1
|
Nakayama Y, Masuda Y, Shimizu R, Konishi M. Neudesin, a secretory protein, attenuates activation of lipopolysaccharide-stimulated macrophages by suppressing the Jak/Stat1/iNOS pathway. Life Sci 2024; 358:123185. [PMID: 39490522 DOI: 10.1016/j.lfs.2024.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
AIMS Neudesin, a heme-binding protein previously identified for its neurotrophic activity, has been implicated in various physiological and pathological processes, including immune regulation. However, its role in inflammatory macrophages remains unclear. Herein, we investigated the function of neudesin in the regulation of inflammatory macrophages. MAIN METHODS In vitro experiments were performed in bone marrow-derived macrophages (BMDMs). In vivo experiments were conducted on neudesin knockout mice with a murine endotoxic shock model. KEY FINDINGS We observed that neudesin deficiency led to elevated expression of Nos2/iNOS and increased nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BMDMs. Further, we found that neudesin, via the ERK/MAPK signaling pathway, promotes the proteasome-mediated degradation of Stat1, resulting in suppression of NO production. Furthermore, neudesin-deficient mice exhibited higher mortality rates following LPS administration, accompanied by increased Nos2/iNOS expression and nitrated proteins in the heart, compared to that in wildtype mice. Treatment with an iNOS inhibitor drastically improved the survival rate of neudesin-deficient mice, highlighting the significance of neudesin-mediated iNOS signaling in modulating immune responses and preventing excessive inflammation. SIGNIFICANCE Our findings suggest that neudesin acts as an anti-inflammatory cytokine, suppressing NO production in inflammatory macrophages, underscoring its potential as a therapeutic target for immune-related disorders.
Collapse
Affiliation(s)
- Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | - Yuki Masuda
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | - Ryohei Shimizu
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan; Department of Molecular Pharmaceutics, Hoshi University, Tokyo, Japan.
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
2
|
Yang G, Ding C, Yang X, Jiang J, He S, Shao Y, Zhang E, Fan X, Zhou X, Huang L, Xinyu Zhang C, Sun J, Wang Y, Zang L, Zheng M, Ma J. NDRG1 enhances the sensitivity to Cetuximab by promoting Stat1 ubiquitylation in colorectal cancer. J Adv Res 2024:S2090-1232(24)00319-9. [PMID: 39128702 DOI: 10.1016/j.jare.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Cetuximab (CTX) is an effective targeted drug for the treatment of metastatic colorectal cancer, but it is effective only in patients with wild-type KRAS genes. Even in this subset of patients, the sensitivity of CTX in patients with right hemi-colon cancer is much lower than that in patients with left hemi-colon cancer. This significantly limits its clinical application. Therefore, further elucidation of the underlying molecular mechanisms is needed. N-myc downstream-regulated gene 1 (NDRG1) plays an important role in solid tumor invasion and metastasis, but whether it can influence CTX sensitivity has not been thoroughly investigated. OBJECTIVE Our study aimed to identify a novel mechanism by which NDRG1 affects CTX sensitivity. METHODS Through mass spectrometry analysis of our previously constructed CTX-resistant RKO and HCT116 cells, we found that the signal transducer and activator of transcription-1 (Stat1) might be a potential target of NDRG1. By knocking out NDRG1 or/and Stat1 genes, we then applied the loss-of-function experiments to explore the regulatory relationship between NDRG1 and Stat1 and their roles in the cell cycle, epithelial-mesenchymal transition (EMT), and the sensitivity to CTX in these two colorectal cancer (CRC) cells. Finally, we used the nude-mouse transplanted tumor model and human CRC samples to verify the expression of NDRG1 and Stat1 and their impact on CTX sensitivity in vivo. RESULTS Stat1 was upregulated in CTX-resistant cells, whereas NDRG1 was downregulated. Mechanically, NDRG1 was inversely correlated with Stat1 expression. It suppressed CRC cell proliferation, migration, and invasion, and promoted apoptosis and epithelial-mesenchymal transition (EMT) by inhibiting Stat1. In addition, NDRG1 directly interacted with Stat1 and promoted Smurf1-induced Stat1 ubiquitination. Importantly, this novel NDRG1-dependent regulatory loop also enhanced CTX sensitivity both in vitro and in vivo. CONCLUSION Our study revealed that NDRG1 enhanced the sensitivity to Cetuximab by inhibiting Stat1 expression and promoting its ubiquitination in colorectal cancer, elucidating NDRG1 might be a potential therapeutic target for refractory CTX-resistant CRC tumors. But its clinical value still needs to be validated in a larger sample size as well as a different genetic background.
Collapse
Affiliation(s)
- Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Jiang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyuan He
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cindy Xinyu Zhang
- Faculty of Science, University of Alberta, 1-560 Enterprise Square,10230 Jasper Avenue, Edmonton, Canada
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical UniversityAffiliated Hospital, 1 Tongdao North Street, Hohhot, China.
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Luffarelli R, Panarello L, Quatrana A, Tiano F, Fortuni S, Rufini A, Malisan F, Testi R, Condò I. Interferon Gamma Enhances Cytoprotective Pathways via Nrf2 and MnSOD Induction in Friedreich's Ataxia Cells. Int J Mol Sci 2023; 24:12687. [PMID: 37628866 PMCID: PMC10454386 DOI: 10.3390/ijms241612687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.
Collapse
Affiliation(s)
- Riccardo Luffarelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Luca Panarello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Francesca Tiano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Silvia Fortuni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| |
Collapse
|
6
|
Riera E, García-Belmonte R, Madrid R, Pérez-Núñez D, Revilla Y. African swine fever virus ubiquitin-conjugating enzyme pI215L inhibits IFN-I signaling pathway through STAT2 degradation. Front Microbiol 2023; 13:1081035. [PMID: 36713190 PMCID: PMC9880986 DOI: 10.3389/fmicb.2022.1081035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
African swine fever virus (ASFV) is the causative agent of one of the most lethal diseases affecting domestic pig and wild boar, which is endangering the swine industry due to its rapid expansion. ASFV has developed different mechanisms to evade the host immune response, including inhibition of type I IFN (IFN-I) production and signaling, since IFN-I is a key element in the cellular antiviral response. Here, we report a novel mechanism of evasion of the IFN-I signaling pathway carried out by the ASFV ubiquitin-conjugating enzyme pI215L. Our data showed that pI215L inhibited IFN-stimulated response element (ISRE) activity and the consecutive mRNA induction of the IFN-stimulated genes ISG15 and IFIT1 through the ubiquitination and proteasomal degradation of STAT2. Additionally, by immunofluorescence, co-immunoprecipitation and nucleus-cytoplasm fractionation approaches, we have confirmed the interaction and colocalization of STAT2 and pI215L, in ectopic experiments and during ASFV infection. Moreover, expression of the catalytic mutant (I215L-C85A) did not inhibit the induction of ISG15 and IFIT1, nor the activity of ISRE. Furthermore, we confirmed that STAT2 degradation by pI215L is dependent on its catalytic activity, since expression of the pI215L-C85A mutant did not affect STAT2 levels, compared to the wild-type protein. Yet, our data reveal that the interaction of pI215L with STAT2 does not require the integrity of its catalytic domain since the pI215L-C85A mutant co-immunoprecipitates with STAT2. All these findings reveal, for the first time, the involvement of E2-ubiquitin-conjugating enzyme activity of pI215L in the immune response modulation.
Collapse
Affiliation(s)
- Elena Riera
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Ricardo Madrid
- Bioassays SL, UAM, Madrid, Spain,Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Biology, UCM, Madrid, Spain
| | - Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain,*Correspondence: Yolanda Revilla, ✉
| |
Collapse
|
7
|
Järvelä-Stölting M, Vesala L, Maasdorp MK, Ciantar J, Rämet M, Valanne S. Proteasome α6 Subunit Negatively Regulates the JAK/STAT Pathway and Blood Cell Activation in Drosophila melanogaster. Front Immunol 2021; 12:729631. [PMID: 35003057 PMCID: PMC8727353 DOI: 10.3389/fimmu.2021.729631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
JAK/STAT signaling regulates central biological functions such as development, cell differentiation and immune responses. In Drosophila, misregulated JAK/STAT signaling in blood cells (hemocytes) induces their aberrant activation. Using mass spectrometry to analyze proteins associated with a negative regulator of the JAK/STAT pathway, and by performing a genome-wide RNAi screen, we identified several components of the proteasome complex as negative regulators of JAK/STAT signaling in Drosophila. A selected proteasome component, Prosα6, was studied further. In S2 cells, Prosα6 silencing decreased the amount of the known negative regulator of the pathway, ET, leading to enhanced expression of a JAK/STAT pathway reporter gene. Silencing of Prosα6 in vivo resulted in activation of the JAK/STAT pathway, leading to the formation of lamellocytes, a specific hemocyte type indicative of hemocyte activation. This hemocyte phenotype could be partially rescued by simultaneous knockdown of either the Drosophila STAT transcription factor, or MAPKK in the JNK-pathway. Our results suggest a role for the proteasome complex components in the JAK/STAT pathway in Drosophila blood cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matthew K. Maasdorp
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- *Correspondence: Susanna Valanne,
| |
Collapse
|
8
|
Apavaloaei A, Laverdure JP, Perreault C. PSMB11 regulates gene expression in cortical thymic epithelial cells. Cell Rep 2021; 36:109546. [PMID: 34496243 DOI: 10.1016/j.celrep.2021.109546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/30/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The PSMB11 proteasomal subunit, expressed only in cortical thymic epithelial cells (cTECs), is essential for the development of functional CD8+ T cells. An attractive yet unproven theory holds that PSMB11 generates unique major histocompatibility complex class I (MHC I)-associated peptides required for positive selection. We recently reported that PSMB11 regulates the expression of hundreds of genes in cTECs, mainly by differential proteolysis of transcription factors. Thereby, PSMB11 maintains the distinctness of cTECs relative to medullary TECs (mTECs) and promotes cortex-to-medulla migration of developing thymocytes. These conclusions have been challenged by Ohigashi and colleagues, who suggest that their data show that PSMB11 uniquely controls antigen presentation without affecting cTEC biology. Here, we perform a comprehensive reanalysis of transcriptomic and proteomic data from the Ohigashi lab and confirm our original conclusions. This Matters Arising paper is in response to Ohigashi et al. (2019), published in Cell Reports. See also the response by Ohigashi and Takahama (2021), published in this issue of Cell Reports.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | | | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
9
|
Moser B, Edtmayer S, Witalisz-Siepracka A, Stoiber D. The Ups and Downs of STAT Inhibition in Acute Myeloid Leukemia. Biomedicines 2021; 9:1051. [PMID: 34440253 PMCID: PMC8392322 DOI: 10.3390/biomedicines9081051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aberrant Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is implicated in the pathogenesis of acute myeloid leukemia (AML), a highly heterogeneous hematopoietic malignancy. The management of AML is complex and despite impressive efforts into better understanding its underlying molecular mechanisms, survival rates in the elderly have not shown a substantial improvement over the past decades. This is particularly due to the heterogeneity of AML and the need for personalized approaches. Due to the crucial role of the deregulated JAK-STAT signaling in AML, selective targeting of the JAK-STAT pathway, particularly constitutively activated STAT3 and STAT5 and their associated upstream JAKs, is of great interest. This strategy has shown promising results in vitro and in vivo with several compounds having reached clinical trials. Here, we summarize recent FDA approvals and current potential clinically relevant inhibitors for AML patients targeting JAK and STAT proteins. This review underlines the need for detailed cytogenetic analysis and additional assessment of JAK-STAT pathway activation. It highlights the ongoing development of new JAK-STAT inhibitors with better disease specificity, which opens up new avenues for improved disease management.
Collapse
Affiliation(s)
| | | | | | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (B.M.); (S.E.); (A.W.-S.)
| |
Collapse
|
10
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
11
|
Stat2 stability regulation: an intersection between immunity and carcinogenesis. Exp Mol Med 2020; 52:1526-1536. [PMID: 32973222 PMCID: PMC8080578 DOI: 10.1038/s12276-020-00506-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/18/2022] Open
Abstract
Signal transducer and activator of transcription (STAT2) is a member of the STAT family that plays an essential role in immune responses to extracellular and intracellular stimuli, including inflammatory reactions, invasion of foreign materials, and cancer initiation. Although the majority of STAT2 studies in the last few decades have focused on interferon (IFN)-α/β (IFNα/β) signaling pathway-mediated host defense against viral infections, recent studies have revealed that STAT2 also plays an important role in human cancer development. Notably, strategic research on STAT2 function has provided evidence that transient regulatory activity by homo- or heterodimerization induces its nuclear localization where it to forms a ternary IFN-stimulated gene factor 3 (ISGF3) complex, which is composed of STAT1 and/or STAT2 and IFN regulatory factor 9 (IEF9). The molecular mechanisms of ISGF3-mediated ISG gene expression provide the basic foundation for the regulation of STAT2 protein activity but not protein quality control. Recently, previously unknown molecular mechanisms of STAT2-mediated cell proliferation via STAT2 protein quality control were elucidated. In this review, we briefly summarize the role of STAT2 in immune responses and carcinogenesis with respect to the molecular mechanisms of STAT2 stability regulation via the proteasomal degradation pathway. The activity of STAT2, a protein stimulated by molecular signalling systems to activate selected genes in ways that can lead to cancer, is regulated by factors controlling its rate of degradation. Yong-Yeon Cho and colleagues at The Catholic University of Korea in South Korea review the role of STAT2 in links between molecular signals of the immune response and the onset of cancer. They focus on the significance of factors that regulate the stability of STAT2. One key factor appears to be the molecular mechanisms controlling the degradation of STAT2 by cellular structures called proteasomes. These structures break down proteins as part of routine cell maintenance. Deeper understanding of the stimulation, action and degradation of STAT2 will assist efforts to treat the many cancers in which STAT2 activity is involved.
Collapse
|
12
|
Guo X, Ma P, Li Y, Yang Y, Wang C, Xu T, Wang H, Li C, Mao B, Qi X. RNF220 mediates K63-linked polyubiquitination of STAT1 and promotes host defense. Cell Death Differ 2020; 28:640-656. [PMID: 32814877 DOI: 10.1038/s41418-020-00609-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
STAT1 is a master regulator that orchestrates type 1 and 2 interferon (IFN)-induced IFN-stimulated gene (ISG) expression. The mechanisms by which STAT1 is phosphorylated and activated upon IFN signaling remain elusive. Our work demonstrated that ubiquitination of STAT1 mediated by the E3 ligase RNF220 contributed significantly to STAT1 activation and innate immune responses. Rnf220 gene deficiency resulted in the downregulation of IFN signaling and decreased expression of ISGs in response to type 1 and 2 IFNs stimulation and Acinetobacter baumannii and HSV-1 infection. Mechanistically, RNF220 interacted with STAT1 and mediated the K63-linked polyubiquitination of STAT1 at residue K110, which promoted the interaction between STAT1 and the kinase JAK1. The expression of RNF220 was induced by pathogenic infection and IFN signaling. RNF220 promoted STAT1 ubiquitination and phosphorylation through a positive feedback loop. RNF220 haploinsufficiency impaired IFN signaling, and RNF220-defective mice were more susceptible to A. baumannii and HSV-1 infection than WT mice. Our work offers novel insights into the mechanisms of STAT1 modulation and provides potential therapeutic targets against bacterial and viral infection and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaomin Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Yanan Yang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China. .,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
13
|
Sarodaya N, Karapurkar J, Kim KS, Hong SH, Ramakrishna S. The Role of Deubiquitinating Enzymes in Hematopoiesis and Hematological Malignancies. Cancers (Basel) 2020; 12:E1103. [PMID: 32354135 PMCID: PMC7281754 DOI: 10.3390/cancers12051103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/11/2020] [Accepted: 04/26/2020] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the production of blood cells throughout the human lifespan. Single HSCs can give rise to at least eight distinct blood-cell lineages. Together, hematopoiesis, erythropoiesis, and angiogenesis coordinate several biological processes, i.e., cellular interactions during development and proliferation, guided migration, lineage programming, and reprogramming by transcription factors. Any dysregulation of these processes can result in hematological disorders and/or malignancies. Several studies of the molecular mechanisms governing HSC maintenance have demonstrated that protein regulation by the ubiquitin proteasomal pathway is crucial for normal HSC function. Recent studies have shown that reversal of ubiquitination by deubiquitinating enzymes (DUBs) plays an equally important role in hematopoiesis; however, information regarding the biological function of DUBs is limited. In this review, we focus on recent discoveries about the physiological roles of DUBs in hematopoiesis, erythropoiesis, and angiogenesis and discuss the DUBs associated with common hematological disorders and malignancies, which are potential therapeutic drug targets.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
| | - Janardhan Karapurkar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Kondakova IV, Shashova EE, Sidenko EA, Astakhova TM, Zakharova LA, Sharova NP. Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation. Biomolecules 2020; 10:biom10040500. [PMID: 32224970 PMCID: PMC7226411 DOI: 10.3390/biom10040500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
This review provides information on the structure of estrogen receptors (ERs), their localization and functions in mammalian cells. Additionally, the structure of proteasomes and mechanisms of protein ubiquitination and cleavage are described. According to the modern concept, the ubiquitin proteasome system (UPS) is involved in the regulation of the activity of ERs in several ways. First, UPS performs the ubiquitination of ERs with a change in their functional activity. Second, UPS degrades ERs and their transcriptional regulators. Third, UPS affects the expression of ER genes. In addition, the opportunity of the regulation of proteasome functioning by ERs—in particular, the expression of immune proteasomes—is discussed. Understanding the complex mechanisms underlying the regulation of ERs and proteasomes has great prospects for the development of new therapeutic agents that can make a significant contribution to the treatment of diseases associated with the impaired function of these biomolecules.
Collapse
Affiliation(s)
- Irina V. Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Elena E. Shashova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Evgenia A. Sidenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; (I.V.K.); (E.E.S.); (E.A.S.)
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Liudmila A. Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (T.M.A.); (L.A.Z.)
- Correspondence: ; Tel.: +7-499-135-7674; Fax: +7-499-135-3322
| |
Collapse
|
15
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|
16
|
FBXW7-mediated stability regulation of signal transducer and activator of transcription 2 in melanoma formation. Proc Natl Acad Sci U S A 2019; 117:584-594. [PMID: 31843895 PMCID: PMC6955312 DOI: 10.1073/pnas.1909879116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The physiological relevance of STAT2 (a member of STAT family) in melanoma formation is clearly shown using a human skin tissue array. Moreover, FBXW7-mediated STAT2 protein stability regulation via ubiquitination is shown to play an essential role in melanoma cell proliferation in monolayer and anchorage-independent 3D culture systems. The molecular mechanisms that regulate STAT2 protein stability by FBXW7 include the interaction between CCD and DBD domains of STAT2 and the WD40 domain of FBXW7. STAT2 phosphorylation at the putative degron motifs that contain Ser381, Thr385, and Ser393 might be mediated by GSK3β. These serve as critical amino acids that form hydrogen bonds with the WD40 domain of FBXW7. Thus, the FBXW7–STAT2 signaling axis is an important target for melanoma treatment. In this study, we provide critical evidence that STAT2 stability regulation plays an essential role in melanoma cell proliferation and colony growth. We found that the interaction of FBXW7 and STAT2 induced STAT2 destabilization via a ubiquitination-mediated proteasomal degradation pathway. Notably, GSK3β-mediated STAT2 phosphorylation facilitated STAT2–FBXW7 interactions via the DNA binding domain of STAT2 and domains 1, 2, 6, and 7 of FBXW7 WD40. Importantly, the inverse correlation between protein levels of STAT2 and FBXW7 were observed not only in human melanoma cells but also in a human skin cancer tissue array. The relationship between protein levels of STAT2 and FBXW7, cell proliferation, and colony growth were similarly observed in the melanoma cell lines SK-MEL-2, -5, and -28. Moreover, STAT2 knockdown in melanoma cells suppressed melanoma cell proliferation and colony formation. These data demonstrated that FBXW7-mediated STAT2 stability regulation plays an essential role in melanoma cell proliferation and cancer growth.
Collapse
|
17
|
Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat Immunol 2019; 20:1621-1630. [PMID: 31740800 DOI: 10.1038/s41590-019-0542-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Interferon-γ (IFN-γ) is essential for the innate immune response to intracellular bacteria. Noncoding RNAs and RNA-binding proteins (RBPs) need to be further considered in studies of regulation of the IFN-γ-activated signaling pathway in macrophages. In the present study, we found that the microRNA miR-1 promoted IFN-γ-mediated clearance of Listeria monocytogenes in macrophages by indirectly stabilizing the Stat1 messenger RNA through the degradation of the cytoplasmic long noncoding RNA Sros1. Inducible degradation or genetic loss of Sros1 led to enhanced IFN-γ-dependent activation of the innate immune response. Mechanistically, Sros1 blocked the binding of Stat1 mRNA to the RBP CAPRIN1, which stabilized the Stat1 mRNA and, consequently, promoted IFN-γ-STAT1-mediated innate immunity. These observations shed light on the complex RNA-RNA regulatory networks involved in cytokine-initiated innate responses in host-pathogen interactions.
Collapse
|
18
|
Crisler WJ, Eshleman EM, Lenz LL. Ligand-induced IFNGR1 down-regulation calibrates myeloid cell IFNγ responsiveness. Life Sci Alliance 2019; 2:e201900447. [PMID: 31585982 PMCID: PMC6778285 DOI: 10.26508/lsa.201900447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023] Open
Abstract
The type II IFN (IFNγ) enhances antimicrobial activity yet also drives expression of genes that amplify inflammatory responses. Hence, excessive IFNγ stimulation can be pathogenic. Here, we describe a previously unappreciated mechanism whereby IFNγ itself dampens myeloid cell activation. Staining of monocytes from Listeria monocytogenes-infected mice provided evidence of type I IFN-independent reductions in IFNGR1. IFNγ was subsequently found to reduce surface IFNGR1 on cultured murine myeloid cells and human CD14+ peripheral blood mononuclear cells. IFNγ-driven reductions in IFNGR1 were not explained by ligand-induced receptor internalization. Rather, IFNγ reduced macrophage Ifngr1 transcription by altering chromatin structure at putative Ifngr1 enhancer sites. This is a distinct mechanism from that used by type I IFNs. Ligand-induced reductions in IFNGR1 altered myeloid cell sensitivity to IFNγ, blunting activation of STAT1 and 3. Our data, thus, reveal a mechanism by which IFNGR1 abundance and myeloid cell sensitivity to IFNγ can be modulated in the absence of type I IFNs. Multiple mechanisms, thus, exist to calibrate macrophage IFNGR1 abundance, likely permitting the fine tuning of macrophage activation and inflammation.
Collapse
Affiliation(s)
- William J Crisler
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily M Eshleman
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laurel L Lenz
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
19
|
Transcriptomic and proteomic analyses reveal new insights into the regulation of immune pathways during adenovirus type 2 infection. BMC Microbiol 2019; 19:15. [PMID: 30642258 PMCID: PMC6332865 DOI: 10.1186/s12866-018-1375-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background Human adenovirus (Ad) infection leads to the changes of host cell gene expression and biosynthetic processes. Transcriptomics in adenovirus type 2 (Ad2)-infected lung fibroblasts (IMR-90) cells has previously been studied using RNA sequencing. However, this study included only two time points (12 and 24 hpi) using constrained 76 bp long sequencing reads. Therefore, a more detailed study of transcription at different phases of infection using an up-graded sequencing technique is recalled. Furthermore, the correlation between transcription and protein expression needs to be addressed. Results In total, 3556 unique cellular genes were identified as differentially expressed at the transcriptional level with more than 2-fold changes in Ad2-infected cells as compared to non-infected cells by using paired-end sequencing. Based on the kinetics of the gene expression changes at different times after infection, these RNAs fell into 20 clusters. Among them, cellular genes involved in immune response were highly up-regulated in the early phase before becoming down-regulated in the late phase. Comparison of differentially expressed genes at transcriptional and posttranscriptional levels revealed low correlation. Particularly genes involved in cellular immune pathways showed a negative correlation. Here, we highlight the genes which expose inconsistent expression profiles with an emphasis on key factors in cellular immune pathways including NFκB, JAK/STAT, caspases and MAVS. Different from their transcriptional profiles with up- and down-regulation in the early and late phase, respectively, these proteins were up-regulated in the early phase and were sustained in the late phase. A surprising finding was that the target genes of the sustained activators failed to show response. Conclusion There were features common to genes which play important roles in cellular immune pathways. Their expression was stimulated at both RNA and protein levels during the early phase. In the late phase however, their transcription was suppressed while protein levels remained stable. These results indicate that Ad2 and the host cell use different strategies to regulate cellular immune pathways. A control mechanism at the post-translational level must thus exist which is under the control of Ad2. Electronic supplementary material The online version of this article (10.1186/s12866-018-1375-5) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Kao YT, Lai MMC, Yu CY. How Dengue Virus Circumvents Innate Immunity. Front Immunol 2018; 9:2860. [PMID: 30564245 PMCID: PMC6288372 DOI: 10.3389/fimmu.2018.02860] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
In the battle between a virus and its host, innate immunity serves as the first line of defense protecting the host against pathogens. The antiviral actions start with the recognition of pathogen-associated molecular patterns derived from the virus, then ultimately turning on particular transcription factors to generate antiviral interferons (IFNs) or proinflammatory cytokines via fine-tuned signaling cascades. With dengue virus (DENV) infection, its viral RNA is recognized by the host RNA sensors, mainly retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and toll-like receptors. DENV infection also activates the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING)-mediated DNA-sensing pathway despite the absence of a DNA stage in the DENV lifecycle. In the last decade, DENV has been considered a weak IFN-inducing pathogen with the evidence that DENV has evolved multiple strategies antagonizing the host IFN system. DENV passively escapes from innate immunity surveillance and also actively subverts the innate immune system at multiple steps. DENV targets both RNA-triggered RLR–mitochondrial antiviral signaling protein (RLR–MAVS) and DNA-triggered cGAS–STING signaling to reduce IFN production in infected cells. It also blocks IFN action by inhibiting IFN regulatory factor- and signal transducer and activator of transcription-mediated signaling. This review explores the current understanding of how DENV escapes the control of the innate immune system by modifying viral RNA and viral protein and by post-translational modification of cellular factors. The roles of the DNA-sensing pathway in DENV infection, and how mitochondrial dynamics participates in innate immunity are also discussed.
Collapse
Affiliation(s)
- Yu-Ting Kao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Michael M C Lai
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| |
Collapse
|
21
|
Neuroimmunomodulation in Major Depressive Disorder: Focus on Caspase 1, Inducible Nitric Oxide Synthase, and Interferon-Gamma. Mol Neurobiol 2018; 56:4288-4305. [PMID: 30306457 PMCID: PMC6505498 DOI: 10.1007/s12035-018-1359-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is one of the leading causes of disability worldwide, and its incidence is expected to increase. Despite tremendous efforts to understand its underlying biological mechanisms, MDD pathophysiology remains elusive and pharmacotherapy outcomes are still far from ideal. Low-grade chronic inflammation seems to play a key role in mediating the interface between psychological stress, depressive symptomatology, altered intestinal microbiology, and MDD onset. We review the available pre-clinical and clinical evidence of an involvement of pro-inflammatory pathways in the pathogenesis, treatment, and remission of MDD. We focus on caspase 1, inducible nitric oxide synthase, and interferon gamma, three inflammatory systems dysregulated in MDD. Treatment strategies aiming at targeting such pathways alone or in combination with classical therapies could prove valuable in MDD. Further studies are needed to assess the safety and efficacy of immune modulation in MDD and other psychiatric disorders with neuroinflammatory components.
Collapse
|
22
|
Zhang Y, Chen Y, Liu Z, Lai R. ERK is a negative feedback regulator for IFN-γ/STAT1 signaling by promoting STAT1 ubiquitination. BMC Cancer 2018; 18:613. [PMID: 29855346 PMCID: PMC5984314 DOI: 10.1186/s12885-018-4539-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/21/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We recently reported that STAT1 plays a tumor suppressor role, and ERK was inversely correlation with STAT1 expression in esophageal squamous cell carcinoma (ESCC). Here, we investigated the mechanism(s) that are responsible for the ERK regulates STAT1 in ESCC. METHODS We performed the immunoprecipitation (IP) to detect the ubiquitin of STAT1 upon MEK transfection or U0126 treatment and co-IP to confirm the binding of STAT1 and ERK in ESCC cell lines. RESULTS We found evidence that the ubiquitin-proteasome pathway can efficiently degrade STAT1 in ESCC cells, as MG132 treatment rapidly and dramatically increased STAT1 expression in these cells. This process is not dependent on the phosphorylation of the two important STAT1 residues, Y701 and S727, as site-directed mutagenesis of these two sites did not affect STAT1 degradation. We also found that ERK promotes proteasome degradation of STAT1, supported by the observations that pharmacologic inhibition of ERK resulted in a substantial increase of STAT1 whereas expression of constitutively active ERK further reduced the STAT1 protein level. In addition to suppressing STAT1 expression, ERK limited STAT1 signaling by decreasing the production of IFNγ. CONCLUSION To conclude, ERK is an effective negative regulator of STAT1 signaling in ESCC, by promoting its proteasome degradation and decreasing IFNγ production. Our data further supports that targeting ERK and/or STAT1 may be useful for treating ESCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong Province China
| | - Yelong Chen
- Department of Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong Province China
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 Guangdong China
| | - Zhaoyong Liu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 Guangdong China
| | - Raymond Lai
- Department of Pathology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
23
|
Snipes SA, Rodriguez K, DeVries AE, Miyawaki KN, Perales M, Xie M, Reddy GV. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet 2018; 14:e1007351. [PMID: 29659567 PMCID: PMC5919686 DOI: 10.1371/journal.pgen.1007351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/26/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022] Open
Abstract
Concentration-dependent transcriptional regulation and the spatial regulation of transcription factor levels are poorly studied in plant development. WUSCHEL, a stem cell-promoting homeodomain transcription factor, accumulates at a higher level in the rib meristem than in the overlying central zone, which harbors stem cells in the shoot apical meristems of Arabidopsis thaliana. The differential accumulation of WUSCHEL in adjacent cells is critical for the spatial regulation and levels of CLAVATA3, a negative regulator of WUSCHEL transcription. Earlier studies have revealed that DNA-dependent dimerization, subcellular partitioning and protein destabilization control WUSCHEL protein levels and spatial accumulation. Moreover, the destabilization of WUSCHEL may also depend on the protein concentration. However, the roles of extrinsic spatial cues in maintaining differential accumulation of WUS are not understood. Through transient manipulation of hormone levels, hormone response patterns and analysis of the receptor mutants, we show that cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein. Furthermore, we show that the same WUSCHEL-box functions as a degron sequence in cytokinin deficient regions in the central zone, leading to the destabilization of WUSCHEL. The coupled functions of the WUSCHEL-box in nuclear retention as described earlier, together with cytokinin sensing, reinforce higher nuclear accumulation of WUSCHEL in the rib meristem. In contrast a sub-threshold level may expose the WUSCHEL-box to destabilizing signals in the central zone. Thus, the cytokinin signaling acts as an asymmetric spatial cue in stabilizing the WUSCHEL protein to lead to its differential accumulation in neighboring cells, which is critical for concentration-dependent spatial regulation of CLAVATA3 transcription and meristem maintenance. Furthermore, our work shows that cytokinin response is regulated independently of the WUSCHEL function which may provide robustness to the regulation of WUSCHEL concentration. Stem cell regulation is critical for the development of all organisms, and plants have particularly unique stem cell populations that are maintained throughout their lifespan at the tips of both the shoots and roots. Proper spatial and temporal regulation of gene expression by mobile proteins is essential for maintaining these stem cell populations. Here we show that in the shoot, the mobile stem cell promoting factor WUSCHEL is stabilized at the protein level by the plant hormone cytokinin. This stabilization occurs in a tightly restricted spatial context, and movement of WUSCHEL outside of this region results in WUSCHEL instability that leads to its degradation. The specific regions on the WUSCHEL protein that respond to the cytokinin signaling are the same regions that are essential for both proper WUSCHEL localization in the nucleus and regulation of its target genes. This spatially specific response to cytokinin results in differential accumulation of WUSCHEL in space, and reveals an intrinsic link between protein stability and the regulation of target genes to maintain a stable population of stem cells.
Collapse
Affiliation(s)
- Stephen A. Snipes
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Kevin Rodriguez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Aaron E. DeVries
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Kaori N. Miyawaki
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Mariano Perales
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Mingtang Xie
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - G. Venugopala Reddy
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Non-receptor type, proline-rich protein tyrosine kinase 2 (Pyk2) is a possible therapeutic target for Kawasaki disease. Clin Immunol 2017; 179:17-24. [DOI: 10.1016/j.clim.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/26/2016] [Accepted: 01/30/2017] [Indexed: 01/10/2023]
|
25
|
Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017; 18:374-384. [PMID: 28323260 PMCID: PMC11565648 DOI: 10.1038/ni.3691] [Citation(s) in RCA: 836] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Liu J, Li Y, Luo M, Yuan Z, Liu J. MicroRNA-214 inhibits the osteogenic differentiation of human osteoblasts through the direct regulation of baculoviral IAP repeat-containing 7. Exp Cell Res 2017; 351:157-162. [PMID: 28109866 DOI: 10.1016/j.yexcr.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Osteoblasts and osteoclasts coordinate to monitor the dynamic osteogenic balance between bone formation and bone resorption. Hence, an investigation of the regulatory mechanisms underlying osteogenic osteoblast differentiation will provide more methods for bone repair and bone regeneration. In the present study, human osteoblast hFOB 1.19 cells were cultured. MicroRNA-214 (miR-214) expression significantly down-regulated during the osteogenic differentiation of hFOB 1.19 cells. In addition, miR-214 overexpression by miR-214 precursor transfection markedly inhibited the expression of alkaline phosphatase (ALP), collagen type I α1 (col1α1) and runt-related transcription factor 2 (Runx2), which concomitantly decreased ALP activity and the number of mineralized nodules but promoted the expression of signal transducer and activator of transcription 1 (STAT1), an osteogenesis blocker. We next found that miR-214 inhibited the expression of baculoviral IAP repeat-containing 7 (BIRC7), a member of the inhibitor of apoptosis proteins family. However, BIRC7 overexpression, which was induced by plasmid transfection, notably reversed the inhibitory effects of miR-214, indicating a potential BIRC7-dependent osteogenic differentiation manner mediated by miR-214. Taken together, our results demonstrate for the first time that miR-214 suppresses osteogenesis by targeting BIRC7, providing a possible therapeutic target for bone degenerative diseases.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Orthopaedics, the First Affiliated Hospital of the Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Yan Li
- Department of Orthopaedics, the First Affiliated Hospital of the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming Luo
- Department of Orthopaedics, the First Affiliated Hospital of the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhi Yuan
- Department of Orthopaedics, the First Affiliated Hospital of the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian Liu
- Department of Orthopaedics, the First Affiliated Hospital of the Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
27
|
Lawrence DW, Kornbluth J. E3 ubiquitin ligase NKLAM ubiquitinates STAT1 and positively regulates STAT1-mediated transcriptional activity. Cell Signal 2016; 28:1833-1841. [PMID: 27570112 PMCID: PMC5206800 DOI: 10.1016/j.cellsig.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is critically important for the transcription of a large number of immunologically relevant genes. In macrophages, interferon gamma (IFNγ) signal transduction occurs via the JAK/STAT pathway and ends with the transcription of a number of genes necessary for a successful host immune response. The predominant mechanism of regulation of STAT1 is phosphorylation; however, there is a growing body of evidence that demonstrates STAT1 is also regulated by ubiquitination. In this report we show that JAK1 and STAT1 in macrophages deficient in an E3 ubiquitin ligase termed Natural Killer Lytic-Associated Molecule (NKLAM) are hyperphosphorylated following IFNγ stimulation. We found NKLAM was transiently localized to the IFNγ receptor complex during stimulation with IFNγ, where it bound to and mediated K63-linked ubiquitination of STAT1. In vitro nucleofection studies demonstrated that STAT1-mediated transcription was significantly reduced in NKLAM-KO macrophages. There was no obvious defect in STAT1 nuclear translocation; however, STAT1 from NKLAM-KO macrophages had a reduced ability to bind a functional gamma activation DNA sequence. There was also less mRNA expression of STAT1-mediated genes in NKLAM-KO macrophages treated with IFNγ. Our results demonstrate for the first time that NKLAM is a positive regulator of STAT1-mediated transcriptional activity and is an important component of the innate immune response.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States; VA St. Louis Health Care System, St. Louis, MO 63106, United States.
| |
Collapse
|
28
|
Porcine Epidemic Diarrhea Virus Infection Inhibits Interferon Signaling by Targeted Degradation of STAT1. J Virol 2016; 90:8281-92. [PMID: 27384656 DOI: 10.1128/jvi.01091-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Porcine epidemic diarrhea virus (PEDV) is a worldwide-distributed alphacoronavirus, but the pathogenesis of PEDV infection is not fully characterized. During virus infection, type I interferon (IFN) is a key mediator of innate antiviral responses. Most coronaviruses develop some strategy for at least partially circumventing the IFN response by limiting the production of IFN and by delaying the activation of the IFN response. However, the molecular mechanisms by which PEDV antagonizes the antiviral effects of interferon have not been fully characterized. Especially, how PEDV impacts IFN signaling components has yet to be elucidated. In this study, we observed that PEDV was relatively resistant to treatment with type I IFN. Western blot analysis showed that STAT1 expression was markedly reduced in PEDV-infected cells and that this reduction was not due to inhibition of STAT1 transcription. STAT1 downregulation was blocked by a proteasome inhibitor but not by an autophagy inhibitor, strongly implicating the ubiquitin-proteasome targeting degradation system. Since PEDV infection-induced STAT1 degradation was evident in cells pretreated with the general tyrosine kinase inhibitor, we conclude that STAT1 degradation is independent of the IFN signaling pathway. Furthermore, we report that PEDV-induced STAT1 degradation inhibits IFN-α signal transduction pathways. Pharmacological inhibition of STAT1 degradation rescued the ability of the host to suppress virus replication. Collectively, these data show that PEDV is capable of subverting the type I interferon response by inducing STAT1 degradation. IMPORTANCE In this study, we show that PEDV is resistant to the antiviral effect of IFN. The molecular mechanism is the degradation of STAT1 by PEDV infection in a proteasome-dependent manner. This PEDV infection-induced STAT1 degradation contributes to PEDV replication. Our findings reveal a new mechanism evolved by PEDV to circumvent the host antiviral response.
Collapse
|
29
|
Shah S, King EM, Mostafa MM, Altonsy MO, Newton R. DUSP1 Maintains IRF1 and Leads to Increased Expression of IRF1-dependent Genes: A MECHANISM PROMOTING GLUCOCORTICOID INSENSITIVITY. J Biol Chem 2016; 291:21802-21816. [PMID: 27551049 DOI: 10.1074/jbc.m116.728964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
Although the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, mediates dexamethasone-induced repression of MAPKs, 14 of 46 interleukin-1β (IL1B)-induced mRNAs were significantly enhanced by DUSP1 overexpression in pulmonary A549 cells. These include the interferon regulatory factor, IRF1, and the chemokine, CXCL10. Of these, DUSP1-enhanced mRNAs, 10 including CXCL10, were IRF1-dependent. MAPK inhibitors and DUSP1 overexpression prolonged IRF1 expression by elevating transcription and increasing IRF1 mRNA and protein stability. Conversely, DUSP1 silencing increased IL1B-induced MAPK phosphorylation while significantly reducing IRF1 protein expression at 4 h. This confirms a regulatory network whereby DUSP1 switches off MAPKs to maintain IRF1 expression. There was no repression of IRF1 expression by dexamethasone in primary human bronchial epithelial cells, and in A549 cells IL1B-induced IRF1 protein was only modestly and transiently repressed. Although dexamethasone did not repress IL1B-induced IRF1 protein expression at 4-6 h, silencing of IL1B plus dexamethasone-induced DUSP1 significantly reduced IRF1 expression. IL1B-induced expression of CXCL10 was largely insensitive to dexamethasone, whereas other DUSP1-enhanced, IRF1-dependent mRNAs showed various degrees of repression. With IL1B plus dexamethasone, CXCL10 expression was also IRF1-dependent, and expression was reduced by DUSP1 silencing. Thus, IL1B plus dexamethasone-induced DUSP1 maintains expression of IRF1 and the IRF1-dependent gene, CXCL10. This is supported by chromatin immunoprecipitation showing IRF1 recruitment to be essentially unaffected by dexamethasone at the CXCL10 promoter or at the promoters of more highly repressed IRF1-dependent genes. Since IRF1-dependent genes, such as CXCL10, are central to host defense, these data may help explain the reduced effectiveness of glucocorticoids during asthma exacerbations.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Elizabeth M King
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Mohammed O Altonsy
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and.,Department of Zoology, Sohag University, Sohag 825224, Egypt
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| |
Collapse
|
30
|
Abstract
Early growth response (Egr) is a member of the zinc finger family of transcription factors that reflects neuronal activity induced by various stimuli. Acute cocaine administration elicits rapid and transient induction of several immediate early genes in brain neurons. However, the mechanism regulating the degradation of the Egr-1 protein is not clearly understood. In this study, rats were injected with cocaine and the relationships among locomotor activity, Egr-1 protein level, phosphorylation of upstream kinase extracellular regulated kinase (ERK)1/2, Egr-1 mRNA expression, and ubiquitination of the Egr-1 protein were measured in the dorsal striatum and the frontal cortex. Locomotor activity reached a peak at about 15 min, and phosphorylation of ERK1/2 and Egr-1 mRNA level also increased at that time. However, the Egr-1 protein level decreased initially in the dorsal striatum, probably due to ubiquitination-mediated degradation. When locomotor activity decreased substantially at 30 min, the phosphorylation of ERKs and expression levels of Egr-1 mRNA and protein reached their peak levels and the protein level subsequently increased. These findings indicate that immediate early gene protein levels would not be a reliable indicator of increased regional activity in the brain. Thus, observations spanning multiple time periods or the examination of mRNA rather than protein would be recommended in these situations.
Collapse
|
31
|
Qiao N, Xu C, Zhu YX, Cao Y, Liu DC, Han X. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Cell Death Dis 2015; 6:e1650. [PMID: 25695603 PMCID: PMC4669796 DOI: 10.1038/cddis.2015.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/21/2014] [Accepted: 01/02/2015] [Indexed: 12/17/2022]
Abstract
Hypoxia complicates islet isolation for transplantation and may contribute to pancreatic β-cell failure in type 2 diabetes. Pancreatic β-cells are susceptible to hypoxia-induced apoptosis. Severe hypoxic conditions during the immediate post-transplantation period are a main non-immune factor leading to β-cell death and islet graft failure. In this study, we identified the transcription factor Ets-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Hypoxia regulates Ets-1 at multiple levels according to the degree of β-cell oxygen deprivation. Moderate hypoxia promotes Ets-1 gene transcription, whereas severe hypoxia promotes its transactivation activity, as well as its ubiquitin-proteasome mediated degradation. This degradation causes a relative insufficiency of Ets-1 activity, and limits the transactivation effect of Ets-1 on downstream hypoxic-inducible genes and its anti-apoptotic function. Overexpression of ectopic Ets-1 in MIN6 and INS-1 cells protects them from severe hypoxia-induced apoptosis in a mitochondria-dependent manner, confirming that a sufficient amount of Ets-1 activity is critical for protection of pancreatic β-cells against hypoxic injury. Targeting Ets-1 expression may be a useful strategy for islet graft protection during the immediate post-transplantation period.
Collapse
Affiliation(s)
- N Qiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - C Xu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y-X Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Cao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - D-C Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Licht V, Noack K, Schlott B, Förster M, Schlenker Y, Licht A, Krämer OH, Heinzel T. Caspase-3 and caspase-6 cleave STAT1 in leukemic cells. Oncotarget 2015; 5:2305-17. [PMID: 24810717 PMCID: PMC4039164 DOI: 10.18632/oncotarget.1911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Signal Transducer and Activator of Transcription-1 (STAT1) is phosphorylated upon interferon (IFN) stimulation, which can restrict cell proliferation and survival. Nevertheless, in some cancers STAT1 can act in an anti-apoptotic manner. Moreover, certain malignancies are characterized by the overexpression and constitutive activation of STAT1. Here, we demonstrate that the treatment of transformed hematopoietic cells with epigenetic drugs belonging to the class of histone deacetylase inhibitors (HDACi) leads to the cleavage of STAT1 at multiple sites by caspase-3 and caspase-6. This process does not occur in solid tumor cells, normal hematopoietic cells, and leukemic cells that underwent granulocytic or monocytic differentiation. STAT1 cleavage was studied under cell free conditions with purified STAT1 and a set of candidate caspases as well as with mass spectrometry. These assays indicate that unmodified STAT1 is cleaved at multiple sites by caspase-3 and caspase-6. Our study shows that STAT1 is targeted by caspases in malignant undifferentiated hematopoietic cells. This observation may provide an explanation for the selective toxicity of HDACi against rapidly proliferating leukemic cells.
Collapse
Affiliation(s)
- Verena Licht
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany. Friedrich-Schiller-Universität Jena, Centre for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ryter SW, Choi AMK, Kim HP. Profibrogenic phenotype in caveolin-1 deficiency via differential regulation of STAT-1/3 proteins. Biochem Cell Biol 2014; 92:370-8. [PMID: 25263949 DOI: 10.1139/bcb-2014-0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibrosis underlies the pathogenesis of several human diseases, which can lead to severe injury of vital organs. We previously demonstrated that caveolin-1 expression is reduced in experimental fibrosis and that caveolin-1 exerts antiproliferative and antifibrotic effects in lung fibrosis models. The signal transducers and activators of transcription (STAT) proteins, STAT1 and STAT3, can be activated simultaneously. STAT1 can inhibit cell growth and promote apoptosis while STAT3 inhibits apoptosis. Here, we show that caveolin-1-deficient (cav-1(-/-)) lung fibroblasts display dramatically upregulated STAT3 activation in response to platelet-derived growth factor-BB and transforming growth factor-β stimuli, whereas STAT1 activation is undetectable. Downregulation of protein tyrosine phosphatase-1B played a role in the preferential activation of STAT3 in cav-1(-/-) fibroblasts. Genetic deletion of STAT3 by siRNA modulated the expression of genes involved in cell proliferation and fibrogenesis. Basal expression of α-smooth muscle actin was prominent in cav-1(-/-) liver and kidney, consistent with deposition of collagen in these organs. Collectively, we demonstrate that the antiproliferative and antifibrogenic properties of caveolin-1 in vitro are mediated by the balance between STAT1 and STAT3 activation. Deregulated STAT signaling associated with caveolin-1 deficiency may be relevant to proliferative disorders such as tissue fibrosis.
Collapse
Affiliation(s)
- Stefan W Ryter
- a Division of Pulmonary and Critical Care Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Kroeker AL, Coombs KM. Systems biology unravels interferon responses to respiratory virus infections. World J Biol Chem 2014; 5:12-25. [PMID: 24600511 PMCID: PMC3942539 DOI: 10.4331/wjbc.v5.i1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.
Collapse
|
35
|
Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014; 382:560-569. [PMID: 23541951 PMCID: PMC3748257 DOI: 10.1016/j.mce.2013.03.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/18/2013] [Indexed: 01/10/2023]
Abstract
The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- S Haricharan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Yeh HM, Yu CY, Yang HC, Ko SH, Liao CL, Lin YL. Ubiquitin-specific protease 13 regulates IFN signaling by stabilizing STAT1. THE JOURNAL OF IMMUNOLOGY 2013; 191:3328-36. [PMID: 23940278 DOI: 10.4049/jimmunol.1300225] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The IFN immune system comprises type I, II, and III IFNs, signals through the JAK-STAT pathway, and plays central roles in host defense against viral infection. Posttranslational modifications such as ubiquitination regulate diverse molecules in the IFN pathway. To search for the deubiquitinating enzymes (DUBs) involved in the antiviral activity of IFN, we used RNA interference screening to identify a human DUB, ubiquitin-specific protease (USP) 13, whose expression modulates the antiviral activity of IFN-α against dengue virus serotype 2 (DEN-2). The signaling events and anti-DEN-2 activities of IFN-α and IFN-γ were reduced in cells with USP13 knockdown but enhanced with USP13 overexpression. USP13 may regulate STAT1 protein because the protein level and stability of STAT1 were increased with USP13 overexpression. Furthermore, STAT1 ubiquitination was reduced in cells with USP13 overexpression and increased with USP13 knockdown regardless of with or without IFN-α treatment. Thus, USP13 positively regulates type I and type II IFN signaling by deubiquitinating and stabilizing STAT1 protein. Overall, to our knowledge, USP13 is the first DUB identified to modulate STAT1 and play a role in the antiviral activity of IFN against DEN-2 replication.
Collapse
Affiliation(s)
- Hom-Ming Yeh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Advanced-glycation-end-product-induced formation of immunoproteasomes: involvement of RAGE and Jak2/STAT1. Biochem J 2013; 448:127-39. [PMID: 22892029 DOI: 10.1042/bj20120298] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AGEs (advanced glycation-end products) accumulate during aging and several pathologies such as Alzheimer's disease and diabetes. These protein products are known to inhibit proteolytic pathways. Moreover, AGEs are known to be involved in the activation of immune responses. In the present study we demonstrate that AGEs induce the expression of immunoproteasomal subunits. To elucidate a molecular basis underlying the observed effects we were able to demonstrate an activation of the Jak2 (Janus kinase 2)/STAT1 (signal transducer and activator of transcription 1) pathway. Inhibition of Jak2 by AG-490 and STAT1 by specific siRNA (small interfering RNA) abolished AGE-induced expression of immunoproteasomal subunits. Furthermore, silencing of RAGE (receptor for AGEs) revealed that AGE-induced up-regulation of the immunoproteasome is mediated by a RAGE signalling process. Thus we have described for the first time that the signalling pathway of Jak2 and STAT1 activated by AGEs via RAGE is involved in the induction of the immunoproteasome.
Collapse
|
38
|
CYP2E1-catalyzed alcohol metabolism: role of oxidant generation in interferon signaling, antigen presentation and autophagy. Subcell Biochem 2013; 67:177-97. [PMID: 23400922 DOI: 10.1007/978-94-007-5881-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) is one of two major enzymes that catalyze ethanol oxidation in the liver. CYP2E1 is also unique because it is inducible, as its hepatic content rises after continuous (chronic) ethanol administration, thereby accelerating the rate of ethanol metabolism and affording greater tolerance to heavy alcohol consumption. However, the broad substrate specificity of CYP2E1 and its capacity to generate free radicals from alcohol and other hepatotoxins, places CYP2E1 as a central focus of not only liver toxicity, but also as an enzyme that regulates cytokine signaling, antigen presentation, and macromolecular degradation, all of which are crucial to liver cell function and viability. Here, we describe our own and other published work relevant to the importance of CYP2E1-catalyzed ethanol oxidation and how this catalysis affects the aforementioned cellular processes to produce liver injury.
Collapse
|
39
|
Ying M, Zhou X, Zhong L, Lin N, Jing H, Luo P, Yang X, Song H, Yang B, He Q. Bortezomib sensitizes human acute myeloid leukemia cells to all-trans-retinoic acid-induced differentiation by modifying the RARα/STAT1 axis. Mol Cancer Ther 2012; 12:195-206. [PMID: 23243061 DOI: 10.1158/1535-7163.mct-12-0433] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All-trans-retinoic acid (ATRA) has held great promise for differentiation-based therapy but reportedly downregulates retinoic acid receptor-α (RARα) in a proteasome-dependent manner, which leads to decreased acute myeloid leukemia (AML) cell differentiation efficiency. Therefore, research strategies that seek to further sensitize cells to retinoids and extend the range of retinoid-affected myeloid malignancies beyond acute promyelocytic leukemia (APL) are key investigative avenues. Here, we show that bortezomib, the first proteasome inhibitor approved for newly diagnosed and relapsed multiple myeloma, exhibited strong synergism with ATRA to promote HL60 and NB4 AML cell differentiation. We observed that bortezomib sensitized AML cells to ATRA-induced morphologic, biochemical, and functional changes, indicative of myeloid differentiation without cell death. In addition, treatment of human leukemia HL60 xenografts with bortezomib and ATRA together did not increase bortezomib-induced progressive weight loss but resulted in significant tumor growth inhibition in addition to increased differentiation (P < 0.05). These enhanced differentiation effects were accompanied by RARα stabilization and STAT1 activation. Taken together, our study was the first to evaluate bortezomib and ATRA synergy in AML cell differentiation and to assess new opportunities for bortezomib and ATRA combination as a promising approach for future differentiation therapy.
Collapse
Affiliation(s)
- Meidan Ying
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fujii H. Mechanisms of Signal Transduction from Receptors of Type I and Type II Cytokines. J Immunotoxicol 2012; 4:69-76. [PMID: 18958714 DOI: 10.1080/15476910601154779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytokines play pivotal roles in regulation of immune responses. Signaling proteins involved in cytokine signal transduction pathways can be potential targets of toxins causing aberrant immune responses. Binding of cytokines to their specific receptors induces activation of signal transduction pathways. In this review, an overview of the cytokine/cytokine receptor system, signaling pathways activated by cytokine receptors, their regulation mechanisms, pathological conditions caused by aberrant cytokine signaling, and issues to be elucidated in the near future is provided.
Collapse
Affiliation(s)
- Hodaka Fujii
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
41
|
Tsumura M, Okada S, Sakai H, Yasunaga S, Ohtsubo M, Murata T, Obata H, Yasumi T, Kong XF, Abhyankar A, Heike T, Nakahata T, Nishikomori R, Al-Muhsen S, Boisson-Dupuis S, Casanova JL, Alzahrani M, Shehri MA, Elghazali G, Takihara Y, Kobayashi M. Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum Mutat 2012; 33:1377-87. [PMID: 22573496 DOI: 10.1002/humu.22113] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/30/2012] [Indexed: 01/28/2023]
Abstract
Patients carrying two loss-of-function (or hypomorphic) alleles of STAT1 are vulnerable to intracellular bacterial and viral diseases. Heterozygosity for loss-of-function dominant-negative mutations in STAT1 is responsible for autosomal dominant (AD) Mendelian susceptibility to mycobacterial disease (MSMD), whereas heterozygosity for gain-of-function loss-of-dephosphorylation mutations causes AD chronic mucocutaneous candidiasis (CMC). The two previously reported types of AD MSMD-causing STAT1 mutations are located in the tail segment domain (p.L706S) or in the DNA-binding domain (p.E320Q and p.Q463H), whereas the AD CMC-causing mutations are located in the coiled-coil domain. We identified two cases with AD-STAT1 deficiency in two unrelated patients from Japan and Saudi Arabia carrying heterozygous missense mutations affecting the SH2 domain (p.K637E and p.K673R). p.K673R is a hypomorphic mutation that impairs STAT1 tyrosine phosphorylation, whereas the p.K637E mutation is null and affects both STAT1 phosphorylation and DNA-binding activity. Both alleles are dominant negative and result in impaired STAT1-mediated cellular responses to interferon (IFN)-γ and IL-27. In contrast, STAT1-mediated cellular responses against IFN-α and IFN-λ1 were preserved at normal levels in patients' cells. We describe here the first dominant mutations in the SH2 domain of STAT1, revealing the importance of this domain for tyrosine phosphorylation and DNA binding, as well as for antimycobacterial immunity.
Collapse
Affiliation(s)
- Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Interferon cytokine family members shape the immune response to protect the host from both pathologic infections and tumorigenesis. To mediate their physiologic function, interferons evoke a robust and complex signal transduction pathway that leads to the induction of interferon-stimulated genes with both proinflammatory and antiviral functions. Numerous mechanisms exist to tightly regulate the extent and duration of these cellular responses. Among such mechanisms, the post-translational conjugation of ubiquitin polypeptides to protein mediators of interferon signaling has emerged as a crucially important mode of control. In this mini-review, we highlight recent advances in our understanding of these ubiquitin-mediated mechanisms, their exploitation by invading viruses, and their possible utilization for medical intervention.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Comparative Oncology Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| |
Collapse
|
43
|
Yuan C, Qi J, Zhao X, Gao C. Smurf1 protein negatively regulates interferon-γ signaling through promoting STAT1 protein ubiquitination and degradation. J Biol Chem 2012; 287:17006-17015. [PMID: 22474288 DOI: 10.1074/jbc.m112.341198] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferons are important cytokines that mediate antiviral, antiproliferative, antitumor, and immunoregulatory activities. However, uncontrolled IFN signaling may lead to autoimmune diseases. Here we identified Smurf1 as a negative regulator for IFN-γ signaling by targeting STAT1 for ubiquitination and proteasomal degradation. Smurf1 interacted with STAT1 through the WW domains of Smurf1 and the PY motif in STAT1 and catalyzed K48-linked polyubiquitination of STAT1. Interestingly, the Smurf1-mediated ubiquitination and degradation did not require STAT1 tyrosine and serine phosphorylation. Subsequently, overexpression of Smurf1 attenuated IFN-γ-mediated STAT1 activation and antiviral immune responses, whereas knockdown of Smurf1 enhanced IFN-γ-mediated STAT1 activation, expression of STAT1 target genes, and antiviral immune responses. Furthermore, IFN-γ stimulation led to enhanced expression of Smurf1. Therefore, our results demonstrate that Smurf1 is a negative feedback regulator for IFN-γ signaling by targeting STAT1 for ubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Chao Yuan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Immunology, Shandong University Medical School, Jinan, Shandong 250012, China
| | - Jianni Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Immunology, Shandong University Medical School, Jinan, Shandong 250012, China
| | - Xueying Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Immunology, Shandong University Medical School, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Immunology, Shandong University Medical School, Jinan, Shandong 250012, China.
| |
Collapse
|
44
|
Rockwell CE, Monaco JJ, Qureshi N. A critical role for the inducible proteasomal subunits LMP7 and MECL1 in cytokine production by activated murine splenocytes. Pharmacology 2012; 89:117-26. [PMID: 22398747 DOI: 10.1159/000336335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The proteasome is a multi-subunit complex that proteolytically cleaves proteins. The replacement of the constitutive proteasome subunits β1, β2, and/or β5 with the IFNγ-inducible subunits LMP2, MECL1, and/or LMP7 results in the 'immunoproteasome'. The inducible subunits change the cleavage specificities of the proteasome, but it is unclear whether they have functions in addition to this. The purpose of the present study was to determine the role of the proteasome in general, as well as LMP7 and MECL1 specifically, with regard to cytokine production by activated primary splenocytes. METHODS A LMP7/MECL1-null mouse was engineered to determine the roles of these subunits in cytokine production. Isolated splenocytes from wild-type and LMP7/MECL1-/- mice were treated with lactacystin and activated with PMA and ionomycin and subsequently cytokine mRNA levels were quantified. RESULTS The present study demonstrates that LMP7/MECL1 regulates the expression of IFNγ, IL4, IL10, IL2Rβ, GATA3, and t-bet. In contrast, the regulation of IL2, IL13, TNFα, and IL2Rα by the proteasome appears to occur independently of LMP7/MECL1. CONCLUSIONS Collectively, the present study demonstrates that LMP7 and MECL1 regulate cytokine expression, suggesting this system represents a novel mechanism for the regulation of cytokines and cytokine signaling.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Mich., USA
| | | | | |
Collapse
|
45
|
Puntel M, Barrett R, Sanderson NSR, Kroeger KM, Bondale N, Wibowo M, Kennedy S, Liu C, Castro MG, Lowenstein PR. Identification and visualization of CD8+ T cell mediated IFN-γ signaling in target cells during an antiviral immune response in the brain. PLoS One 2011; 6:e23523. [PMID: 21897844 PMCID: PMC3163574 DOI: 10.1371/journal.pone.0023523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022] Open
Abstract
CD8(+) T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8(+) T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8(+) T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8(+) T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses.
Collapse
Affiliation(s)
- Mariana Puntel
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Barrett
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nicholas S. R. Sanderson
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kurt M. Kroeger
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Niyati Bondale
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mia Wibowo
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sean Kennedy
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chunyan Liu
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maria G. Castro
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Pedro R. Lowenstein
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
46
|
Mankan AK, Greten FR. Inhibiting signal transducer and activator of transcription 3: rationality and rationale design of inhibitors. Expert Opin Investig Drugs 2011; 20:1263-75. [PMID: 21751940 DOI: 10.1517/13543784.2011.601739] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) controls a key signaling pathway in the development of many malignant diseases. Several genetic studies have proven its central role in the regulation of apoptosis, proliferation, angiogenesis and immune responses making it an attractive target for cancer therapy. AREAS COVERED This article addresses the role of STAT3 in immune response modulation and highlights the contribution of STAT3 in inflammation-mediated tumorigenesis. We also review the rationale to use novel STAT3 inhibitors and list some of these inhibitors such as STA-21, IS3 295, S3I- M2001 and small molecule JAK2 inhibitors AZD1480 and AZ960 that have been found to be efficient against tumors. We summarize the efforts that have been made so far in identifying promising compounds and mention the barriers that need to be overcome for successful application of STAT3 inhibitors in clinics. EXPERT OPINION STAT3 is an important target in tumor biology based on its frequent activation in various tumors and its pleiotropic effects on different cell types. Screening large libraries of logically synthesized small molecule inhibitors is one way to rapidly generate many potential molecules, which can then be tested in different biologically relevant models. The stage is, therefore, set for the identification and development of novel STAT3 inhibitors that will, in the very near future, enter the clinical realm.
Collapse
Affiliation(s)
- Arun K Mankan
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany.
| | | |
Collapse
|
47
|
Ikaros, CK2 kinase, and the road to leukemia. Mol Cell Biochem 2011; 356:201-7. [PMID: 21750978 DOI: 10.1007/s11010-011-0964-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 01/25/2023]
Abstract
Ikaros encodes a zinc finger protein that is essential for hematopoiesis and that acts as a tumor suppressor in leukemia. Ikaros function depends on its ability to localize to pericentromeric-heterochromatin (PC-HC). Ikaros protein binds to the upstream regulatory elements of target genes, aids in their recruitment to PC-HC, and regulates their transcription via chromatin remodeling. We identified four novel Ikaros phosphorylation sites that are phosphorylated by CK2 kinase. Using Ikaros phosphomimetic and phosphoresistant mutants of the CK2 phosphorylation sites, we demonstrate that (1) CK2-mediated phosphorylation inhibits Ikaros' localization to PC-HC; (2) dephosphorylation of Ikaros at CK2 sites increases its binding to the promoter of the terminal deoxynucleotidetransferase (TdT) gene, leading to TdT repression during thymocyte differentiation; and (3) hyperphosphorylation of Ikaros promotes its degradation by the ubiquitin/proteasome pathway. We show that Ikaros is dephosphorylated by Protein Phosphatase 1 (PP1) via interaction at a consensus PP1-binding motif, RVXF. Point mutations that abolish Ikaros-PP1 interaction result in functional changes in DNA-binding affinity and subcellular localization, similar to those observed in hyperphosphorylated Ikaros and/or Ikaros phosphomimetic mutants. Phosphoresistant Ikaros mutations at CK2 sites restored Ikaros' DNA-binding activity and localization to PC-HC and prevented accelerated Ikaros degradation. These results demonstrate the role of CK2 kinase in lymphocyte differentiation and in regulation of Ikaros' function, and suggest that CK2 promotes leukemogenesis by inhibiting the tumor suppressor activity of Ikaros. We propose a model whereby a balance between CK2 kinase and PP1 phosphatase is essential for normal lymphocyte differentiation and for the prevention of malignant transformation.
Collapse
|
48
|
Adenovirus sequesters phosphorylated STAT1 at viral replication centers and inhibits STAT dephosphorylation. J Virol 2011; 85:7555-62. [PMID: 21593149 DOI: 10.1128/jvi.00513-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tyrosine phosphorylation and nuclear translocation of STAT1 indicate activation of interferon (IFN) signal transduction pathways. Here, we demonstrate that tyrosine-phosphorylated STAT1 is targeted by a unique mechanism in adenovirus (Ad)-infected cells. Ad is known to suppress IFN-inducible gene expression; however, we observed that Ad infection prolongs the tyrosine phosphorylation of STAT1 induced by alpha IFN in infected cells. To understand this paradoxical effect, we examined the subcellular localization of STAT1 following Ad infection and found that nuclear, tyrosine-phosphorylated STAT1 accumulates at viral replication centers. This form of STAT1 colocalized with newly synthesized viral DNA. Viral DNA replication, but not viral late gene expression, is required for the regulation of STAT1 phosphorylation. Our results indicate that Ad infection regulates STAT1 dephosphorylation rather than STAT1 phosphorylation. Consistent with this idea, we show that Ad infection disrupts the interaction between STAT1 and its cognate protein tyrosine phosphatase, TC45. Our findings indicate that Ad sequesters phosphorylated STAT1 at viral replication centers and inhibits STAT dephosphorylation. This report suggests a strategy employed by Ad to counteract an active form of STAT1 in the nucleus of infected cells.
Collapse
|
49
|
Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxid Redox Signal 2011; 14:1853-61. [PMID: 20712401 PMCID: PMC3078497 DOI: 10.1089/ars.2010.3467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia.
Collapse
Affiliation(s)
- Hung Wen Lin
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
50
|
Mo ZC, Xiao J, Liu XH, Hu YW, Li XX, Yi GH, Wang Z, Tang YL, Liao DF, Tang CK. AOPPs Inhibits Cholesterol Efflux by Down-regulating ABCA1 Expression in a JAK/STAT Signaling Pathway-Dependent Manner. J Atheroscler Thromb 2011; 18:796-807. [DOI: 10.5551/jat.6569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|