packed in helical tracks on the filament surface, inhibiting their interactions with actin and utilization of ATP. To investigate the structural changes induced in the thick filament of mammalian skeletal muscle by changes in temperature, we collected x-ray diffraction patterns from the fast skeletal muscle extensor digitorum longus of the mouse in the temperature range from near physiological (35°C) to 10°C, in which the maximal isometric force (T0) shows a threefold decrease. In resting muscle, x-ray reflections signaling the OFF state of the thick filament indicate that cooling produces a progressive disruption of the OFF state with motors moving away from the ordered helical tracks on the surface of the thick filament. We find that the number of myosin motors in the OFF state at 10°C is half of that at 35°C. At T0, changes in the x-ray signals that report the fraction and conformation of actin-attached motors can be explained if the threefold decrease in force associated with lowering temperature is due not only to a decrease in the force-generating transition in the actin-attached motors but also to a twofold decrease in the number of such motors. Thus, lowering the temperature reduces to the same extent the fraction of motors in the OFF state at rest and the fraction of motors attached to actin at T0, suggesting that motors that leave the OFF state accumulate in a disordered refractory state that makes them unavailable for interaction with actin upon stimulation. This regulatory effect of temperature on the thick filament of mammalian skeletal muscle could represent an energetically convenient mechanism for hibernating animals.
Collapse
Affiliation(s)
| | | | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Thomas C Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - David Gore
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Massimo Reconditi
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| |
Collapse
|
9
|
Gonzalez-Martinez D, Johnston JR, Landim-Vieira M, Ma W, Antipova O, Awan O, Irving TC, Bryant Chase P, Pinto JR. Structural and functional impact of troponin C-mediated Ca 2+ sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle. J Mol Cell Cardiol 2018; 123:26-37. [PMID: 30138628 DOI: 10.1016/j.yjmcc.2018.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022]
Abstract
Acto-myosin cross-bridge kinetics are important for beat-to-beat regulation of cardiac contractility; however, physiological and pathophysiological mechanisms for regulation of contractile kinetics are incompletely understood. Here we explored whether thin filament-mediated Ca2+ sensitization influences cross-bridge kinetics in permeabilized, osmotically compressed cardiac muscle preparations. We used a murine model of hypertrophic cardiomyopathy (HCM) harboring a cardiac troponin C (cTnC) Ca2+-sensitizing mutation, Ala8Val in the regulatory N-domain. We also treated wild-type murine muscle with bepridil, a cTnC-targeting Ca2+ sensitizer. Our findings suggest that both methods of increasing myofilament Ca2+ sensitivity increase cross-bridge cycling rate measured by the rate of tension redevelopment (kTR); force per cross-bridge was also enhanced as measured by sinusoidal stiffness and I1,1/I1,0 ratio from X-ray diffraction. Computational modeling suggests that Ca2+ sensitization through this cTnC mutation or bepridil accelerates kTR primarily by promoting faster cross-bridge detachment. To elucidate if myofilament structural rearrangements are associated with changes in kTR, we used small angle X-ray diffraction to simultaneously measure myofilament lattice spacing and isometric force during steady-state Ca2+ activations. Within in vivo lattice dimensions, lattice spacing and steady-state isometric force increased significantly at submaximal activation. We conclude that the cTnC N-domain controls force by modulating both the number and rate of cycling cross-bridges, and that the both methods of Ca2+ sensitization may act through stabilization of cTnC's D-helix. Furthermore, we propose that the transient expansion of the myofilament lattice during Ca2+ activation may be an additional factor that could increase the rate of cross-bridge cycling in cardiac muscle. These findings may have implications for the pathophysiology of HCM.
Collapse
Affiliation(s)
- David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Olga Antipova
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Omar Awan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
10
|
Randhawa A, Wakeling JM. Transverse anisotropy in the deformation of the muscle during dynamic contractions. ACTA ACUST UNITED AC 2018; 221:jeb.175794. [PMID: 29844202 DOI: 10.1242/jeb.175794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/24/2018] [Indexed: 11/20/2022]
Abstract
When pennate muscle fibres shorten, the transverse deformation of fibres results in an increase in pennation angle of fascicles (bundles of fibres) and transverse deformation of muscle belly. Transverse shape changes of a muscle can influence force generation. Recent modelling studies predicted asymmetrical transverse deformations in the muscle fascicles in the gastrocnemii. However, these predictions have not been tested experimentally. As muscle is a 3D entity, it is important to explore the structural changes in a 3D perspective to enhance our understanding of the underlying structural mechanisms that have functional implications. The medial and lateral gastrocnemius muscles from 12 subjects were imaged during plantarflexion movements on a dynamometer. The muscle belly was simultaneously scanned from two orthogonal directions using two ultrasound probes. Fascicle deformations were measured from the two orthogonal ultrasound scans to provide 3D information of muscle geometry. Whilst transverse deformations in the medial gastrocnemius were similar from the two directions, the data for the lateral gastrocnemius confirm that transverse anisotropy can occur in the muscle fascicles. As the lateral gastrocnemius fascicle length shortened, the pennation angle increased and the fascicles bulged transversally in one direction (closest to the typical 2D scanning plane) while thinning in the other orthogonal direction. We suggest that the transverse deformation of the muscle fascicles depends on the stiffness of the aponeuroses, properties of connective tissue structures surrounding muscle, and compressive forces both internal and external to the muscle. These results highlight that muscle fascicles do not bulge uniformly and the implications for this behaviour on muscle function remain largely unexplored.
Collapse
Affiliation(s)
- Avleen Randhawa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| |
Collapse
|
11
|
Multidimensional models for predicting muscle structure and fascicle pennation. J Theor Biol 2015; 382:57-63. [DOI: 10.1016/j.jtbi.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 11/24/2022]
|
12
|
Loong CKP, Takeda AK, Badr MA, Rogers JS, Chase PB. Slowed Dynamics of Thin Filament Regulatory Units Reduces Ca 2+-Sensitivity of Cardiac Biomechanical Function. Cell Mol Bioeng 2013; 6:183-198. [PMID: 23833690 DOI: 10.1007/s12195-013-0269-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Actomyosin kinetics in both skinned skeletal muscle fibers at maximum Ca2+-activation and unregulated in vitro motility assays are modulated by solvent microviscosity in a manner consistent with a diffusion limited process. Viscosity might also influence cardiac thin filament Ca2+-regulatory protein dynamics. In vitro motility assays were conducted using thin filaments reconstituted with recombinant human cardiac troponin and tropomyosin; solvent microviscosity was varied by addition of sucrose or glucose. At saturating Ca2+, filament sliding speed (s) was inversely proportional to viscosity. Ca2+-sensitivity (pCa50 ) of s decreased markedly with elevated viscosity (η/η0 ≥ ~1.3). For comparison with unloaded motility assays, steady-state isometric force (F) and kinetics of isometric tension redevelopment (kTR ) were measured in single, permeabilized porcine cardiomyocytes when viscosity surrounding the myofilaments was altered. Maximum Ca2+-activated F changed little for sucrose ≤ 0.3 M (η/η0 ~1.4) or glucose ≤ 0.875 M (η/η0 ~1.66), but decreased at higher concentrations. Sucrose (0.3 M) or glucose (0.875 M) decreased pCa50 for F. kTR at saturating Ca2+ decreased steeply and monotonically with increased viscosity but there was little effect on kTR at sub-maximum Ca2+. Modeling indicates that increased solutes affect dynamics of cardiac muscle Ca2+-regulatory proteins to a much greater extent than actomyosin cross-bridge cycling.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University, Tallahassee, FL, 32306, USA ; Department of Physics, The Florida State University, Tallahassee, FL, 32306, USA
| | | | | | | | | |
Collapse
|
13
|
Williams CD, Regnier M, Daniel TL. Elastic energy storage and radial forces in the myofilament lattice depend on sarcomere length. PLoS Comput Biol 2012; 8:e1002770. [PMID: 23166482 PMCID: PMC3499250 DOI: 10.1371/journal.pcbi.1002770] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/19/2012] [Indexed: 11/29/2022] Open
Abstract
We most often consider muscle as a motor generating force in the direction of shortening, but less often consider its roles as a spring or a brake. Here we develop a fully three-dimensional spatially explicit model of muscle to isolate the locations of forces and energies that are difficult to separate experimentally. We show the strain energy in the thick and thin filaments is less than one third the strain energy in attached cross-bridges. This result suggests the cross-bridges act as springs, storing energy within muscle in addition to generating the force which powers muscle. Comparing model estimates of energy consumed to elastic energy stored, we show that the ratio of these two properties changes with sarcomere length. The model predicts storage of a greater fraction of energy at short sarcomere lengths, suggesting a mechanism by which muscle function shifts as force production declines, from motor to spring. Additionally, we investigate the force that muscle produces in the radial or transverse direction, orthogonal to the direction of shortening. We confirm prior experimental estimates that place radial forces on the same order of magnitude as axial forces, although we find that radial forces and axial forces vary differently with changes in sarcomere length. Locomotion requires energy. Very fast locomotion requires a larger amount of energy than muscle can produce in such a short time period, thus muscle must use energy that it previously produced and stored as elastic deformation. Cyclical or repeated movements can be directly powered by muscle, but energy may be conserved in such cases through elastic energy storage. Traditionally we've looked primarily at tendons, insect exoskeletons, and bones as locations where this energy is stored. However, a small but growing body of literature has recently suggested the backbone filament proteins in muscle act as elastic storage locations. We suggest that the myosin motors themselves are capable of storing more energy than the filaments, energy that may be released to power very fast movements or reduce the cost of cyclical movements. We further suggest that this energy is stored in the radial deformations of myosin motors, in a direction that is perpendicular to the axis of muscle shortening.
Collapse
Affiliation(s)
- C David Williams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
14
|
Ishiwata S, Shimamoto Y, Fukuda N. Contractile system of muscle as an auto-oscillator. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:187-98. [DOI: 10.1016/j.pbiomolbio.2010.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 11/16/2022]
|
15
|
Williams CD, Regnier M, Daniel TL. Axial and radial forces of cross-bridges depend on lattice spacing. PLoS Comput Biol 2010; 6:e1001018. [PMID: 21152002 PMCID: PMC2996315 DOI: 10.1371/journal.pcbi.1001018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
Nearly all mechanochemical models of the cross-bridge treat myosin as a simple linear spring arranged parallel to the contractile filaments. These single-spring models cannot account for the radial force that muscle generates (orthogonal to the long axis of the myofilaments) or the effects of changes in filament lattice spacing. We describe a more complex myosin cross-bridge model that uses multiple springs to replicate myosin's force-generating power stroke and account for the effects of lattice spacing and radial force. The four springs which comprise this model (the 4sXB) correspond to the mechanically relevant portions of myosin's structure. As occurs in vivo, the 4sXB's state-transition kinetics and force-production dynamics vary with lattice spacing. Additionally, we describe a simpler two-spring cross-bridge (2sXB) model which produces results similar to those of the 4sXB model. Unlike the 4sXB model, the 2sXB model requires no iterative techniques, making it more computationally efficient. The rate at which both multi-spring cross-bridges bind and generate force decreases as lattice spacing grows. The axial force generated by each cross-bridge as it undergoes a power stroke increases as lattice spacing grows. The radial force that a cross-bridge produces as it undergoes a power stroke varies from expansive to compressive as lattice spacing increases. Importantly, these results mirror those for intact, contracting muscle force production.
Collapse
Affiliation(s)
- C. David Williams
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Michael Regnier
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Thomas L. Daniel
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Xu S, Brenner B, Yu LC. State-dependent radial elasticity of attached cross-bridges in single skinned fibres of rabbit psoas muscle. J Physiol 2010; 461:283-99. [PMID: 16993186 PMCID: PMC1175258 DOI: 10.1113/jphysiol.1993.sp019514] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. In a single skinned fibre of rabbit psoas muscle, upon attachment of cross-bridges to actin in the presence of ADP or pyrophosphate (PP(i)), the separation between the contractile filaments, as determined by equatorial X-ray diffraction, is found to decrease, suggesting that force is generated in the radial direction.2. The single muscle fibres were subjected to compression by 0-8% of dextran T(500). The changes in lattice spacings by dextran compression were compared with changes induced by cross-bridge attachment to actin. Based on this comparison, the magnitude and the direction of the radial force generated by the attached cross-bridges were estimated. The radial cross-bridge force varied with filament separation, and the magnitude of the radial cross-bridge force reached as high as the maximal axial force produced during isometric contraction.3. One key parameter of the radial elasticity, i.e. the equilibrium spacing where the radial force is zero, was found to depend on the ligand bound to the myosin head. In the presence of ADP, the equilibrium spacing was 36 nm. In the presence of MgPP(i) the equilibrium spacing shifted to 35 nm and Ca(2+) had little effect on the equilibrium spacing.4. The equilibrium spacing was independent of the fraction of cross-bridges attached to actin. The fraction of cross-bridges attached in rigor was modulated from 100% to close to 0% by adding up to 10 mM of ATPgammaS in the rigor solution. The lattice spacing remained at 38 nm, the equilibrium spacing for nucleotide-free cross-bridges at mu = 170 mM.5. Radial force generated by cross-bridges in rigor at large lattice spacings (38 nm </= d(10) </= 46 nm) appeared to vary linearly with lattice spacing.6. The titration of ATPgammaS to fibres in rigor provided a correlation between the radial stiffness of the nucleotide-free cross-bridges and the equatorial intensities. The relation between the equatorial intensity ratio I(11)/I(10) and radial stiffness appeared to be approximately linear.7. The fibres under different conditions showed a wide range of radial stiffness, which was not proportional to the apparent axial stiffness of the fibre. If the apparent axial stiffness is a measure of the fraction of cross-bridges bound to actin, it follows that the radial elastic constant is state dependent; or vice versa.8. Differences in equilibrium lattice spacing and in radial elastic constant, most probably reflect differences in the molecular structure of the acto-myosin complex and there is more than one single conformation of the various strongly bound cross-bridge states.9. Determining equilibrium spacings of the radial elasticity appears to be an effective new approach in detecting structural differences among the attached cross-bridges, since this approach is independent of the fraction of cross-bridges attached, a factor that frequently encumbers the interpretation of structural studies of attached cross-bridge states.
Collapse
Affiliation(s)
- S Xu
- National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
17
|
Majima T. Load-dependent sliding direction change of a myosin head on an actin molecule and its energetic aspects: Energy borrowing model of a cross-bridge cycle. Biophysics (Nagoya-shi) 2009; 5:11-24. [PMID: 27857575 PMCID: PMC5036636 DOI: 10.2142/biophysics.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 12/20/2008] [Indexed: 12/01/2022] Open
Abstract
A model of muscle contraction is proposed, assuming loose coupling between power strokes and ATP hydrolysis of a myosin head. The energy borrowing mechanism is introduced in a cross-bridge cycle that borrows energy from the environment to cover the necessary energy for enthalpy production during sliding movement. Important premises for modeling are as follows: 1) the interaction area where a myosin head slides is supposed to be on an actin molecule; 2) the actomyosin complex is assumed to generate force F(θ), which slides the myosin head M* in the interaction area; 3) the direction of the force F(θ) varies in proportion to the load P; 4) the energy supplied by ATP hydrolysis is used to retain the myosin head in the high-energy state M*, and is not used for enthalpy production; 5) the myosin head enters a hydration state and dehydration state repeatedly during the cross-bridge cycle. The dehydrated myosin head recovers its hydrated state by hydration in the surrounding medium; 6) the energy source for work and heat production liberated by the AM* complex is of external origin. On the basis of these premises, the model adequately explains the experimental results observed at various levels in muscular samples: 1) twist in actin filaments observed in shortening muscle fibers; 2) the load-velocity relationship in single muscle fiber; 3) energy balance among enthalpy production, the borrowed energy and the energy supplied by ATP hydrolysis during muscle contraction. Force F(θ) acting on the myosin head is depicted.
Collapse
Affiliation(s)
- Toshikazu Majima
- Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
18
|
Jarosch R. Large-scale models reveal the two-component mechanics of striated muscle. Int J Mol Sci 2008; 9:2658-2723. [PMID: 19330099 PMCID: PMC2635638 DOI: 10.3390/ijms9122658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022] Open
Abstract
This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and alpha-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical "two-component model" of active muscle differentiated a "contractile component" which stretches the "series elastic component" during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic alpha-actinin Z-filaments (provided with force-regulating sites for Ca(2+) binding), the thin filament rotations change the torsional twist of the four Z-filaments as the "series elastic components". Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.
Collapse
Affiliation(s)
- Robert Jarosch
- Formerly Institute of Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria. E-Mail:
| |
Collapse
|
19
|
Structural changes in the muscle thin filament during contractions caused by single and double electrical pulses. J Mol Biol 2008; 383:1019-36. [PMID: 18817786 DOI: 10.1016/j.jmb.2008.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 09/01/2008] [Accepted: 09/04/2008] [Indexed: 11/23/2022]
Abstract
In order to investigate the structural changes of the myofilaments involved in the phenomenon of summation in skeletal muscle contraction, we studied small-angle x-ray intensity changes during twitches of frog skeletal muscle elicited by either a single or a double stimulus at 16 degrees C. The separation of the pulses in the double-pulse stimulation was either 15 or 30 ms. The peak tension was more than doubled by the second stimulus. The equatorial (1,0) intensity, which decreased upon the first stimulus, further decreased with the second stimulus, indicating that more cross-bridges are formed. The meridional reflections from troponin at 1/38.5 and 1/19.2 nm(-1) were affected only slightly by the second stimulus, showing that attachment of a small number of myosin heads to actin can make a cooperative structural change. In overstretched muscle, the intensity increase of the troponin reflection in response to the second stimulus was smaller than that to the first stimulus. These results show that the summation is not due to an increased Ca binding to troponin and further suggest a highly cooperative nature of the structural changes in the thin filament that are related to the regulation of contraction.
Collapse
|
20
|
Pearson JT, Shirai M, Tsuchimochi H, Schwenke DO, Ishida T, Kangawa K, Suga H, Yagi N. Effects of sustained length-dependent activation on in situ cross-bridge dynamics in rat hearts. Biophys J 2007; 93:4319-29. [PMID: 17766361 PMCID: PMC2098739 DOI: 10.1529/biophysj.107.111740] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular basis of the length-dependent increases in contractile force in the beating heart has remained unclear. Our aim was to investigate whether length-dependent mediated increases in contractile force are correlated with myosin head proximity to actin filaments, and presumably the number of cross-bridges activated during a contraction. We therefore employed x-ray diffraction analyses of beat-to-beat contractions in spontaneously beating rat hearts under open-chest conditions simultaneous with recordings of left ventricle (LV) pressure-volume. Regional x-ray diffraction patterns were recorded from the anterior LV free wall under steady-state contractions and during acute volume loading (intravenous lactate Ringers infusion at 60 ml/h, <5 min duration) to determine the change in intensity ratio (I(1,0)/I(1,1)) and myosin interfilament spacing (d(1,0)). We found no significant change in end-diastolic (ED) intensity ratio, indicating that the proportion of myosin heads in proximity to actin was unchanged by fiber stretching. Intensity ratio decreased significantly more during the isovolumetric contraction phase during volume loading than under baseline contractions. A significant systolic increase in myosin head proximity to actin filaments correlated with the maximum rate of pressure increase. Hence, a reduction in interfilament spacing at end-diastole ( approximately 0.5 nm) during stretch increased the proportion of cross-bridges activated. Furthermore, our recordings suggest that d(1,0) expansion was inversely related to LV volume but was restricted during contraction and sarcomere shortening to values smaller than the maximum during isovolumetric relaxation. Since ventricular volume, and presumably sarcomere length, was found to be directly related to interfilament spacing, these findings support a role for interfilament spacing in modulating cross-bridge formation and force developed before shortening.
Collapse
Affiliation(s)
- James T Pearson
- Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Korte FS, McDonald KS. Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain. J Physiol 2007; 581:725-39. [PMID: 17347271 PMCID: PMC2075190 DOI: 10.1113/jphysiol.2007.128199] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/16/2007] [Accepted: 03/05/2007] [Indexed: 12/30/2022] Open
Abstract
The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either alpha-myosin heavy chain (alpha-MyHC) or beta-MyHC at 12 +/- 1 degrees C. When SL was decreased from 2.3 microm to 2.0 microm submaximal isometric force decreased approximately 40% in both alpha-MyHC and beta-MyHC myocytes while peak absolute power output decreased 55% in alpha-MyHC myocytes and 70% in beta-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in beta-MyHC as in alpha-MyHC myocytes (41% versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca(2+)] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in alpha-MyHC myocytes, whereas in beta-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both alpha-MyHC and beta-MyHC myocytes. The rate constant of force development (k(tr)) was also measured and was not different between long and short SL at the same [Ca(2+)] in alpha-MyHC myocytes but was greater at short SL in beta-MyHC myocytes. At short SL with matched force by either dextran or [Ca(2+)], k(tr) was greater than at long SL in both alpha-MyHC and beta-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and beta-MyHC myocytes exhibit a greater sarcomere length dependence of power output.
Collapse
Affiliation(s)
- F Steven Korte
- Department of Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
22
|
Nosaka M. Geometrical correspondence identified and a new interaction unit suggested in striated muscle. J Theor Biol 2006; 238:464-73. [PMID: 16112137 DOI: 10.1016/j.jtbi.2005.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 06/01/2005] [Accepted: 06/03/2005] [Indexed: 11/25/2022]
Abstract
It has long been believed that the periodic structure of the myosin helix is a consequence only of compressing the actin-myosin interaction sites. Here, we identify a length correspondence between the smallest helical unit on the thick filament and the helical pitch of the actin filaments in two different contractile muscles. This suggests a rotation/swing of the filaments that creates a new interaction unit in addition to the single interaction between an actin filament and a myosin head. Numerical characteristics of the single interaction are estimated from discussion about an in vivo interaction utilizing the new unit. The estimated twisted angle of the actin filaments is consistent with that calculated from its torsion rigidity and the evaluated step sizes per cross-bridge can be performed by a single bend of a myosin head. By comparing our evaluated step sizes with experimental results, we conclude that the most plausible mechanism at the force-recovery stage involves swings or rotations of both filaments in the same direction (clockwise).
Collapse
Affiliation(s)
- Michiko Nosaka
- Sasebo National College of Technology, Material and Biological Engineering, 1-1 Okishin-chou, Sasebo, Nagasaki 857-1193, Japan.
| |
Collapse
|
23
|
Colombini B, Bagni MA, Berlinguer Palmini R, Cecchi G. Crossbridge formation detected by stiffness measurements in single muscle fibres. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 565:127-40; discussion 140, 371-7. [PMID: 16106971 DOI: 10.1007/0-387-24990-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Barbara Colombini
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, Florence I-50134, Italy
| | | | | | | |
Collapse
|
24
|
Pearson JT, Shirai M, Ito H, Tokunaga N, Tsuchimochi H, Nishiura N, Schwenke DO, Ishibashi-Ueda H, Akiyama R, Mori H, Kangawa K, Suga H, Yagi N. In situ measurements of crossbridge dynamics and lattice spacing in rat hearts by x-ray diffraction: sensitivity to regional ischemia. Circulation 2004; 109:2976-9. [PMID: 15184274 DOI: 10.1161/01.cir.0000133322.19340.ef] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Synchrotron radiation has been used to analyze crossbridge dynamics in isolated papillary muscle and excised perfused hearts with the use of x-ray diffraction techniques. We showed that these techniques can detect regional changes in rat left ventricle contractility and myosin lattice spacing in in situ ejecting hearts in real time. Furthermore, we examined the sensitivity of these indexes to regional ischemia. METHODS AND RESULTS The left ventricular free wall of spontaneously beating rat hearts (heart rate, 290 to 404 bpm) was directly exposed to brief high-flux, low-emittance x-ray beams provided at SPring-8. Myosin mass transfer to actin filaments was determined as the decrease in reflection intensity ratio (intensity of 1,0 plane over the 1,1 plane) between end-diastole and end-systole. The distance between 1,0 reflections was converted to a lattice spacing between myosin filaments. We found that mass transfer (mean, 1.71+/-0.09 SEM, n=13 hearts) preceded significant increases in lattice spacing (2 to 5 nm) during systole in nonischemic pericardium. Left coronary occlusion eliminated increases in lattice spacing and severely reduced mass transfer (P<0.01) in the ischemic region. CONCLUSIONS Our results suggest that x-ray diffraction techniques permit real-time in situ analysis of regional crossbridge dynamics at molecular and fiber levels that might also facilitate investigations of ventricular output regulation by the Frank-Starling mechanism.
Collapse
Affiliation(s)
- James T Pearson
- Cardiac Physiology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vandenboom R, Hannon JD, Sieck GC. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation. J Physiol 2002; 543:555-66. [PMID: 12205189 PMCID: PMC2290518 DOI: 10.1113/jphysiol.2002.022673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dt(R)). The influence of isotonic force on +dF/dt(R) was assessed by imposing uniform amplitude (2.55 to 2.15 microm sarcomere(-1)) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 +/- 0.11 microm half-sarcomere(-1) s(-1)) to 0.30 of maximum unloaded shortening velocity (V(u)), thereby modulating isotonic force from 0 to 0.34 F(o), respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dt(R) increased by 81 +/- 6 % (P < 0.05) as fibre shortening speed was reduced from 1.00 V(u). The +dF/dt(R) after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence V(u) (mean: 2.84 +/- 0.10 microm half-sarcomere(-1) s(-1), P < 0.05). We conclude that isotonic force modulates +dF/dt(R) independent of change in V(u), an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate.
Collapse
Affiliation(s)
- Rene Vandenboom
- Departments of Anesthesiology and Physiology and Biophysics, Mayo Medical School, Rochester, MN 55905, USA
| | | | | |
Collapse
|
26
|
Ebihara S, Hussain SNA, Danialou G, Cho WK, Gottfried SB, Petrof BJ. Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med 2002; 165:221-8. [PMID: 11790659 DOI: 10.1164/ajrccm.165.2.2108041] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Overproduction of nitric oxide (NO) with attendant oxidative and nitrosative stress has been implicated in sepsis-induced diaphragm dysfunction. Here we determined the impact of controlled mechanical ventilation (MV) on rat diaphragm sarcolemmal injury, inducible NO synthase (iNOS) expression, and oxidative stress during endotoxemia. At 4 h after injection of endotoxin, impaired sarcolemmal integrity and decreased force production by the diaphragm were observed in spontaneously breathing rats. The use of MV during endotoxemia largely eliminated sarcolemmal damage and significantly improved diaphragm force production. These benefits were not associated with alterations in either iNOS expression or protein carbonyls (marker of oxidation), which remained abnormally elevated in septic diaphragms despite MV. Therefore, we hypothesized that the protection afforded by MV was due to its ability to decrease the level of mechanical stress placed on the sarcolemma, because the latter could be hyperfragile in the setting of increased oxidative stress. Using an in vitro system to independently modulate oxidative and mechanical stresses, we confirmed that these two factors act together in a synergistic fashion to favor sarcolemmal injury. Accordingly, our data suggest that MV protects the diaphragm during sepsis by abrogating an injurious interaction between oxidative and biomechanical stresses imposed on the sarcolemma.
Collapse
Affiliation(s)
- Satoru Ebihara
- Respiratory and Critical Care Divisions, McGill University Health Centre, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Hoskins BK, Ashley CC, Rapp G, Griffiths PJ. Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening. Biophys J 2001; 80:398-414. [PMID: 11159411 PMCID: PMC1301242 DOI: 10.1016/s0006-3495(01)76023-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Force, sarcomere length, and equatorial x-ray reflections (using synchrotron radiation) were studied in chemically skinned bundles of fibers from Rana temporaria sartorius muscle, activated by UV flash photolysis of a new photolabile calcium chelator, NP-EGTA. Experiments were performed with or without compression by 3% dextran at 4 degrees C. Isometric tension developed at a similar rate (t(1/2) = 40 +/- 5 ms) to the development of tetanic tension measured in other studies (Cecchi et al., 1991). Changes in intensity of equatorial reflections (I(11) t(1/2), 15-19 ms; I(10) t(1/2), 24-26 ms) led isometric tension development and were faster than for tetanus. During shortening at 0.14P(o), I(10) and I(11) changes were partially reversed (18% and 30%, respectively, compressed lattice), in agreement with intact cell data. In zero dextran, activation caused a compression of A-band lattice spacing by 0.7 nm. In 3% dextran, activation caused an expansion of 1.4 nm, consistent with an equilibrium spacing of 45 nm. But, in both cases, discharge of isometric tension by shortening caused a rapid lattice expansion of 1.0-1.1 nm, suggesting discharge of a compressive cross-bridge force, with or without compression by dextran, and the development of an additional expansive force during activation. In contrast to I(10) and I(11) data, these findings for lattice spacing did not resemble intact fiber data.
Collapse
Affiliation(s)
- B K Hoskins
- University Laboratory of Physiology, Oxford OX1 3PT, United Kingdom
| | | | | | | |
Collapse
|
28
|
Jarosch R. Muscle force arises by actin filament rotation and torque in the Z-filaments. Biochem Biophys Res Commun 2000; 270:677-82. [PMID: 10772883 DOI: 10.1006/bbrc.1999.1971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin filament rotation in skeletal muscle is studied by a mechanical model that simulates structure and tension. The four anchoring Z-filaments are twisted around and change the structure of the Z-lattice. The "small square" without twist represents the resting stage of muscle. Torque causes contraction by clockwise rotation (as seen from the Z-band), drilling into the A-band and transition of the "small square" to "basket weave" by increasing the twist and decreasing the torque. Release decreases the torque ("force-depression") by passive clockwise rotation. Stretch causes increased torque ("stretch activation") by passive counterclockwise rotation. Torque arises during Ca(2+)-activation by a conformational change in the highly charged coiled-coils: The four alpha-actinin Z-filaments generate strong torque for the isometric tension. Quick release experiments show that less than one rotation reduces this torque to zero. The 5-12 rotations necessary for isotonic shortening result from torque-generation in the two long tropomyosin coiled-coils. Myosin controls the velocity of active and passive rotations.
Collapse
Affiliation(s)
- R Jarosch
- Formerly Institute of Physiology for Plants, University of Salzburg, Salzburg, Austria
| |
Collapse
|
29
|
Hoskins BK, Ashley CC, Pelc R, Rapp G, Griffiths PJ. Time-resolved equatorial X-ray diffraction studies of skinned muscle fibres during stretch and release. J Mol Biol 1999; 290:77-97. [PMID: 10388559 DOI: 10.1006/jmbi.1999.2857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equatorial X-ray diffraction patterns were recorded from small bundles of one to three chemically skinned frog sartorius muscle fibres (time resolution 250 microseconds) during rapid stretch and subsequent release. In the relaxed state, the dynamic A-band lattice spacing change as a result of a 2 % step stretch (determined from the positions of the 10 and 11 reflections) resulted in a 21 % increase in lattice volume, while static studies of spacing and sarcomere length indicated than an increase in volume of >/=50 % for the same length change. In rigor, stretch caused a lattice volume decrease which was reversed by a subsequent release. In activated fibres (pCa 4.5) exposed to 10 mM 2,3-butanedione 2-monoxime (BDM), stretch was accompanied by a lattice compression exceeding that of constant volume behaviour, but during tension recovery, compression was partially reversed to leave a net spacing change close to that observed in the relaxed fibre. In the relaxed state, spacing changes were correlated with the amplitude of the length step, while in rigor and BDM states, spacing changes correlated more closely with axial force. This behaviour is explicable in terms of two components of radial force, one due to structural constraints as seen in the relaxed state, and an additional component arising from cross-bridge formation. The ratio of axial to radial force for a single thick filament resulting from a length step was four in rigor and BDM, but close to unity for the relaxed state.
Collapse
Affiliation(s)
- B K Hoskins
- University Laboratory of Physiology, Parks Road, Oxford, OX1 3PT, UK
| | | | | | | | | |
Collapse
|
30
|
Ashley CC, Bagni MA, Cecchi G, Griffiths PJ, Rapp G. Submillisecond changes in myosin lattice spacing resulting from rapid length changes. J Mol Biol 1999; 285:431-40. [PMID: 9878417 DOI: 10.1006/jmbi.1998.2331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The speed of the myofilament lattice spacing response to rapid changes in load or length of single, intact muscle fibres of the frog, was investigated during isometric tetani. During ramp releases at close to Vmax and during step length changes (completed within 250 microseconds), lattice spacing was calculated from the equatorial X-ray diffraction pattern (sampled at 250 microseconds time resolution using synchrotron radiation). Ramp releases (total shortening=1.39 %) caused a spacing increase, described with an exponential function (alpha=271 s-1, amplitude=1.15 nm) plus an elastic component having the time course of discharge of axial tension (amplitude 0.28 nm). For a step release (amplitude=0.87%), lattice expansion could be described with an exponential (alpha =1005 s-1, amplitude=0.56 nm) plus an elastic component of 0.25 nm amplitude. Lattice compression was associated with a step stretch (amplitude=0.62 %), and was also quasi-exponential (alpha=367 s-1, amplitude=0.74 nm), with an elastic component of 0.28 nm. The spacing change time course for length steps resembled that of the accompanying quick recovery of axial tension and the associated change in the meridional 14.5 nm reflection intensity, which are both believed to be determined by the kinetics of the molecular power stroke. Therefore, this shows that lattice spacing changes, arising from radial forces exerted by attached crossbridges, are fast enough to occur during the power stroke event.
Collapse
Affiliation(s)
- C C Ashley
- University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | | | | | | |
Collapse
|
31
|
Rapp G, Ashley CC, Bagni MA, Griffiths PJ, Cecchi G. Volume changes of the myosin lattice resulting from repetitive stimulation of single muscle fibers. Biophys J 1998; 75:2984-95. [PMID: 9826618 PMCID: PMC1299969 DOI: 10.1016/s0006-3495(98)77739-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single muscle fibers at 1 degreesC were subjected to brief tetani (20 Hz) at intervals of between 20 s and 300 s over a period of up to 2 h. A band lattice spacing increased during this period at a rate inversely dependent on the rest interval between tetani. Spacing increased rapidly during the first 10 tetani at a rate equivalent to the production of 0.04 mOsmol.liter-1 of osmolyte per contraction, then continued to expand at a much slower rate. For short rest intervals, where lattice expansion was largest, spacing increased to a limiting value between 46 and 47 nm (sarcomere length 2.2 micrometer), corresponding to accumulation of 30 mOsmol.liter-1 of osmolytes, where it remained constant until repetitive stimulation was terminated. At this limiting spacing, force was reduced by up to 30%. The effect of lattice swelling on the lattice compression that accompanies isometric force recovery from unloaded shortening was to increase the compression, similar to that observed in hypotonic media at a similar spacing. During recovery from repetitive stimulation, spacing recompressed to its original value with a half-time of 15-30 min. These findings suggest that mechanical activity produces an increase in osmotic pressure within the cell as a result of product accumulation from cross-bridge and sarcoplasmic reticulum ATPases and glycolysis.
Collapse
Affiliation(s)
- G Rapp
- EMBL Outstation, Deutsches Elektronen-Synchrotron, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
The filament lattice of striated muscle is an overlapping hexagonal array of thick and thin filaments within which muscle contraction takes place. Its structure can be studied by electron microscopy or X-ray diffraction. With the latter technique, structural changes can be monitored during contraction and other physiological conditions. The lattice of intact muscle fibers can change size through osmotic swelling or shrinking or by changing the sarcomere length of the muscle. Similarly, muscle fibers that have been chemically or mechanically skinned can be compressed with bathing solutions containing very large inert polymeric molecules. The effects of lattice change on muscle contraction in vertebrate skeletal and cardiac muscle and in invertebrate striated muscle are reviewed. The force developed, the speed of shortening, and stiffness are compared with structural changes occurring within the lattice. Radial forces between the filaments in the lattice, which can include electrostatic, Van der Waals, entropic, structural, and cross bridge, are assessed for their contributions to lattice stability and to the contraction process.
Collapse
Affiliation(s)
- B M Millman
- Physics Department, University of Guelph, Ontario, Canada
| |
Collapse
|
33
|
Oplatka A. Critical review of the swinging crossbridge theory and of the cardinal active role of water in muscle contraction. Crit Rev Biochem Mol Biol 1997; 32:307-60. [PMID: 9307875 DOI: 10.3109/10409239709082575] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A critical analysis is presented of the experimental findings that led to the sliding filament model and to its offspring--the swinging (by rotating or tilting) crossbridge theory of muscle contraction (SCBT). Several principles that have been taken for granted implicitly and explicitly by the creators of these dogmas are discussed. The failure of numerous efforts to verify predictions of the SCBT, particularly the idea that the myosin molecules undergo a major conformational change, is critically reviewed. Analysis of various experimental data suggests that water may play an active role in muscular contraction. Examination of both the experiments that do not fulfill the expectations of the SCBT and the measurements of water liberation during the "contractile" process suggests a new outlook according to which tension development and movement are not due to major conformational changes but rather to restructuring of the hydration shells of actin and myosin.
Collapse
Affiliation(s)
- A Oplatka
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
34
|
Rapp GJ, Davis JS. X-ray diffraction studies on thermally induced tension generation in rigor muscle. J Muscle Res Cell Motil 1996; 17:617-29. [PMID: 8994081 DOI: 10.1007/bf00154056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Muscle fibres in the rigor state and free of nucleotide contract if heated above their physiological working temperature. Kinetic studies on the mechanism of this process, termed rigor contraction, indicate that it has a number of features in common with the contraction of maximally Ca2+ activated fibres. De novo tension generation appears to be associated with a single, tension sensitive, endothermic step in both systems. Rigor contraction differs in that steps associated with crossbridge attachment and detachment are absent. We investigated structural changes associated with rigor contraction using X-ray diffraction. Overall changes in the low angle X-ray diffraction pattern were surveyed using a two-dimensional image plate. Reversible changes in the diffraction pattern included a 28% decrease in intensity of the 14.5 nm meridional reflection, a 12% increase in intensity of 5.9 nm actin layer-line and a somewhat variable 34% increase in intensity of 5.1 nm actin layer-line in laser temperature-jump experiments. When fibres were heated with a temperature ramp, we found that a 70% decrease in intensity of the myosin-related meridional reflection at (14.5 nm)-1 correlated with tension generation. A similar decrease in intensity of the 14.5 nm reflection is seen during tension recovery following a step change in the length of maximally Ca2+ activated fibres. Signals both from actin and actin-bound myosin heads contribute to the 5.1 and 5.9 nm actin layer-lines. Our observed changes in intensity are interpreted as contraction-associated changes in crossbridge shape and/or position on actin.
Collapse
Affiliation(s)
- G J Rapp
- European Molecular Biology Laboratory, Hamburg Outstation, Deutsches Elektronen Synchrotron, Germany
| | | |
Collapse
|
35
|
Abstract
Twenty-five years after its proposal, the swinging theory of muscular contraction, in which the majority of scientists in the field have blindly believed, has not yet been verified. Rapidly growing experimental evidence indicates that the myosin heads do not swing. It is time to look for an alternative mechanism. Data is presented indicating that water is liberated during tension development and the extent to which it is released appears to affect the degree of tension. Since water can move (because of acquired extra energy, involvement in hydration forces etc.), it might cause protein movement.
Collapse
Affiliation(s)
- A Oplatka
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
36
|
Bagni MA, Cecchi G, Griffiths PJ, Maéda Y, Rapp G, Ashley CC. Lattice spacing changes accompanying isometric tension development in intact single muscle fibers. Biophys J 1994; 67:1965-75. [PMID: 7858133 PMCID: PMC1225571 DOI: 10.1016/s0006-3495(94)80679-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The myosin lattice spacing of single intact muscle fibers of the frog, Rana temporaria, was studied in Ringer's solution (standard osmolarity 230 mOsm) and hyper- and hypotonic salines (1.4 and 0.8 times standard osmolarity respectively) in the relaxed state, during "fixed end" tetani, and during shortening, using synchrotron radiation. At standard tonicity, a tetanus was associated with an initial brief lattice expansion (and a small amount of sarcomere shortening), followed by a slow compression (unaccompanied by sarcomere length changes). In hypertonic saline (myosin lattice compressed by 8.1%), these spacing changes were suppressed, in hypotonic saline (lattice spacing increased by 7.5%), they were enhanced. During unloaded shortening of activated fibers, a rapid lattice expansion occurred at all tonicities, but became larger as tonicity was reduced. This expansion was caused in part by the change in length of the preparation, but also by a recoil of a stressed radial compliance associated with axial force. The lattice spacing during unloaded shortening was equal to or occasionally greater than predicted for a relaxed fiber at that sarcomere length, indicating that the lattice compression associated with activation is rapidly reversed upon loss of axial force. Lattice recompression occurred upon termination of shortening under standard and hypotonic conditions, but was almost absent under hypertonic conditions. These observations indicate that axial cross-bridge tension is associated with a compressive radial force in intact muscle fibers at full overlap; however, this radial force exhibits a much greater sensitivity to lattice spacing than does the axial force.
Collapse
Affiliation(s)
- M A Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Trombitás K, Baatsen P, Schreuder J, Pollack GH. Contraction-induced movements of water in single fibres of frog skeletal muscle. J Muscle Res Cell Motil 1993; 14:573-84. [PMID: 8126217 DOI: 10.1007/bf00141554] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although X-ray diffraction measurements imply almost constant filament separation during isometric contraction, such constancy does not hold at the level of the isolated cell; cell cross-section increases substantially during isometric contraction. This expansion could arise from accumulation of water drawn from other fibre regions, or from water drawn into the cell from outside. To distinguish between these hypotheses, we froze single fibres of frog skeletal muscle that were jacketed by a thin layer of water. Frozen fibres were freeze-substituted, sectioned transversely, and examined in the electron microscope. In fibres frozen during contraction, we found large amounts of water just beneath the sarcolemma, less in deeper regions, and almost none in the fibre core. Such gradients were absent or diminished in fibres frozen in the relaxed state. The water was not confined to the myofibril space alone; we found large water spaces between myofibrils, particularly near mitochondria. Accumulation of water between myofibrils and around mitochondria implies that the driving force for water movement probably lies outside the filament lattice, and may therefore be osmotic. The fact that the distribution was nonuniform-highest near the sarcolemma and lowest in the core--implies that the water was likely drawn from the thin jacket surrounding the cell. Thus, the contractile cycle appears to be associated with water entry into and exit from the cell.
Collapse
Affiliation(s)
- K Trombitás
- Center for Bioengineering, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
38
|
Xu S, Brenner B, Yu LC. State-dependent radial elasticity of attached cross-bridges in single skinned fibres of rabbit psoas muscle. J Physiol 1993; 465:749-65. [PMID: 7693922 PMCID: PMC1175457 DOI: 10.1113/jphysiol.1993.sp019704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. In a single skinned fibre of rabbit psoas muscle, upon attachment of cross bridges to actin in the presence of ADP or pyrophosphate (PPi), the separation between the contractile filaments, as determined by equatorial X-ray diffraction, is found to decrease, suggesting that force is generated in the radial direction. 2. The single muscle fibres were subjected to compression by 0-8% of dextran T500. The changes in lattice spacings by dextran compression were compared with changes induced by cross-bridge attachment to actin. Based on this comparison, the magnitude and the direction of the radial force generated by the attached cross-bridges were estimated. The radial cross-bridge force varied with filament separation, and the magnitude of the radial cross-bridge force reached as high as the maximal axial force produced during isometric contraction. 3. One key parameter of the radial elasticity, i.e. the equilibrium spacing where the radial force is zero, was found to depend on the ligand bound to the myosin head. In the presence of ADP, the equilibrium spacing was 36 nm. In the presence of MgPPi the equilibrium spacing shifted to 35 nm and Ca2+ had little effect on the equilibrium spacing. 4. The equilibrium spacing was independent of the fraction of cross-bridges attached to actin. The fraction of cross-bridges attached in rigor was modulated from 100% to close to 0% by adding up to 10 mM of ATP gamma S in the rigor solution. The lattice spacing remained at 38 nm, the equilibrium spacing for nucleotide-free cross-bridges at mu = 170 mM. 5. Radial force generated by cross-bridges in rigor at large lattice spacings (38 nm < or = d10 < or = 46 nm) appeared to vary linearly with lattice spacing. 6. The titration of ATP gamma S to fibres in rigor provided a correlation between the radial stiffness of the nucleotide-free cross-bridges and the equatorial intensities. The relation between the equatorial intensity ratio I11/I10 and radial stiffness appeared to be approximately linear. 7. The fibres under different conditions showed a wide range of radial stiffness, which was not proportional to the apparent axial stiffness of the fibre. If the apparent axial stiffness is a measure of the fraction of cross-bridges bound to actin, it follows that the radial elastic constant is state dependent; or vice versa.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Xu
- National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
39
|
Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 1993; 90:3710-4. [PMID: 8475120 PMCID: PMC46371 DOI: 10.1073/pnas.90.8.3710] [Citation(s) in RCA: 1126] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficient muscle fibers of the mdx mouse exhibit an increased susceptibility to contraction-induced sarcolemmal rupture. The level of sarcolemmal damage is directly correlated with the magnitude of mechanical stress placed upon the membrane during contraction rather than the number of activations of the muscle. These findings strongly support the proposition that the primary function of dystrophin is to provide mechanical reinforcement to the sarcolemma and thereby protect it from the membrane stresses developed during muscle contraction. Furthermore, the methodology used in this study should prove useful in assessing the efficacy of dystrophin gene therapy in the mdx mouse.
Collapse
Affiliation(s)
- B J Petrof
- Pulmonary and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
40
|
Griffiths PJ, Ashley CC, Bagni MA, Maéda Y, Cecchi G. Cross-bridge attachment and stiffness during isotonic shortening of intact single muscle fibers. Biophys J 1993; 64:1150-60. [PMID: 8494976 PMCID: PMC1262433 DOI: 10.1016/s0006-3495(93)81481-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Equatorial x-ray diffraction pattern intensities (I10 and I11), fiber stiffness and sarcomere length were measured in single, intact muscle fibers under isometric conditions and during constant velocity (ramp) shortening. At the velocity of unloaded shortening (Vmax) the I10 change accompanying activation was reduced to 50.8% of its isometric value, I11 reduced to 60.7%. If the roughly linear relation between numbers of attached bridges and equatorial signals in the isometric state also applies during shortening, this would predict 51-61% attachment. Stiffness (measured using 4 kHz sinusoidal length oscillations), another putative measure of bridge attachment, was 30% of its isometric value at Vmax. When small step length changes were applied to the preparation (such as used for construction of T1 curves), no equatorial intensity changes could be detected with our present time resolution (5 ms). Therefore, unlike the isometric situation, stiffness and equatorial signals obtained during ramp shortening are not in agreement. This may be a result of a changed crossbridge spatial orientation during shortening, a different average stiffness per attached crossbridge, or a higher proportion of single headed crossbridges during shortening.
Collapse
|
41
|
Nishizaka T, Yagi T, Tanaka Y, Ishiwata S. Right-handed rotation of an actin filament in an in vitro motile system. Nature 1993; 361:269-71. [PMID: 8423853 DOI: 10.1038/361269a0] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Muscle contraction occurs by mutual sliding between thick (myosin) and thin (actin) filaments. But the physical and chemical properties of the sliding force are not clear; even the precise direction of sliding force generated at each cross-bridge is not known. We report here the use of a recently developed in vitro motile assay system to show supercoiling of an actin filament in which the front part of the filament was fixed to a glass surface through cross-linked heavy-meromyosin and the rear part was able to slide on a track of heavy-meromyosin. A left-handed single turn of superhelix formed just before supercoiling, suggesting that the sliding force has a right-handed torque component that induces the right-handed rotation of an actin filament around its long axis. The presence of the torque component in the sliding force will explain several properties of the contractile system of muscle.
Collapse
Affiliation(s)
- T Nishizaka
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | |
Collapse
|
42
|
Bagni MA, Cecchi G, Colomo F, Garzella P. Force response of unstimulated intact frog muscle fibres to ramp stretches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 332:703-12; discussion 713-4. [PMID: 8109380 DOI: 10.1007/978-1-4615-2872-2_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The possibility that weakly binding bridges are attached to actin in the absence of Ca2+ under physiological conditions was investigated by studying the force response of unstimulated intact muscle fibres of the frog to fast ramp stretches. The force response during the stretching period is divided into two phases: phase 1, coincident with the acceleration period of the sarcomere length change and phase 2, synchronous with sarcomere elongation at constant speed. The phase 1 amplitude increases linearly with the stretching speed in all the range tested, while phase 2 increases with the speed but reaches a plateau level at about 50 x 10(3) nm/half sarcomere per second. The analysis of data shows that phase 1, which corresponds to the initial 5-10 nm/half sarcomere of elongation, is very likely a pure viscous response; its amplitude increases with sarcomere length and it is not affected by the electrical stimulation of the fibre. Phase 2 is a viscoelastic response with a relaxation time of the order of 1 ms; its amplitude increases with sarcomere lengths and with the stimulation. These data suggest that weakly binding bridges are not present in a significant amount in unstimulated intact fibres.
Collapse
Affiliation(s)
- M A Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Italy
| | | | | | | |
Collapse
|
43
|
Ashley CC, Griffiths PJ, Lea TJ, Mulligan IP, Palmer RE, Simnett SJ. Barnacle muscle: Ca2+, activation and mechanics. Rev Physiol Biochem Pharmacol 1993; 122:149-258. [PMID: 8265964 DOI: 10.1007/bfb0035275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this review, aspects of the ways in which Ca2+ is transported and regulated within muscle cells have been considered, with particular reference to crustacean muscle fibres. The large size of these fibres permits easy access to the internal environment of the cell, allowing it to be altered by microinjection or microperfusion. At rest, Ca2+ is not in equilibrium across the cell membrane, it enters the cell down a steep electrochemical gradient. The free [Ca2+] at rest is maintained at a value close to 200 nM by a combination of internal buffering systems, mainly the SR, mitochondria, and the fixed and diffusible Ca(2+)-binding proteins, as well as by an energy-dependent extrusion system operating across the external cell membrane. This system relies upon the inward movement of Na+ down its own electrochemical gradient to provide the energy for the extrusion of Ca2+ ions. As a result of electrical excitation, voltage-sensitive channels for Ca2+ are activated and permit Ca2+ to enter the cell more rapidly than at rest. It has been possible to determine both the amount of Ca2+ entering by this step, and what part this externally derived Ca2+ plays in the development of force as well as in the free Ca2+ change. The latter can be determined directly by Ca(2+)-sensitive indicators introduced into the cell sarcoplasm. A combination of techniques, allowing both the total and free Ca2+ changes to be assessed during electrical excitation, has provided valuable information as to how muscle cells buffer their Ca2+ in order to regulate the extent of the change in the free Ca2+ concentration. The data indicate that the entering Ca2+ can only make a small direct contribution to the force developed by the cell. The implication here is that the major source of Ca2+ for contraction must be derived from the internal Ca2+ storage sites within the SR system, a view reinforced by caged Ca2+ methods. The ability to measure the free Ca2+ concentration changes within a single cell during activation has also provided the opportunity to analyse, in detail, the likely relations between free Ca2+ and the process of force development in muscle. The fact that the free Ca2+ change precedes the development of force implies that there are delays in the mechanism, either at the site of Ca2+ attachment on the myofibril, or at some later stage in the process of force development that were not previously anticipated.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C C Ashley
- University Laboratory of Physiology, Oxford, England, UK
| | | | | | | | | | | |
Collapse
|
44
|
Griffiths PJ, Ashley CC, Bagni MA, Cecchi G, Maèda Y. Time-resolved equatorial X-ray diffraction measurements in single intact muscle fibres. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 332:409-20; discussion 420-2. [PMID: 8109354 DOI: 10.1007/978-1-4615-2872-2_38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Equatorial X-ray diffraction techniques have been successfully applied to the intact single muscle fibre preparation under length clamp and "fixed end" conditions. 10 and 11 intensity changes and stiffness have been measured in the same preparation. Under isometric conditions, equatorial signals and stiffness led force by 14-20ms during the rise of tetanic tension. During relaxation, stiffness and equatorial signals lagged force. The time course of the intensity changes suggests a low force crossbridge state is present to a greater extent during the rise of tetanic tension and during relaxation than at the tetanus plateau. During isotonic shortening at Vmax, stiffness fell to 30% of its isometric level, while equatorial signals fell to 60%. Since stiffness and equatorial signals are thought to detect attached crossbridges, either the average stiffness per attached bridge measured at 4kHz during shortening is less than at the plateau, or the relation between equatorial intensities and the proportion of attached crossbridges during isotonic shortening differs from that measured under isometric conditions. Active tension also affects the lattice spacing. The myosin lattice was compressed during the development of longitudinal force. This implies a radial component of crossbridge tension. The lattice compression was smaller in a compressed lattice and larger in an expanded lattice.
Collapse
|
45
|
Bagni MA, Cecchi G, Colomo F, Garzella P. Are weakly binding bridges present in resting intact muscle fibers? Biophys J 1992; 63:1412-5. [PMID: 1477287 PMCID: PMC1261446 DOI: 10.1016/s0006-3495(92)81718-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several experimental results (Schoenberg, M. 1988. Biophys. J. 54:135-148) have shown that the force response of relaxed skinned muscle fibers to fast stretches arises from the presence of cross-bridges rapidly cycling between attached and detached states. These bridges were identified with the M.ATP<-->AM.ATP and M.ADP.Pi<-->AM.ADP.Pi states seen in solution and are commonly referred to as weakly binding bridges. In this paper we have investigated the possibility that weakly binding bridges are also present in resting intact muscle fibers. The force response to fast stretches can be accounted for by assuming the presence in the fiber of a viscous and a viscoelastic passive component arranged in parallel. None of these components has the properties previously attributed to weakly binding bridges. This shows that in intact resting fibers there is no mechanical evidence of attached cross-bridges, suggesting that, under physiological conditions, either the M.ATP or M.ADP.Pi states have a negligibly small affinity for actin or the AM.ATP and AM.ADP.Pi cross-bridge states are unable to bear tension and contribute to fiber stiffness.
Collapse
Affiliation(s)
- M A Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Italy
| | | | | | | |
Collapse
|
46
|
Abstract
It has been known for a number of years that calcium ions play a crucial role in excitation-contraction (e-c) coupling (Sandow, 1952). The majority of the calcium required for this process is derived, at least in vertebrate striated muscle fibres, from discrete intracellular stores located at sites within the cell: the terminal cysternae (tc)/junctional SR of the sarcoplasmic reticulum (SR) (Fig. 1 a). These storage sites not only form a compartment that is distinct from the sarcoplasm of the fibre, but they are also closely associated with the contractile elements, the myofibrils. The SR release sites are activated following the spread of electrical activity (Huxley and Taylor, 1958) along the transverse (T) tubular system (Eisenberg and Gage, 1967; Adrian et al. 1969a, b; Peachey, 1973) from the surface membrane (Bm).
Collapse
Affiliation(s)
- C C Ashley
- University Laboratory of Physiology, Oxford, UK
| | | | | |
Collapse
|