1
|
Dhenain M, Celestine M, Jacquier-Sarlin M, Buisson A. [Towards using pseudo-prions against neurodegenerative diseases]. Med Sci (Paris) 2025; 41:318-320. [PMID: 40293148 DOI: 10.1051/medsci/2025055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Affiliation(s)
- Marc Dhenain
- CNRS, Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des maladies neurodégénératives, Fontenay-aux-Roses, France - CEA, Direction de la recherche fondamentale (DRF), Institut de biologie François Jacob MIRCen, Fontenay-aux-Roses, France
| | - Marina Celestine
- CNRS, Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des maladies neurodégénératives, Fontenay-aux-Roses, France - CEA, Direction de la recherche fondamentale (DRF), Institut de biologie François Jacob MIRCen, Fontenay-aux-Roses, France
| | - Muriel Jacquier-Sarlin
- Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut neurosciences (GIN), Grenoble, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut neurosciences (GIN), Grenoble, France
| |
Collapse
|
2
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025:10.1038/s41401-024-01455-w. [PMID: 39890942 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
3
|
Harpaz E, Cazzaniga FA, Tran L, Vuong TT, Bufano G, Salvesen Ø, Gravdal M, Aldaz D, Sun J, Kim S, Celauro L, Legname G, Telling GC, Tranulis MA, Benestad SL, Espenes A, Moda F, Ersdal C. Transmission of Norwegian reindeer CWD to sheep by intracerebral inoculation results in an unusual phenotype and prion distribution. Vet Res 2024; 55:94. [PMID: 39075607 PMCID: PMC11285437 DOI: 10.1186/s13567-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species. In vitro and laboratory animal studies of the Norwegian CWD strains suggest that these strains are different from the NA strains. In this work, we describe the intracerebral transmission of reindeer CWD to six scrapie-susceptible sheep. Detection methods included immunohistochemistry (IHC), western blot (WB), enzyme-linked immunosorbent assay (ELISA), real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). In the brain, grey matter vacuolation was limited, while all sheep exhibited vacuolation of the white matter. IHC and WB conventional detection techniques failed to detect prions; however, positive seeding activity with the RT-QuIC and PMCA amplification techniques was observed in the central nervous system of all but one sheep. Prions were robustly amplified in the lymph nodes of all animals, mainly by RT-QuIC. Additionally, two lymph nodes were positive by WB, and one was positive by ELISA. These findings suggest that sheep can propagate reindeer CWD prions after intracerebral inoculation, resulting in an unusual disease phenotype and prion distribution with a low amount of detectable prions.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Federico Angelo Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Linh Tran
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Tram T Vuong
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Giuseppe Bufano
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
- Åkerblå AS, Haugesund, Norway
| | - Maiken Gravdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Devin Aldaz
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julianna Sun
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sehun Kim
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Sylvie L Benestad
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| |
Collapse
|
4
|
Konold T, Spiropoulos J, Hills J, Abdul H, Cawthraw S, Phelan L, McKenna A, Read L, Canoyra S, Marín-Moreno A, Torres JM. Experimental transmission of ovine atypical scrapie to cattle. Vet Res 2023; 54:98. [PMID: 37864218 PMCID: PMC10589953 DOI: 10.1186/s13567-023-01224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2023] Open
Abstract
Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.
Collapse
Affiliation(s)
- Timm Konold
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK.
| | - John Spiropoulos
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Janet Hills
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Hasina Abdul
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Saira Cawthraw
- Central Unit for Sequencing and PCR, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Laura Phelan
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Amy McKenna
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Lauren Read
- Department of Pathology and Animal Sciences, Animal & Plant Health Agency Weybridge, Addlestone, UK
| | - Sara Canoyra
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| |
Collapse
|
5
|
Jaffré N, Delmotte J, Mikol J, Deslys JP, Comoy E. Unexpected decrease of full-length prion protein in macaques inoculated with prion-contaminated blood products. Front Mol Biosci 2023; 10:1164779. [PMID: 37214335 PMCID: PMC10196267 DOI: 10.3389/fmolb.2023.1164779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
The presence of prion infectivity in the blood of patients affected by variant Creutzfeldt-Jakob disease (v-CJD), the human prion disease linked to the bovine spongiform encephalopathy (BSE), poses the risk of inter-human transmission of this fatal prion disease through transfusion. In the frame of various experiments, we have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD, but the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement, which does not fulfill the classical diagnostic criteria of v-CJD. Here, we show that extensive analyses with current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals, i.e., the biomarker considered responsible for neuronal death and subsequent clinical signs in prion diseases. Conversely, in the spinal cord of these myelopathic primates, we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment. This observed disappearance of the N-terminal fragment of cellular PrP at the level of the lesions may provide the first experimental evidence of a link between loss of function of the cellular prion protein and disease onset. This original prion-induced myelopathic syndrome suggests an unexpected wide extension in the field of prion diseases that is so far limited to pathologies associated with abnormal changes of the cellular PrP to highly structured conformations.
Collapse
|
6
|
Bujdoso R, Smith A, Fleck O, Spiropoulos J, Andréoletti O, Thackray AM. Prion disease modelled in Drosophila. Cell Tissue Res 2023; 392:47-62. [PMID: 35092497 PMCID: PMC10113284 DOI: 10.1007/s00441-022-03586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are fatal neurodegenerative conditions of humans and various vertebrate species that are transmissible between individuals of the same or different species. A novel infectious moiety referred to as a prion is considered responsible for transmission of these conditions. Prion replication is believed to be the cause of the neurotoxicity that arises during prion disease pathogenesis. The prion hypothesis predicts that the transmissible prion agent consists of PrPSc, which is comprised of aggregated misfolded conformers of the normal host protein PrPC. It is important to understand the biology of transmissible prions and to identify genetic modifiers of prion-induced neurotoxicity. This information will underpin the development of therapeutic and control strategies for human and animal prion diseases. The most reliable method to detect prion infectivity is by in vivo transmission in a suitable experimental host, which to date have been mammalian species. Current prion bioassays are slow, cumbersome and relatively insensitive to low titres of prion infectivity, and do not lend themselves to rapid genetic analysis of prion disease. Here, we provide an overview of our novel studies that have led to the establishment of Drosophila melanogaster, a genetically well-defined invertebrate host, as a sensitive, versatile and economically viable animal model for the detection of mammalian prion infectivity and genetic modifiers of prion-induced toxicity.
Collapse
Affiliation(s)
- Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | - Andrew Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Oliver Fleck
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency (APHA), Weybridge, Woodham Lane, New Haw, Surrey, KT15 3NB, Addlestone, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alana M Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| |
Collapse
|
7
|
Salamat MKF, Stewart P, Brown H, Tan KBC, Smith A, de Wolf C, Alejo Blanco AR, Turner M, Manson JC, McCutcheon S, Houston EF. Subclinical infection occurs frequently following low dose exposure to prions by blood transfusion. Sci Rep 2022; 12:10923. [PMID: 35764688 PMCID: PMC9240018 DOI: 10.1038/s41598-022-15105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Infectious prion diseases have very long incubation periods, and the role that subclinical infections play in transmission, persistence and re-emergence of these diseases is unclear. In this study, we used a well-established model of vCJD (sheep experimentally infected with bovine spongiform encephalopathy, BSE) to determine the prevalence of subclinical infection following exposure by blood transfusion from infected donors. Many recipient sheep survived for years post-transfusion with no clinical signs and no disease-associated PrP (PrPSc) found in post mortem tissue samples by conventional tests. Using a sensitive protein misfolding cyclic amplification assay (PMCA), we found that the majority of these sheep had detectable PrPSc in lymph node samples, at levels approximately 105-106 times lower than in equivalent samples from clinically positive sheep. Further testing revealed the presence of PrPSc in other tissues, including brain, but not in blood samples. The results demonstrate that subclinical infection is a frequent outcome of low dose prion infection by a clinically relevant route for humans (blood transfusion). The long term persistence of low levels of infection has important implications for prion disease control and the risks of re-emergent infections in both humans and animals.
Collapse
Affiliation(s)
- M Khalid F Salamat
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Paula Stewart
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Helen Brown
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Kyle B C Tan
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Allister Smith
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Christopher de Wolf
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - A Richard Alejo Blanco
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, UK
| | - Jean C Manson
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Sandra McCutcheon
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - E Fiona Houston
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK.
| |
Collapse
|
8
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
9
|
APP deficiency and HTRA2 modulates PrPc proteostasis in human cancer cells. BBA ADVANCES 2022; 2:100035. [PMID: 37082595 PMCID: PMC10074928 DOI: 10.1016/j.bbadva.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Cellular protein homeostasis (proteostasis) requires an accurate balance between protein biosynthesis, folding, and degradation, and its instability is causally related to human diseases and cancers. Here, we created numerous engineered cancer cell lines targeting APP (amyloid ß precursor protein) and/or PRNP (cellular prion) genes and we showed that APP knocking-down impaired PRNP mRNA level and vice versa, suggesting a link between their gene regulation. PRNPKD, APPKD and PRNPKD/APPKD HeLa cells encountered major difficulties to grow in a 3D tissue-like environment. Unexpectedly, we found a cytoplasmic accumulation of the PrPc protein without PRNP gene up regulation, in both APPKD and APPKO HeLa cells. Interestingly, APP and/or PRNP gene ablation enhanced the chaperone/serine protease HTRA2 gene expression, which is a protein processing quality factor involved in Alzheimer's disease. Importantly, HTRA2 gene silencing decreased PRNP mRNA level and lowered PrPc protein amounts, and conversely, HTRA2 overexpression increased PRNP gene regulation and enhanced membrane-anchored and cytoplasmic PrPc fractions. PrPc, APP and HTRA2 destabilized membrane-associated CD24 protein, suggesting changes in the lipid raft structure. Our data show for the first time that APP and the dual chaperone/serine protease HTRA2 protein could modulate PrPc proteostasis hampering cancer cell behavior.
Collapse
|
10
|
Dasmeh P, Wagner A. Yeast Proteins may Reversibly Aggregate like Amphiphilic Molecules. J Mol Biol 2021; 434:167352. [PMID: 34774567 DOI: 10.1016/j.jmb.2021.167352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
More than a hundred proteins in yeast reversibly aggregate and phase-separate in response to various stressors, such as nutrient depletion and heat shock. We know little about the protein sequence and structural features behind this ability, which has not been characterized on a proteome-wide level. To identify the distinctive features of aggregation-prone protein regions, we apply machine learning algorithms to genome-scale limited proteolysis-mass spectrometry (LiP-MS) data from yeast proteins. LiP-MS data reveals that 96 proteins show significant structural changes upon heat shock. We find that in these proteins the propensity to phase separate cannot be solely driven by disordered regions, because their aggregation-prone regions (APRs) are not significantly disordered. Instead, the phase separation of these proteins requires contributions from both disordered and structured regions. APRs are significantly enriched in aliphatic residues and depleted in positively charged amino acids. Aggregator proteins with longer APRs show a greater propensity to aggregate, a relationship that can be explained by equilibrium statistical thermodynamics. Altogether, our observations suggest that proteome-wide reversible protein aggregation is mediated by sequence-encoded properties. We propose that aggregating proteins resemble supra-molecular amphiphiles, where APRs are the hydrophobic parts, and non-APRs are the hydrophilic parts.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA; Swiss Institute of Bioinformatics (SIB), Switzerland.
| | - Andreas Wagner
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; The Santa Fe Institute, Santa Fe, NM, USA; Swiss Institute of Bioinformatics (SIB), Switzerland; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
11
|
Thackray AM, Andréoletti O, Spiropoulos J, Bujdoso R. A new model for sensitive detection of zoonotic prions by PrP transgenic Drosophila. J Biol Chem 2021; 297:100878. [PMID: 34270959 PMCID: PMC8350378 DOI: 10.1016/j.jbc.2021.100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/01/2022] Open
Abstract
Prions are transmissible protein pathogens most reliably detected by a bioassay in a suitable host, typically mice. However, the mouse bioassay is slow and cumbersome, and relatively insensitive to low titers of prion infectivity. Prions can be detected biochemically in vitro by the protein misfolding cyclic amplification (PMCA) technique, which amplifies disease-associated prion protein but does not detect bona fide prion infectivity. Here, we demonstrate that Drosophila transgenic for bovine prion protein (PrP) expression can serve as a model system for the detection of bovine prions significantly more efficiently than either the mouse prion bioassay or PMCA. Strikingly, bovine PrP transgenic Drosophila could detect bovine prion infectivity in the region of a 10-12 dilution of classical bovine spongiform encephalopathy (BSE) inoculum, which is 106-fold more sensitive than that achieved by the bovine PrP mouse bioassay. A similar level of sensitivity was observed in the detection of H-type and L-type atypical BSE and sheep-passaged BSE by bovine PrP transgenic Drosophila. Bioassays of bovine prions in Drosophila were performed within 7 weeks, whereas the mouse prion bioassay required at least a year to assess the same inoculum. In addition, bovine PrP transgenic Drosophila could detect classical BSE at a level 105-fold lower than that achieved by PMCA. These data show that PrP transgenic Drosophila represent a new tractable prion bioassay for the efficient and sensitive detection of mammalian prions, including those of known zoonotic potential.
Collapse
Affiliation(s)
- Alana M Thackray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency (APHA), Weybridge, Addlestone, Surrey, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Langeveld JPM, Balkema-Buschmann A, Becher D, Thomzig A, Nonno R, Andréoletti O, Davidse A, Di Bari MA, Pirisinu L, Agrimi U, Groschup MH, Beekes M, Shih J. Stability of BSE infectivity towards heat treatment even after proteolytic removal of prion protein. Vet Res 2021; 52:59. [PMID: 33863379 PMCID: PMC8052740 DOI: 10.1186/s13567-021-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
The unconventional infectious agents of transmissible spongiform encephalopathies (TSEs) are prions. Their infectivity co-appears with PrPSc, aberrant depositions of the host's cellular prion protein (PrPC). Successive heat treatment in the presence of detergent and proteolysis by a keratinase from Bacillus licheniformis PWD-1 was shown before to destroy PrPSc from bovine TSE (BSE) and sheep scrapie diseased brain, however data regarding expected reduction of infectivity were still lacking. Therefore, transgenic Tgbov XV mice which are highly BSE susceptible were used to quantify infectivity before and after the bovine brain treatment procedure. Also four immunochemical analyses were applied to compare the levels of PrPSc. After heating at 115 °C with or without subsequent proteolysis, the original BSE infectivity of 106.2-6.4 ID50 g-1 was reduced to a remaining infectivity of 104.6-5.7 ID50 g-1 while strain characteristics were unaltered, even after precipitation with methanol. Surprisingly, PrPSc depletion was 5-800 times higher than the loss of infectivity. Similar treatment was applied on other prion strains, which were CWD1 in bank voles, 263 K scrapie in hamsters and sheep PG127 scrapie in tg338 ovinized mice. In these strains however, infectivity was already destroyed by heat only. These findings show the unusual heat resistance of BSE and support a role for an additional factor in prion formation as suggested elsewhere when producing prions from PrPC. Leftover material in the remaining PrPSc depleted BSE preparation offers a unique substrate for searching additional elements for prion infectivity and improving our concept about the nature of prions.
Collapse
Affiliation(s)
- Jan P M Langeveld
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), 8221RA 39, Lelystad, The Netherlands.
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Dieter Becher
- MICROMUN, Institut Für Mikrobiologische Forschung GmbH, 17489, Greifswald, Germany
| | - Achim Thomzig
- Prion and Prionoid Research Unit, Robert Koch-Institute, 13353, Berlin, Germany
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Olivier Andréoletti
- UMR INRAE/ENVT 1225 IHAP, École Nationale Vétérinaire de Toulouse, 31300, Toulouse, France
| | - Aart Davidse
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), 8221RA 39, Lelystad, The Netherlands
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | | | - Michael Beekes
- Prion and Prionoid Research Unit, Robert Koch-Institute, 13353, Berlin, Germany
| | - Jason Shih
- Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695-7608, USA
| |
Collapse
|
13
|
Duran-Aniotz C, Moreno-Gonzalez I, Gamez N, Perez-Urrutia N, Vegas-Gomez L, Soto C, Morales R. Amyloid pathology arrangements in Alzheimer's disease brains modulate in vivo seeding capability. Acta Neuropathol Commun 2021; 9:56. [PMID: 33785065 PMCID: PMC8008576 DOI: 10.1186/s40478-021-01155-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/14/2021] [Indexed: 12/23/2022] Open
Abstract
Amyloid-β (Aβ) misfolding is one of the hallmark pathological features of Alzheimer's disease (AD). AD can manifest with diverse symptomatology including variable rates of cognitive decline, duration of clinical disease, and other detrimental changes. Several reports suggest that conformational diversity in misfolded Aβ is a leading factor for clinical variability in AD, analogous to what it has been described for prion strains in prion diseases. Notably, prion strains generate diverse patterns of misfolded protein deposition in the brains of affected individuals. Here, we tested the in vivo prion-like transmission features of four AD brains displaying particular patterns of amyloidosis. AD brains induced different phenotypes in recipient mice, as evaluated by their specific seeding activity, as well as the total amount of Aβ deposited surrounding vascular structures and the reactivity of amyloid pathology to thioflavin S. Our results support the notion that AD-subtypes are encoded in disease-associated Aβ. Further research exploring whether AD include a spectrum of different clinical conditions or syndromes may pave the way to personalized diagnosis and treatments.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin, St. Houston, TX, 77030, USA
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo, 2200, Las Condes, Santiago, Chile
| | - Ines Moreno-Gonzalez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin, St. Houston, TX, 77030, USA
- Department of Cell Biology, Faculty of Sciences, University of Malaga-IBIMA, 29010, Malaga, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro Integrativo de Biologia Y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin, St. Houston, TX, 77030, USA
- Department of Cell Biology, Faculty of Sciences, University of Malaga-IBIMA, 29010, Malaga, Spain
| | - Nelson Perez-Urrutia
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin, St. Houston, TX, 77030, USA
| | - Laura Vegas-Gomez
- Department of Cell Biology, Faculty of Sciences, University of Malaga-IBIMA, 29010, Malaga, Spain
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin, St. Houston, TX, 77030, USA
- Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo, 2200, Las Condes, Santiago, Chile
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin, St. Houston, TX, 77030, USA.
- Centro Integrativo de Biologia Y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
14
|
Koutsoumanis K, Allende A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Andréoletti O, Escámez PF, Griffin J, Spiropoulos J, Ashe S, Ortiz-Peláez A, Alvarez-Ordóñez A. Evaluation of an alternative method for production of biodiesel from processed fats derived from Category 1, 2 and 3 animal by-products (submitted by College Proteins). EFSA J 2020; 18:e06089. [PMID: 32874297 PMCID: PMC7448056 DOI: 10.2903/j.efsa.2020.6089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An alternative method for the production of biodiesel from processed fats derived from Category 1, 2 and 3 animal by-products was assessed. The method is based on a pre-cleaning process, acidic esterification/transesterification of tallow using 1.5% methanesulfonic acid w/w; 140°C; 5.5 bar absolute pressure (bara); 4 h, followed by fractional distillation. The application focuses on the capacity of the alternative method to inactivate prions. Given the limitations that biodiesel presents for direct measurement of prion infectivity, the BIOHAZ Panel considered, based on the outcome of previous EFSA Opinions and current expert evaluation, that a reduction of 6 log10 in detectable PrPS c signal would be necessary to consider the process at least equivalent to previously approved methods for Category 1 animal by-products. This is in addition to the inactivation achieved by the pressure sterilisation method applied before the application of any biodiesel production method. Experimental data were provided via ad hoc studies commissioned to quantify the reduction in detectable PrPS c in material spiked with scrapie hamster strain 263K, as measured by western blot, for the first two steps, with distillation assumed to provide at least an additional 3 log10 reduction, based on published data. Despite the intrinsic methodological caveats of the detection of PrPS c in laboratory studies, the BIOHAZ Panel considers that the alternative method, including the final fractional distillation, is capable of achieving the required 6 log10 reduction of the strain 263K PrPS c signal. Therefore, the method under assessment can be considered at least equivalent to the processing methods previously approved for the production of biodiesel from all categories of animal by-product raw materials. It is recommended to check the feasibility of the proposed HACCP plan by recording the main processing parameters for a certain time period under real industrial conditions.
Collapse
|
15
|
Iwamaru Y, Matsuura Y, Miyazawa K. PrPSc with Seeding Activity Extensively Overlaps with Proteinase-Resistant PrPSc Rather than Infectious PrPSc. Pathogens 2020; 9:pathogens9030241. [PMID: 32213939 PMCID: PMC7157578 DOI: 10.3390/pathogens9030241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
The disease-associated prion protein (PrPSc) has the ability to seed the conformational conversion of normal prion proteins into the amyloid fibril form. This prion seeding activity can be measured using an in vitro amplification assay termed real-time quaking-induced conversion (RT-QuIC). There is a strong correlation between RT-QuIC positivity and prion infection; however, the relationship between seeding activity and infectivity remains elusive. In this study, we used endpoint dilution RT-QuIC on the brain homogenates from wild-type mice with mouse-adopted bovine spongiform encephalopathy (mBSE) at defined intervals during the incubation period and evaluated the temporal relationship among prion seeding dose, levels of proteinase-resistant PrPSc (PrPres), and infectious titer. We found that the infectious titer reached a plateau by 100 days postinfection, whereas seeding dose and PrPres levels were continuously elevated. Our calculation showed that the doubling time (dt) for seeding dose from 40 to 100 days postinoculation was closer to the dt for PrPres levels than to the dt for prion titer. Although an uncoupling of seeding doses and PrPres levels was observed at end-stage disease in this model, our findings suggest that there is substantial but not complete overlap between PrPSc with seeding activity and PrPres rather than infectious PrPSc.
Collapse
|
16
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
17
|
Zhang M, Zhang H, Yao H, Guo C, Lin D. Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1223-1232. [PMID: 31735962 DOI: 10.1093/abbs/gmz124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/14/2022] Open
Abstract
The pathogenesis of fatal neurodegenerative prion diseases is closely associated with the conversion of α-helix-rich cellular prion protein into β-sheet-rich scrapie form. Pathogenic point mutations of prion proteins usually promote the conformational conversion and trigger inherited prion diseases. The G131V mutation of human prion protein (HuPrP) was identified to be involved in Gerstmann-Sträussler-Scheinker syndrome. Few studies have been carried out to address the pathogenesis of the G131V mutant. Here, we addressed the effects of the G131V mutation on oligomerization and fibrillization of the full-length HuPrP(23-231) and truncated HuPrP(91-231) proteins. The G131V mutation promotes the oligomerization but alleviates the fibrillization of HuPrP, implying that the oligomerization might play a crucial role in the pathogenic mechanisms of the G131V mutant. Moreover, the flexible N-terminal fragment in either the wild-type or the G131V mutant HuPrP increases the oligomerization tendencies but decreases the fibrillization tendencies. Furthermore, this mutation significantly alters the tertiary structure of human PrPC and might distinctly change the conformational conversion tendency. Interestingly, both guanidine hydrochloride denaturation and thermal denaturation experiments showed that the G131V mutation does not significantly change the thermodynamic stabilities of the HuPrP proteins. This work may be of benefit to a mechanistic understanding of the conformational conversion of prion proteins and also provide clues for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Gary C, Lam S, Hérard AS, Koch JE, Petit F, Gipchtein P, Sawiak SJ, Caillierez R, Eddarkaoui S, Colin M, Aujard F, Deslys JP, Brouillet E, Buée L, Comoy EE, Pifferi F, Picq JL, Dhenain M. Encephalopathy induced by Alzheimer brain inoculation in a non-human primate. Acta Neuropathol Commun 2019; 7:126. [PMID: 31481130 PMCID: PMC6724379 DOI: 10.1186/s40478-019-0771-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 02/28/2023] Open
Abstract
Alzheimer’s disease is characterized by cognitive alterations, cerebral atrophy and neuropathological lesions including neuronal loss, accumulation of misfolded and aggregated β-amyloid peptides (Aβ) and tau proteins. Iatrogenic induction of Aβ is suspected in patients exposed to pituitary-derived hormones, dural grafts, or surgical instruments, presumably contaminated with Aβ. Induction of Aβ and tau lesions has been demonstrated in transgenic mice after contamination with Alzheimer’s disease brain homogenates, with very limited functional consequences. Unlike rodents, primates naturally express Aβ or tau under normal conditions and attempts to transmit Alzheimer pathology to primates have been made for decades. However, none of earlier studies performed any detailed functional assessments. For the first time we demonstrate long term memory and learning impairments in a non-human primate (Microcebus murinus) following intracerebral injections with Alzheimer human brain extracts. Animals inoculated with Alzheimer brain homogenates displayed progressive cognitive impairments (clinical tests assessing cognitive and motor functions), modifications of neuronal activity (detected by electroencephalography), widespread and progressive cerebral atrophy (in vivo MRI assessing cerebral volume loss using automated voxel-based analysis), neuronal loss in the hippocampus and entorhinal cortex (post mortem stereology). They displayed parenchymal and vascular Aβ depositions and tau lesions for some of them, in regions close to the inoculation sites. Although these lesions were sparse, they were never detected in control animals. Tau-positive animals had the lowest performances in a memory task and displayed the greatest neuronal loss. Our study is timely and important as it is the first one to highlight neuronal and clinical dysfunction following inoculation of Alzheimer’s disease brain homogenates in a primate. Clinical signs in a chronic disease such as Alzheimer take a long time to be detectable. Documentation of clinical deterioration and/or dysfunction following intracerebral inoculations with Alzheimer human brain extracts could lead to important new insights about Alzheimer initiation processes.
Collapse
|
19
|
Kumagai S, Daikai T, Onodera T. Bovine Spongiform Encephalopathy
- A Review from the Perspective of Food Safety. Food Saf (Tokyo) 2019; 7:21-47. [PMID: 31998585 PMCID: PMC6978881 DOI: 10.14252/foodsafetyfscj.2018009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to transmissible spongiform encephalopathy (TSE). Since the first case was identified in the UK in 1986, BSE spread to other countries including Japan. Its incidence peaked in 1992 in the UK and from 2001 to 2006 in many other countries, but a feed ban aimed at eliminating the recycling of the BSE agent and other control measures aimed at preventing food and feed contamination with the agent were highly effective at reducing the spread of BSE. In 2004, two types of atypical BSE, H-type BSE (H-BSE) and L-type BSE (L-BSE), which differ from classical BSE (C-BSE), were found in France and Italy. Atypical BSE, which is assumed to occur spontaneously, has also been detected among cattle in other countries including Japan. The BSE agent including atypical BSE agent is a unique food-safety hazard with different chemical and biological properties from the microbial pathogens and toxic chemicals that contaminate food. In this review, we summarize the reported findings on the tissue distribution of BSE prions in infected cattle and other aspects of BSE, as well as the control measures against the disease employed in Japan. Topics that require further studies are discussed based on the summarized findings from the perspective of food safety.
Collapse
Affiliation(s)
- Susumu Kumagai
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Takateru Daikai
- Food Safety Commission of Japan Secretariat, Akasaka
Park Bld. 22F, Akasaka 5-2-20, Minato-ku,
Tokyo 107-6122, Japan
- Cooperative Department of Veterinary Medicine,
Graduate School of Veterinary Sciences, Iwate University, Morioka-shi,
Iwate 020-8550, Japan
| | - Takashi Onodera
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| |
Collapse
|
20
|
Hagiwara K, Sato Y, Yamakawa Y, Hara H, Tobiume M, Okemoto-Nakamura Y, Sata T, Horiuchi M, Shibata H, Ono F. Tracking and clarifying differential traits of classical- and atypical L-type bovine spongiform encephalopathy prions after transmission from cattle to cynomolgus monkeys. PLoS One 2019; 14:e0216807. [PMID: 31095605 PMCID: PMC6522098 DOI: 10.1371/journal.pone.0216807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022] Open
Abstract
Classical- (C-) and atypical L-type bovine spongiform encephalopathy (BSE) prions cause different pathological phenotypes in cattle brains, and the disease-associated forms of each prion protein (PrPSc) has a dissimilar biochemical signature. Bovine C-BSE prions are the causative agent of variant Creutzfeldt-Jakob disease. To date, human infection with L-BSE prions has not been reported, but they can be transmitted experimentally from cows to cynomolgus monkeys (Macaca fascicularis), a non-human primate model. When transmitted to monkeys, C- and L-BSE prions induce different pathological phenotypes in the brain. However, when isolated from infected brains, the two prion proteins (PrPSc) have similar biochemical signatures (i.e., electrophoretic mobility, glycoforms, and resistance to proteinase K). Such similarities suggest the possibility that L-BSE prions alter their virulence to that of C-BSE prions during propagation in monkeys. To clarify this possibility, we conducted bioassays using inbred mice. C-BSE prions with or without propagation in monkeys were pathogenic to mice, and exhibited comparable incubation periods in secondary passage in mice. By contrast, L-BSE prions, either with or without propagation in monkeys, did not cause the disease in mice, indicating that the pathogenicity of L-BSE prions does not converge towards a C-BSE prion type in this primate model. These results suggest that, although C- and L-BSE prions propagated in cynomolgus monkeys exhibit similar biochemical PrPSc signatures and consist of the monkey amino acid sequence, the two prions maintain strain-specific conformations of PrPSc in which they encipher and retain unique pathogenic traits.
Collapse
Affiliation(s)
- Ken’ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Yamakawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Hara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroaki Shibata
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Fumiko Ono
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
22
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
23
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Comoy EE, Mikol J, Deslys JP. Unexpected prion phenotypes in experimentally transfused animals: predictive models for humans? Prion 2018; 12:1-8. [PMID: 30080439 PMCID: PMC6277188 DOI: 10.1080/19336896.2018.1505399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The recently reevaluated high prevalence of healthy carriers (1/2,000 in UK) of variant Creutzfeldt-Jakob Disease (v-CJD), whose blood might be infectious, suggests that the evolution of this prion disease might not be under full control as expected. After experimental transfusion of macaques and conventional mice with blood derived from v-CJD exposed (human and animal) individuals, we confirmed in these both models the transmissibility of v-CJD, but we also observed unexpected neurological syndromes transmissible by transfusion: despite their prion etiology confirmed through transmission experiments, these original cases would escape classical prion diagnosis, notably in the absence of detectable abnormal PrP with current techniques. It is noteworthy that macaques developed an original, yet undescribed myelopathic syndrome associating demyelination and pseudo-necrotic lesions of spinal cord, brainstem and optical tract without affecting encephalon, which is rather evocative of spinal cord disease than prion disease in human medicine. These observations strongly suggest that the spectrum of human prion diseases may extend the current field restricted to the phenotypes associated to protease-resistant PrP, and may notably include spinal cord diseases.
Collapse
Affiliation(s)
- Emmanuel E. Comoy
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Jacqueline Mikol
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Jean-Philippe Deslys
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| |
Collapse
|
25
|
T. Islam AM, Adlard PA, Finkelstein DI, Lewis V, Biggi S, Biasini E, Collins SJ. Acute Neurotoxicity Models of Prion Disease. ACS Chem Neurosci 2018; 9:431-445. [PMID: 29393619 DOI: 10.1021/acschemneuro.7b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Prion diseases are phenotypically diverse, transmissible, neurodegenerative disorders affecting both animals and humans. Misfolding of the normal prion protein (PrPC) into disease-associated conformers (PrPSc) is considered the critical etiological event underpinning prion diseases, with such misfolded isoforms linked to both disease transmission and neurotoxicity. Although important advances in our understanding of prion biology and pathogenesis have occurred over the last 3-4 decades, many fundamental questions remain to be resolved, including consensus regarding the principal pathways subserving neuronal dysfunction, as well as detailed biophysical characterization of PrPSc species transmitting disease and/or directly associated with neurotoxicity. In vivo and in vitro models have been, and remain, critical to furthering our understanding across many aspects of prion disease patho-biology. Prion animal models are arguably the most authentic in vivo models of neurodegeneration that exist and have provided valuable and multifarious insights into pathogenesis; however, they are expensive and time-consuming, and it can be problematic to clearly discern evidence of direct PrPSc neurotoxicity in the overall context of pathogenesis. In vitro models, in contrast, generally offer greater tractability and appear more suited to assessments of direct acute neurotoxicity but have until recently been relatively simplistic, and overall there remains a relative paucity of validated, biologically relevant models with heightened reliability as far as translational insights, contributing to difficulties in redressing our knowledge gaps in prion disease pathogenesis. In this review, we provide an overview of the spectrum and methodological diversity of in vivo and in vitro models of prion acute toxicity, as well as the pathogenic insights gained from these studies.
Collapse
Affiliation(s)
| | | | | | | | - S. Biggi
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - E. Biasini
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | | |
Collapse
|
26
|
Cheng L, Zhao W, Hill AF. Exosomes and their role in the intercellular trafficking of normal and disease associated prion proteins. Mol Aspects Med 2017; 60:62-68. [PMID: 29196098 DOI: 10.1016/j.mam.2017.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Over the past decade, small extracellular vesicles called exosomes have been observed to harbour protein and genetic cargo that can assist in health and also cause disease. Many groups are extensively investigating the mechanisms involved that regulate the trafficking and packaging of exosomal contents and how these processes may be deregulated in disease. Prion diseases are transmissible neurodegenerative disorders and are characterized by the presence of detectable misfolded prion proteins. The disease associated form of the prion protein can be found in exosomes and its transmissible properties have provided a reliable experimental read out that can be used to understand how exosomes and their cargo are involved in cell-cell communication and in the spread of prion diseases. This review reports on the current understanding of how exosomes are involved in the intercellular spread of infectious prions. Furthermore, we discuss how these principles are leading future investigations in developing new exosome based diagnostic tools and therapeutic drugs that could be applied to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Wenting Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.
| |
Collapse
|
27
|
What Is Our Current Understanding of PrP Sc-Associated Neurotoxicity and Its Molecular Underpinnings? Pathogens 2017; 6:pathogens6040063. [PMID: 29194372 PMCID: PMC5750587 DOI: 10.3390/pathogens6040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
The prion diseases are a collection of fatal, transmissible neurodegenerative diseases that cause rapid onset dementia and ultimately death. Uniquely, the infectious agent is a misfolded form of the endogenous cellular prion protein, termed PrPSc. Despite the identity of the molecular agent remaining the same, PrPSc can cause a range of diseases with hereditary, spontaneous or iatrogenic aetiologies. However, the link between PrPSc and toxicity is complex, with subclinical cases of prion disease discovered, and prion neurodegeneration without obvious PrPSc deposition. The toxic mechanisms by which PrPSc causes the extensive neuropathology are still poorly understood, although recent advances are beginning to unravel the molecular underpinnings, including oxidative stress, disruption of proteostasis and induction of the unfolded protein response. This review will discuss the diseases caused by PrPSc toxicity, the nature of the toxicity of PrPSc, and our current understanding of the downstream toxic signaling events triggered by the presence of PrPSc.
Collapse
|
28
|
Binyamin O, Keller G, Frid K, Larush L, Magdassi S, Gabizon R. Continues administration of Nano-PSO significantly increased survival of genetic CJD mice. Neurobiol Dis 2017; 108:140-147. [DOI: 10.1016/j.nbd.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022] Open
|
29
|
Comoy EE, Mikol J, Jaffré N, Lebon V, Levavasseur E, Streichenberger N, Sumian C, Perret-Liaudet A, Eloit M, Andreoletti O, Haïk S, Hantraye P, Deslys JP. Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque. Nat Commun 2017; 8:1268. [PMID: 29097653 PMCID: PMC5668246 DOI: 10.1038/s41467-017-01347-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Exposure of human populations to bovine spongiform encephalopathy through contaminated food has resulted in <250 cases of variant Creutzfeldt-Jakob disease (vCJD). However, more than 99% of vCJD infections could have remained silent suggesting a long-term risk of secondary transmission particularly through blood. Here, we present experimental evidence that transfusion in mice and non-human primates of blood products from symptomatic and non-symptomatic infected donors induces not only vCJD, but also a different class of neurological impairments. These impairments can all be retransmitted to mice with a pathognomonic accumulation of abnormal prion protein, thus expanding the spectrum of known prion diseases. Our findings suggest that the intravenous route promotes propagation of masked prion variants according to different mechanisms involved in peripheral replication.
Collapse
Affiliation(s)
- Emmanuel E Comoy
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Jacqueline Mikol
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Nina Jaffré
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
- MacoPharma, 200 Chaussée Fernand Forest, 59200, Tourcoing, France
| | - Vincent Lebon
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Etienne Levavasseur
- Université Pierre et Marie Curie, UMR-S 1127, CNRS UMR 722, Institut du Cerveau et de la Moelle Epinière, G.H. Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | - Nathalie Streichenberger
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5310-INSERM U1217, 59 Boulevard Pinel, 69677, Bron, France
| | - Chryslain Sumian
- MacoPharma, 200 Chaussée Fernand Forest, 59200, Tourcoing, France
| | - Armand Perret-Liaudet
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5310-INSERM U1217, 59 Boulevard Pinel, 69677, Bron, France
| | - Marc Eloit
- Institut Pasteur, 15 Rue du Docteur Roux, 75015, Paris, France
| | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076, Toulouse, France
| | - Stéphane Haïk
- Université Pierre et Marie Curie, UMR-S 1127, CNRS UMR 722, Institut du Cerveau et de la Moelle Epinière, G.H. Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | - Philippe Hantraye
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Jean-Philippe Deslys
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
30
|
Mitochondrial Respiration Is Impaired during Late-Stage Hamster Prion Infection. J Virol 2017; 91:JVI.00524-17. [PMID: 28659480 DOI: 10.1128/jvi.00524-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are crucial to proper neuronal function and overall brain health. Mitochondrial dysfunction within the brain has been observed in many neurodegenerative diseases, including prion disease. Several markers of decreased mitochondrial activity during prion infection have been reported, yet the bioenergetic respiratory status of mitochondria from prion-infected animals is unknown. Here we show that clinically ill transgenic mice overexpressing hamster prion protein (Tg7) infected with the hamster prion strain 263K suffer from a severe deficit in mitochondrial oxygen consumption in response to the respiratory complex II substrate succinate. Characterization of the mitochondrial proteome of purified brain mitochondria from infected and uninfected Tg7 mice showed significant differences in the relative abundance of key mitochondrial electron transport proteins in 263K-infected animals relative to that in controls. Our results suggest that at clinical stages of prion infection, dysregulation of respiratory chain proteins may lead to impairment of mitochondrial respiration in the brain.IMPORTANCE Mitochondrial dysfunction is present in most major neurodegenerative diseases, and some studies have suggested that mitochondrial processes may be altered during prion disease. Here we show that hamster prion-infected transgenic mice overexpressing the hamster prion protein (Tg7 mice) suffer from mitochondrial respiratory deficits. Tg7 mice infected with the 263K hamster prion strain have little or no signs of mitochondrial dysfunction at the disease midpoint but suffer from a severe deficit in mitochondrial respiration at the clinical phase of disease. A proteomic analysis of the isolated brain mitochondria from clinically affected animals showed that several proteins involved in electron transport, mitochondrial dynamics, and mitochondrial protein synthesis were dysregulated. These results suggest that mitochondrial dysfunction, possibly exacerbated by prion protein overexpression, occurs at late stages during 263K prion disease and that this dysfunction may be the result of dysregulation of mitochondrial proteins.
Collapse
|
31
|
Simmons M, Ru G, Casalone C, Iulini B, Cassar C, Seuberlich T. DISCONTOOLS: Identifying gaps in controlling bovine spongiform encephalopathy. Transbound Emerg Dis 2017; 65 Suppl 1:9-21. [PMID: 28795509 DOI: 10.1111/tbed.12671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/29/2022]
Abstract
This article summarizes the 2016 update of the DISCONTOOLS project gap analysis on bovine spongiform encephalopathy (BSE), which was based on a combination of literature review and expert knowledge. Uncertainty still exists in relation to the pathogenesis, immunology and epidemiology of BSE, but provided that infected material is prohibited from entering the animal feed chain, cases should continue to decline. BSE does not appear to spread between cattle, but if new strains with this ability appear then control would be considerably more difficult. Atypical types of BSE (L-BSE and H-BSE) have been identified, which have different molecular patterns and pathology, and do not display the same clinical signs as classical BSE. Laboratory transmission experiments indicate that the L-BSE agent has zoonotic potential. There is no satisfactory conclusion regarding the origin of the BSE epidemic. C-BSE case numbers declined rapidly following strict controls banning ruminant protein in animal feed, but occasional cases still occur. It is unclear whether these more recent cases indicate inadequate implementation of the bans, or the possibility that C-BSE might occur spontaneously, as has been postulated for H- and L-BSE. All of this will have implications once existing bans and levels of surveillance are both relaxed. Immunochemical tests can only be applied post-mortem. There is no immunological basis for diagnosis in the live animal. All aspects of disease control are expensive, particularly surveillance, specified risk material removal and feed controls. There is pressure to relax feed controls, and concurrent pressure from other sources to reduce surveillance. While the cost benefit argument can be applied successfully to either of these approaches, it would be necessary to maintain the ban on intraspecies recycling and some baseline surveillance. However, the potential risk is not limited to intraspecies recycling; recycling with cross-species transmission may be an ideal way to select or/and modify properties of transmissible spongiform encephalopathies agents in the future.
Collapse
Affiliation(s)
- M Simmons
- OIE, National and EU Reference Laboratory for BSE and Scrapie, Department of Pathology, APHA Weybridge, Addlestone, Surrey, UK
| | - G Ru
- CEA - National Reference Laboratory for Transmissible Spongiform Encephalopathies, OIE Reference Laboratories for BSE and Scrapie, Unit of Biostatistics, Epidemiology and Risk Analysis, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | - C Casalone
- CEA - National Reference Laboratory for Transmissible Spongiform Encephalopathies, OIE Reference Laboratories for BSE and Scrapie, Neuropathology Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | - B Iulini
- CEA - National Reference Laboratory for Transmissible Spongiform Encephalopathies, OIE Reference Laboratories for BSE and Scrapie, Neuropathology Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | - C Cassar
- OIE, National and EU Reference Laboratory for BSE and Scrapie, Department of Pathology, APHA Weybridge, Addlestone, Surrey, UK
| | - T Seuberlich
- NeuroCenter, OIE and National Reference Laboratories for BSE and Scrapie, Division of Neurological Sciences, Vetsuisse Faculty, Bern, Switzerland
| |
Collapse
|
32
|
Marín-Moreno A, Fernández-Borges N, Espinosa JC, Andréoletti O, Torres JM. Transmission and Replication of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:181-201. [PMID: 28838661 DOI: 10.1016/bs.pmbts.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of progressive, invariably fatal diseases that affect the nervous system of many mammals including humans. The key molecular event in the pathogenesis of TSEs is the conversion of the cellular prion protein PrPC into a disease-associated isoform PrPSc. The "protein-only hypothesis" argues that PrPSc itself is the infectious agent. In effect, PrPSc can adopt several structures that represent different prion strains. The interspecies transmission of TSEs is difficult because of differences between the host and donor primary PrP sequence. However, transmission is not impossible as this occurred when bovine spongiform encephalopathy spread to humans causing variant Creutzfeldt-Jakob disease (vCJD). This event determined a need for a thorough understanding of prion replication and transmission so that we could be one step ahead of further threats for human health. This chapter focuses on these concepts and on new insights gained into prion propagation mechanisms.
Collapse
Affiliation(s)
| | | | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
| | - Olivier Andréoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan M Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain.
| |
Collapse
|
33
|
Diack AB, Alibhai JD, Manson JC. Gene Targeted Transgenic Mouse Models in Prion Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:157-179. [PMID: 28838660 DOI: 10.1016/bs.pmbts.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The production of transgenic mice expressing different forms of the prion protein (PrP) or devoid of PrP has enabled researchers to study the role of PrP in the infectious process of a prion disease and its normal function in the healthy individual. A wide range of transgenic models have been produced ranging from PrP null mice, normal expression levels to overexpression models, models expressing different species of the Prnp gene and different mutations and polymorphisms within the gene. Using this range of transgenic models has allowed us to define the influence of PrP expression on disease susceptibility and transmission, assess zoonotic potential, define strains of human prion diseases, elucidate the function of PrP, and start to unravel the mechanisms involved in chronic neurodegeneration. This chapter focuses mainly on the use of the gene targeted transgenic models and summarizes the ways in which they have allowed us to study the role of PrP in prion disease and the insights they have provided into the mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abigail B Diack
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom.
| | - James D Alibhai
- The National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean C Manson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
34
|
Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog 2017; 13:e1006491. [PMID: 28704563 PMCID: PMC5524416 DOI: 10.1371/journal.ppat.1006491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res’ pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity. Many neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and Prion disease, are caused by misfolded proteins that can self-propagate in vivo and in vitro. Misfolded self-replicating recombinant prion protein (PrP) conformers have been generated in vitro with defined cofactors, some of which are highly infectious and cause bona fide prion diseases, while others completely fail to induce any pathology. Here we compare these misfolded recombinant PrP conformers and show that the non-pathogenic misfolded recombinant PrP is not completely inert in vivo. We also found that the pathogenic and non-pathogenic recombinant PrP conformers share a similar overall architecture. Importantly, our study clearly shows that in vivo seeded spread of misfolded conformation does not necessarily lead to pathogenic change or cause disease. These findings not only are important for understanding the molecular basis for prion infectivity, but also may have important implications for the “prion-like” spread of misfolded proteins in other neurodegenerative diseases.
Collapse
|
35
|
Senesi M, Lewis V, Kim JH, Adlard PA, Finkelstein DI, Collins SJ. In vivo prion models and the disconnection between transmissibility and neurotoxicity. Ageing Res Rev 2017; 36:156-164. [PMID: 28450269 DOI: 10.1016/j.arr.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 02/01/2023]
Abstract
The primary causative event in the development of prion diseases is the misfolding of the normal prion protein (PrPC) into an ensemble of altered conformers (herein collectively denoted as PrPSc) that accumulate in the brain. Prominent amongst currently unresolved key aspects underpinning prion disease pathogenesis is whether transmission and toxicity are sub-served by different molecular species of PrPSc, which may directly impact on the development of effective targeted treatments. The use of murine models of prion disease has been of fundamental importance for probing the relationship between hypothesised "neurotoxic" and "transmissible" PrPSc and the associated kinetic profiles of their production during disease evolution, but unfortunately consensus has not been achieved. Recent in vivo studies have led to formulation of the "two-phase" hypothesis, which postulates that there is first an exponential increase in transmitting PrPSc species followed by an abrupt transition to propagation of neurotoxic PrPSc species. Such observations however, appear inconsistent with previous in vivo murine studies employing detailed time-course behavioural testing, wherein evidence of neurotoxicity could be detected early in disease progression. This review analyses the contributions of in vivo murine models attempting to provide insights into the relationship between transmitting and neurotoxic PrPSc species and explores possible refinements to the "two-phase hypothesis", that better accommodate the available historical and recent evidence.
Collapse
Affiliation(s)
- Matteo Senesi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia
| | - Victoria Lewis
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia
| | - Jee H Kim
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - Paul A Adlard
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - David I Finkelstein
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - Steven J Collins
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
36
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the "prion-like" spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.
Collapse
Affiliation(s)
- Rona M. Barron
- Neurobiology Division, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush, UK,Correspondence to: Rona M. Barron; The Roslin Institute, Easter Bush, Midlothian, UK EH25 9RG;
| |
Collapse
|
37
|
Monzón M. Approaches to therapy against prion diseases focused on the individual defence system. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
39
|
Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016; 539:217-226. [PMID: 27830781 DOI: 10.1038/nature20415] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.
Collapse
Affiliation(s)
- John Collinge
- Medical Research Council Prion Unit, University College London Institute of Neurology, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
40
|
Alibhai J, Blanco RA, Barria MA, Piccardo P, Caughey B, Perry VH, Freeman TC, Manson JC. Distribution of Misfolded Prion Protein Seeding Activity Alone Does Not Predict Regions of Neurodegeneration. PLoS Biol 2016; 14:e1002579. [PMID: 27880767 PMCID: PMC5120774 DOI: 10.1371/journal.pbio.1002579] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Protein misfolding is common across many neurodegenerative diseases, with misfolded proteins acting as seeds for "prion-like" conversion of normally folded protein to abnormal conformations. A central hypothesis is that misfolded protein accumulation, spread, and distribution are restricted to specific neuronal populations of the central nervous system and thus predict regions of neurodegeneration. We examined this hypothesis using a highly sensitive assay system for detection of misfolded protein seeds in a murine model of prion disease. Misfolded prion protein (PrP) seeds were observed widespread throughout the brain, accumulating in all brain regions examined irrespective of neurodegeneration. Importantly, neither time of exposure nor amount of misfolded protein seeds present determined regions of neurodegeneration. We further demonstrate two distinct microglia responses in prion-infected brains: a novel homeostatic response in all regions and an innate immune response restricted to sites of neurodegeneration. Therefore, accumulation of misfolded prion protein alone does not define targeting of neurodegeneration, which instead results only when misfolded prion protein accompanies a specific innate immune response. The distribution of misfolded prion protein seeding activity alone does not predict regions of neurodegeneration in prion disease; rather, a complex microglial response appears to determine selective vulnerability and provides new strategies for therapy. Normal brain function requires tight regulation of protein folding; when this goes wrong, proteins can fold into abnormal conformations, which have severe impacts on brain performance, leading to conditions like dementia. Previous studies show that abnormally folded proteins are found in restricted parts of the brain, and neuronal cells in these specific brain regions have been shown to undergo degeneration. Recent technological advances have enhanced the detection of abnormally folded prion protein (PrP) during disease; we used these technologies to test whether distribution of abnormally folded proteins is indeed restricted to regions of the brain undergoing degeneration. Surprisingly, we observed abnormally folded proteins throughout the brain, demonstrating that these proteins can accumulate in parts of the brain that do not show degeneration. Thus, the distribution of abnormally folded protein, by itself, is not sufficient for neuronal degeneration. In addition, we found that microglia (one of the nonneuronal cell types in the brain) change their response during prion disease in two different ways; one response is associated with resilient brain regions, and the second, an inflammatory response is associated with regions susceptible to degeneration. Thus, the microglial response appears to be important in determining the outcome of disease.
Collapse
Affiliation(s)
- James Alibhai
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. Blanco
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A. Barria
- The National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Piccardo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - V. Hugh Perry
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Muth C, Schröck K, Madore C, Hartmann K, Fanek Z, Butovsky O, Glatzel M, Krasemann S. Activation of microglia by retroviral infection correlates with transient clearance of prions from the brain but does not change incubation time. Brain Pathol 2016; 27:590-602. [PMID: 27558169 DOI: 10.1111/bpa.12441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are fatal transmissible diseases, where conversion of the endogenous prion protein (PrPC ) into a misfolded isoform (PrPSc ) leads to neurodegeneration. Microglia, the immune cells of the brain, are activated in neurodegenerative disorders including prion diseases; however, their impact on prion disease pathophysiology is unclear with both beneficial PrPSc -clearing and detrimental potentially neurotoxic effects. Moreover, monocytes entering the brain from the periphery during disease course might add to disease pathophysiology. Here, the degree of microglia activation in the brain of prion infected mice with and without an additional intraperitoneal retrovirus infection was studied. Peripheral murine retrovirus infection leads to activation of parenchymal microglia without recruitment of monocytes. This activation correlated with transient clearance or delay in accumulation of infectious prions specifically from the brain at early time points in the diseases course. Microglia expression profiling showed upregulation of genes involved in protein degradation coinciding with prion clearance. This enforces a concept where microglia act beneficial in prion disease if adequately activated. Once microglia activation has ceased, prion disease reemerges leading to disease kinetics undistinguishable from the situation in prion-only infected mice. This might be caused by the loss of microglial homeostatic function at clinical prion disease.
Collapse
Affiliation(s)
- Christiane Muth
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Schröck
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Madore
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zain Fanek
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Oleg Butovsky
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
The Structure of Mammalian Prions and Their Aggregates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:277-301. [PMID: 28109330 DOI: 10.1016/bs.ircmb.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prion diseases, such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (i.e., deer, elk, moose, and reindeer), and sheep scrapie, are caused by the misfolding of the cellular prion protein (PrPC) into a disease-causing conformer (PrPSc). PrPC is a normal, GPI-anchored protein that is expressed on the surface of neurons and other cell types. The structure of PrPC is well understood, based on studies of recombinant PrP, which closely mimics the structure of native PrPC. In contrast, PrPSc is prone to aggregate into a variety of quaternary structures, such as oligomers, amorphous aggregates, and amyloid fibrils. The propensity of PrPSc to assemble into these diverse forms of aggregates is also responsible for our limited knowledge about its structure. Then again, the repeating nature of certain regular PrPSc aggregates has allowed (lower resolution) insights into the structure of the infectious conformer, establishing a four-rung β-solenoid structure as a key element of its architecture.
Collapse
|
43
|
Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions. J Virol 2016; 90:9558-9569. [PMID: 27440899 DOI: 10.1128/jvi.01106-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
The biochemical and neuropathological properties of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) prions are faithfully maintained upon transmission to guinea pigs. However, primary and secondary transmissions of BSE and vCJD in guinea pigs result in long incubation periods of ∼450 and ∼350 days, respectively. To determine if the incubation periods of BSE and vCJD prions could be shortened, we generated transgenic (Tg) mice expressing guinea pig prion protein (GPPrP). Inoculation of Tg(GPPrP) mice with BSE and vCJD prions resulted in mean incubation periods of 210 and 199 days, respectively, which shortened to 137 and 122 days upon serial transmission. In contrast, three different isolates of sporadic CJD prions failed to transmit disease to Tg(GPPrP) mice. Many of the strain-specified biochemical and neuropathological properties of BSE and vCJD prions, including the presence of type 2 protease-resistant PrPSc, were preserved upon propagation in Tg(GPPrP) mice. Structural modeling revealed that two residues near the N-terminal region of α-helix 1 in GPPrP might mediate its susceptibility to BSE and vCJD prions. Our results demonstrate that expression of GPPrP in Tg mice supports the rapid propagation of BSE and vCJD prions and suggest that Tg(GPPrP) mice may serve as a useful paradigm for bioassaying these prion isolates. IMPORTANCE Variant Creutzfeldt-Jakob disease (vCJD) and bovine spongiform encephalopathy (BSE) prions are two of the prion strains most relevant to human health. However, propagating these strains in mice expressing human or bovine prion protein has been difficult because of prolonged incubation periods or inefficient transmission. Here, we show that transgenic mice expressing guinea pig prion protein are fully susceptible to vCJD and BSE prions but not to sporadic CJD prions. Our results suggest that the guinea pig prion protein is a better, more rapid substrate than either bovine or human prion protein for propagating BSE and vCJD prions.
Collapse
|
44
|
Miyazawa K, Okada H, Masujin K, Iwamaru Y, Yokoyama T. Infectivity-associated PrP(Sc) and disease duration-associated PrP(Sc) of mouse BSE prions. Prion 2016; 9:394-403. [PMID: 26555211 PMCID: PMC4964868 DOI: 10.1080/19336896.2015.1111507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disease-related prion protein (PrPSc), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrPSc in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrPSc in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrPSc was precipitated into the pellet, and the supernatant contained only a slight amount of PrPSc. Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrPSc may be responsible for prion infectivity and that large, aggregated PrPSc may contribute to determining prion disease duration.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- a Influenza and Prion Disease Research Center; National Institute of Animal Health ; Tsukuba , Ibaraki , Japan
| | - Hiroyuki Okada
- a Influenza and Prion Disease Research Center; National Institute of Animal Health ; Tsukuba , Ibaraki , Japan
| | - Kentaro Masujin
- a Influenza and Prion Disease Research Center; National Institute of Animal Health ; Tsukuba , Ibaraki , Japan
| | - Yoshifumi Iwamaru
- a Influenza and Prion Disease Research Center; National Institute of Animal Health ; Tsukuba , Ibaraki , Japan
| | - Takashi Yokoyama
- a Influenza and Prion Disease Research Center; National Institute of Animal Health ; Tsukuba , Ibaraki , Japan
| |
Collapse
|
45
|
Abstract
Transmissible spongiform encephathalopathies or prion diseases are a group of neurological disorders characterized by neuronal loss, spongiform degeneration, and activation of astrocytes or microglia. These diseases affect humans and animals with an extremely high prevalence in some species such as deer and elk in North America. Although rare in humans, they result in a devastatingly swift neurological progression with dementia and ataxia. Patients usually die within a year of diagnosis. Prion diseases are familial, sporadic, iatrogenic, or transmissible. Human prion diseases include Kuru, sporadic, iatrogenic, and familial forms of Creutzfeldt–Jakob disease, variant Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker disease, and fatal familial insomnia. The causative agent is a misfolded version of the physiological prion protein called PrPSc in the brain. There are a number of therapeutic options currently under investigation. A number of small molecules have had some success in delaying disease progression in animal models and mixed results in clinical trials, including pentosan polysulfate, quinacrine, and amphotericin B. More promisingly, immunotherapy has reported success in vitro and in vivo in animal studies and clinical trials. The three main branches of immunotherapy research are focus on antibody vaccines, dendritic cell vaccines, and adoptive transfer of physiological prion protein-specific CD4+ T-lymphocytes. Vaccines utilizing antibodies generally target disease-specific epitopes that are only exposed in the misfolded PrPSc conformation. Vaccines utilizing antigen-loaded dendritic cell have the ability to bypass immune tolerance and prime CD4+ cells to initiate an immune response. Adoptive transfer of CD4+ T-cells is another promising target as this cell type can orchestrate the adaptive immune response. Although more research into mechanisms and safety is required, these immunotherapies offer novel therapeutic targets for prion diseases.
Collapse
Affiliation(s)
- Jennifer T Burchell
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| |
Collapse
|
46
|
Glatzel M, Linsenmeier L, Dohler F, Krasemann S, Puig B, Altmeppen HC. Shedding light on prion disease. Prion 2016; 9:244-56. [PMID: 26186508 DOI: 10.1080/19336896.2015.1065371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proteolytic processing regulates key processes in health and disease. The cellular prion protein (PrP(C)) is subject to at least 3 cleavage events, α-cleavage, β-cleavage and shedding. In contrast to α- and β-cleavage where there is an ongoing controversy on the identity of relevant proteases, the metalloprotease ADAM10 represents the only relevant PrP sheddase. Here we focus on the roles that ADAM10-mediated shedding of PrP(C) and its pathogenic isoform (PrP(Sc)) might play in regulating their physiological and pathogenic functions, respectively. As revealed by our recent study using conditional ADAM10 knockout mice (Altmeppen et al., 2015), shedding of PrP seems to be involved in key processes of prion diseases. These aspects and several open questions arising from them are discussed. Increased knowledge on this topic can shed new light on prion diseases and other neurodegenerative conditions as well.
Collapse
Affiliation(s)
- Markus Glatzel
- a Institute of Neuropathology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | | | | | | | | |
Collapse
|
47
|
Saijo E, Hughson AG, Raymond GJ, Suzuki A, Horiuchi M, Caughey B. PrPSc-Specific Antibody Reveals C-Terminal Conformational Differences between Prion Strains. J Virol 2016; 90:4905-4913. [PMID: 26937029 PMCID: PMC4859706 DOI: 10.1128/jvi.00088-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Understanding the structure of PrP(Sc) and its strain variation has been one of the major challenges in prion disease biology. To study the strain-dependent conformations of PrP(Sc), we purified proteinase-resistant PrP(Sc) (PrP(RES)) from mouse brains with three different murine-adapted scrapie strains (Chandler, 22L, and Me7) and systematically tested the accessibility of epitopes of a wide range of anti-PrP and anti-PrP(Sc) specific antibodies by indirect enzyme-linked immunosorbent assay (ELISA). We found that epitopes of most anti-PrP antibodies were hidden in the folded structure of PrP(RES), even though these epitopes are revealed with guanidine denaturation. However, reactivities to a PrP(Sc)-specific conformational C-terminal antibody showed significant differences among the three different prion strains. Our results provide evidence for strain-dependent conformational variation near the C termini of molecules within PrP(Sc) multimers. IMPORTANCE It has long been apparent that prion strains can have different conformations near the N terminus of the PrP(Sc) protease-resistant core. Here, we show that a C-terminal conformational PrP(Sc)-specific antibody reacts differently to three murine-adapted scrapie strains. These results suggest, in turn, that conformational differences in the C terminus of PrP(Sc) also contribute to the phenotypic distinction between prion strains.
Collapse
Affiliation(s)
- Eri Saijo
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
48
|
Brandel JP, Haïk S. Malattie da prioni o encefalopatie spongiformi trasmissibili. Neurologia 2016. [DOI: 10.1016/s1634-7072(16)77562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Strain-dependent profile of misfolded prion protein aggregates. Sci Rep 2016; 6:20526. [PMID: 26877167 PMCID: PMC4753423 DOI: 10.1038/srep20526] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Prions are composed of the misfolded prion protein (PrPSc) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrPSc aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrPSc aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrPSc aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrPSc aggregates and the incubation periods for the strains studied. The relative presence of PrPSc in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrPSc aggregates in prion-induced neurodegeneration.
Collapse
|
50
|
Guo BB, Bellingham SA, Hill AF. Stimulating the Release of Exosomes Increases the Intercellular Transfer of Prions. J Biol Chem 2016; 291:5128-37. [PMID: 26769968 DOI: 10.1074/jbc.m115.684258] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 01/20/2023] Open
Abstract
Exosomes are small extracellular vesicles released by cells and play important roles in intercellular communication and pathogen transfer. Exosomes have been implicated in several neurodegenerative diseases, including prion disease and Alzheimer disease. Prion disease arises upon misfolding of the normal cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). The disease has a unique transmissible etiology, and exosomes represent a novel and efficient method for prion transmission. The precise mechanism by which prions are transmitted from cell to cell remains to be fully elucidated, although three hypotheses have been proposed: direct cell-cell contact, tunneling nanotubes, and exosomes. Given the reported presence of exosomes in biological fluids and in the lipid and nucleic acid contents of exosomes, these vesicles represent an ideal mechanism for encapsulating prions and potential cofactors to facilitate prion transmission. This study investigates the relationship between exosome release and intercellular prion dissemination. Stimulation of exosome release through treatment with an ionophore, monensin, revealed a corresponding increase in intercellular transfer of prion infectivity. Conversely, inhibition of exosome release using GW4869 to target the neutral sphingomyelinase pathway induced a decrease in intercellular prion transmission. Further examination of the effect of monensin on PrP conversion revealed that monensin also alters the conformational stability of PrP(C), leading to increased generation of proteinase K-resistant prion protein. The findings presented here provide support for a positive relationship between exosome release and intercellular transfer of prion infectivity, highlighting an integral role for exosomes in facilitating the unique transmissible nature of prions.
Collapse
Affiliation(s)
- Belinda B Guo
- From the Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Shayne A Bellingham
- From the Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Andrew F Hill
- From the Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|