1
|
Krygier A, Powell PD, McNaney JM, Huntington CM, Prisbrey ST, Remington BA, Rudd RE, Swift DC, Wehrenberg CE, Arsenlis A, Park HS, Graham P, Gumbrell E, Hill MP, Comley AJ, Rothman SD. Extreme Hardening of Pb at High Pressure and Strain Rate. PHYSICAL REVIEW LETTERS 2019; 123:205701. [PMID: 31809064 DOI: 10.1103/physrevlett.123.205701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
We study the high-pressure strength of Pb and Pb-4wt%Sb at the National Ignition Facility. We measure Rayleigh-Taylor growth of preformed ripples ramp compressed to ∼400 GPa peak pressure, among the highest-pressure strength measurements ever reported on any platform. We find agreement with 2D simulations using the Improved Steinberg-Guinan strength model for body-centered-cubic Pb; the Pb-4wt%Sb alloy behaves similarly within the error bars. The combination of high-rate, pressure-induced hardening and polymorphism yield an average inferred flow stress of ∼3.8 GPa at high pressure, a ∼250-fold increase, changing Pb from soft to extremely strong.
Collapse
Affiliation(s)
- A Krygier
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - P D Powell
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - J M McNaney
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - C M Huntington
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - S T Prisbrey
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - B A Remington
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - R E Rudd
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - D C Swift
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - C E Wehrenberg
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - A Arsenlis
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - H-S Park
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - P Graham
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - E Gumbrell
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - M P Hill
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - A J Comley
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | - S D Rothman
- Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| |
Collapse
|
2
|
Anzellini S, Kleppe AK, Daisenberger D, Wharmby MT, Giampaoli R, Boccato S, Baron MA, Miozzi F, Keeble DS, Ross A, Gurney S, Thompson J, Knap G, Booth M, Hudson L, Hawkins D, Walter MJ, Wilhelm H. Laser-heating system for high-pressure X-ray diffraction at the Extreme Conditions beamline I15 at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1860-1868. [PMID: 30407199 PMCID: PMC6225745 DOI: 10.1107/s1600577518013383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 05/23/2023]
Abstract
In this article, the specification and application of the new double-sided YAG laser-heating system built on beamline I15 at Diamond Light Source are presented. This system, combined with diamond anvil cell and X-ray diffraction techniques, allows in situ and ex situ characterization of material properties at extremes of pressure and temperature. In order to demonstrate the reliability and stability of this experimental setup over a wide range of pressure and temperature, a case study was performed and the phase diagram of lead was investigated up to 80 GPa and 3300 K. The obtained results agree with previously published experimental and theoretical data, underlining the quality and reliability of the installed setup.
Collapse
Affiliation(s)
- Simone Anzellini
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Annette K. Kleppe
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Dominik Daisenberger
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Michael T. Wharmby
- PETRA III, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ruggero Giampaoli
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Physics Department, Instituto Superior Tecnico (Universidade de Lisboa), Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Silvia Boccato
- ESRF, The European Synchrotron, CS40220, Grenoble 38043, France
| | - Marzena A. Baron
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Francesca Miozzi
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Dean S. Keeble
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Allan Ross
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Stuart Gurney
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Jon Thompson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Giles Knap
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Mark Booth
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Lee Hudson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Dave Hawkins
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Michael J. Walter
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington DC, 20015, USA
| | - Heribert Wilhelm
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
3
|
Schwager B, Ross M, Japel S, Boehler R. Melting of Sn at high pressure: comparisons with Pb. J Chem Phys 2010; 133:084501. [PMID: 20815574 DOI: 10.1063/1.3481780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Measurements for Sn, made using the laser-heated diamond cell, are reported that extend the melting curve to 68 GPa and 2300 K. Initially the melting temperature of Sn increases linearly with increasing pressure (dT/dP approximately 40 K/GPa) and near 38 GPa (2200 K) the melting curve flattens (dT/dP approximately 0), indicating a zero volume phase change at melting. The results are in good agreement with previously reported shock melting studies. In comparison to Sn the melting curve of Pb is relatively linear to 100 GPa, the highest pressure at which measurements have been made.
Collapse
Affiliation(s)
- Beate Schwager
- Max Planck Institut für Chemie, Postfach 3060, D-55020 Mainz, Germany.
| | | | | | | |
Collapse
|
4
|
Meade C, Mao HK, Hu J. High-Temperature Phase Transition and Dissociation of (Mg, Fe)SiO
3
Perovskite at Lower Mantle Pressures. Science 1995; 268:1743-5. [PMID: 17834995 DOI: 10.1126/science.268.5218.1743] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To study the crystallography of Earth's lower mantle, techniques for measuring synchrotron x-ray diffraction from a laser-heated diamond anvil cell have been developed. Experiments on samples of (Mg, Fe)SiO(3) show that silicate perovskite maintains its orthorhombic symmetry at 38 gigapascals and 1850 kelvin. Measurements at 65 and 70 gigapascals provide evidence for a temperature-induced orthorhombic-to-cubic phase transition and dissociation to an assemblage of perovskite and mixed oxides. If these phase transitions occur in Earth, they will require a significant change in mineralogical models of the lower mantle.
Collapse
|
8
|
Vohra YK, Ruoff AL. Static compression of metals Mo, Pb, and Pt to 272 GPa: Comparison with shock data. PHYSICAL REVIEW. B, CONDENSED MATTER 1990; 42:8651-8654. [PMID: 9995051 DOI: 10.1103/physrevb.42.8651] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|