1
|
Rees H, Rzechorzek NM, Hughes RB, Dodd AN, Hodge JJL, Stevenson TJ, von Schantz M, Lucas RJ, Reece SE, Kyriacou CP, Millar AJ. BioClocks UK: driving robust cycles of discovery to impact. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230345. [PMID: 39842476 PMCID: PMC11753888 DOI: 10.1098/rstb.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 01/24/2025] Open
Abstract
Chronobiology is a multidisciplinary field that extends across the tree of life, transcends all scales of biological organization, and has huge translational potential. For the UK to harness the opportunities presented within applied chronobiology, we need to build our network outwards to reach stakeholders that can directly benefit from our discoveries. In this article, we discuss the importance of biological rhythms to our health, society, economy and environment, with a particular focus on circadian rhythms. We subsequently introduce the vision and objectives of BioClocks UK, a newly formed research network, whose mission is to stimulate researcher interactions and sustain discovery-impact cycles between chronobiologists, wider research communities and multiple industry sectors.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Hannah Rees
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, AberystwythSY23 3EE, UK
| | - Nina M. Rzechorzek
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CambridgeCB2 0QH, UK
| | - Rebecca B. Hughes
- Centre for Biological Timing and Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PT, UK
| | - Antony N. Dodd
- John Innes Centre, Norwich Research Park, NorwichNR4 7RU, UK
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences building, University Walk, BristolBS8 1TD, UK
| | - Tyler J. Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, GlasgowG61 1QH, UK
| | - Malcolm von Schantz
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon TyneNE1 8ST, UK
| | - Robert J. Lucas
- Centre for Biological Timing and Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PT, UK
| | - Sarah E. Reece
- Institute of Ecology and Evolution & Institute of Immunology and Infection Research, School of Biological Sciences, University of EdinburghEH9 3FL, UK
| | - Charalambos P. Kyriacou
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, LeicesterLE1 7RH, UK
| | - Andrew J. Millar
- School of Biological Sciences and Centre for Engineering Biology, University of Edinburgh, Max Born Crescent, EdinburghEH9 3BF, UK
| |
Collapse
|
2
|
Jin M, Peng Y, Peng J, Yu S, Wu C, Yang X, Zhu J, Infante O, Xu Q, Wang H, Wu K, Xiao Y. A supergene controls facultative diapause in the crop pest Helicoverpa armigera. Cell Rep 2024; 43:114939. [PMID: 39509270 DOI: 10.1016/j.celrep.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Many insect species, including the economically important pest Helicoverpa armigera, avoid unfavorable conditions by suspending development. This form of phenotypic plasticity-facultative diapause-is a complex trait, though its evolution and intricate genetic architecture remain poorly understood. To investigate how such a polygenic trait could be locally adapted, we explore its genetic architecture. We map a large-effect diapause-associated locus to the Z chromosome by crossing high- and low-latitude populations. By generating multiple chromosome-scale assemblies, we identify an ∼5.93-Mb chromosomal inversion that constitutes the locus. Within this inversion, 33 genes harbor divergent non-synonymous mutations, notably including three circadian rhythm genes: Period, Clock, and Cycle. CRISPR-Cas9 knockout experiments confirm that each gene is independently essential for pupal diapause. Thus, a diapause supergene arose within H. armigera via a Z chromosome inversion, enabling local climatic adaptation in this economically important crop pest.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Jie Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Songmiao Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Xianming Yang
- The State Key Laboratory for Biology and Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingyun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Oscar Infante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 04510, México
| | - Qi Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China.
| | - Kongming Wu
- The State Key Laboratory for Biology and Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China.
| |
Collapse
|
3
|
Ranathunge C, Welch ME. Clinal Variation in Short Tandem Repeats Linked to Gene Expression in Sunflower ( Helianthus annuus L.). Biomolecules 2024; 14:944. [PMID: 39199332 PMCID: PMC11352406 DOI: 10.3390/biom14080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Short tandem repeat (STR) variation is rarely explored as a contributor to adaptive evolution. An intriguing mechanism involving STRs suggests that STRs function as "tuning knobs" of adaptation whereby stepwise changes in STR allele length have stepwise effects on phenotypes. Previously, we tested the predictions of the "tuning knob" model at the gene expression level by conducting an RNA-Seq experiment on natural populations of common sunflower (Helianthus annuus L.) transecting a well-defined cline from Kansas to Oklahoma. We identified 479 STRs with significant allele length effects on gene expression (eSTRs). In this study, we expanded the range to populations further north and south of the focal populations and used a targeted approach to study the relationship between STR allele length and gene expression in five selected eSTRs. Seeds from 96 individuals from six natural populations of sunflower from Nebraska and Texas were grown in a common garden. The individuals were genotyped at the five eSTRs, and gene expression was quantified with qRT-PCR. Linear regression models identified that eSTR length in comp26672 was significantly correlated with gene expression. Further, the length of comp26672 eSTR was significantly correlated with latitude across the range from Nebraska to Texas. The eSTR locus comp26672 was located in the CHUP1 gene, a gene associated with chloroplast movement in response to light intensity, which suggests a potential adaptive role for the eSTR locus. Collectively, our results from this targeted study show a consistent relationship between allele length and gene expression in some eSTRs across a broad geographical range in sunflower and suggest that some eSTRs may contribute to adaptive traits in common sunflower.
Collapse
|
4
|
Vaidehi Narayanan H, Xiang MY, Chen Y, Huang H, Roy S, Makkar H, Hoffmann A, Roy K. Direct observation correlates NFκB cRel in B cells with activating and terminating their proliferative program. Proc Natl Acad Sci U S A 2024; 121:e2309686121. [PMID: 39024115 PMCID: PMC11287273 DOI: 10.1073/pnas.2309686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
Antibody responses require the proliferative expansion of B cells controlled by affinity-dependent signals. Yet, proliferative bursts are heterogeneous, varying between 0 and 8 divisions in response to the same stimulus. NFκB cRel is activated in response to immune stimulation in B cells and is genetically required for proliferation. Here, we asked whether proliferative heterogeneity is controlled by natural variations in cRel abundance. We developed a fluorescent reporter mTFP1-cRel for the direct observation of cRel in live proliferating B cells. We found that cRel is heterogeneously distributed among naïve B cells, which are enriched for high expressors in a heavy-tailed distribution. We found that high cRel expressors show faster activation of the proliferative program, but do not sustain it well, with population expansion decaying earlier. With a mathematical model of the molecular network, we showed that cRel heterogeneity arises from balancing positive feedback by autoregulation and negative feedback by its inhibitor IκBε, confirmed by mouse knockouts. Using live-cell fluorescence microscopy, we showed that increased cRel primes B cells for early proliferation via higher basal expression of the cell cycle driver cMyc. However, peak cMyc induction amplitude is constrained by incoherent feedforward regulation, decoding the fold change of cRel activity to terminate the proliferative burst. This results in a complex nonlinear, nonmonotonic relationship between cRel expression and the extent of proliferation. These findings emphasize the importance of direct observational studies to complement gene knockout results and to learn about quantitative relationships between biological processes and their key regulators in the context of natural variations.
Collapse
Affiliation(s)
- Haripriya Vaidehi Narayanan
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Mark Y. Xiang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Yijia Chen
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Helen Huang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Sukanya Roy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| | - Himani Makkar
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| |
Collapse
|
5
|
King DG. Mutation protocols share with sexual reproduction the physiological role of producing genetic variation within 'constraints that deconstrain'. J Physiol 2024; 602:2615-2626. [PMID: 38178567 DOI: 10.1113/jp285478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Because the universe of possible DNA sequences is inconceivably vast, organisms have evolved mechanisms for exploring DNA sequence space while substantially reducing the hazard that would otherwise accrue to any process of random, accidental mutation. One such mechanism is meiotic recombination. Although sexual reproduction imposes a seemingly paradoxical 50% cost to fitness, sex evidently prevails because this cost is outweighed by the advantage of equipping offspring with genetic variation to accommodate environmental vicissitudes. The potential adaptive utility of additional mechanisms for producing genetic variation has long been obscured by a presumption that the vast majority of mutations are deleterious. Perhaps surprisingly, the probability for adaptive variation can be increased by several mechanisms that generate mutations abundantly. Such mechanisms, here called 'mutation protocols', implement implicit 'constraints that deconstrain'. Like meiotic recombination, they produce genetic variation in forms that minimize potential for harm while providing a reasonably high probability for benefit. One example is replication slippage of simple sequence repeats (SSRs); this process yields abundant, reversible mutations, typically with small quantitative effect on phenotype. This enables SSRs to function as adjustable 'tuning knobs'. There exists a clear pathway for SSRs to be shaped through indirect selection favouring their implicit tuning-knob protocol. Several other molecular mechanisms comprise probable components of additional mutation protocols. Biologists might plausibly regard such mechanisms of mutation not primarily as sources of deleterious genetic mistakes but also as potentially adaptive processes for 'exploring' DNA sequence space.
Collapse
Affiliation(s)
- David G King
- Department of Anatomy, School of Medicine, Southern Illinois University Carbondale, Carbondale, Illinois, USA
- Department of Zoology, College of Agricultural, Life, and Physical Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
6
|
Caporale LH. Evolutionary feedback from the environment shapes mechanisms that generate genome variation. J Physiol 2024; 602:2601-2614. [PMID: 38194279 DOI: 10.1113/jp284411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Darwin recognized that 'a grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation.' However, because the Modern Synthesis assumes that the intrinsic probability of any individual mutation is unrelated to that mutation's potential adaptive value, attention has been focused on selection rather than on the intrinsic generation of variation. Yet many examples illustrate that the term 'random' mutation, as widely understood, is inaccurate. The probabilities of distinct classes of variation are neither evenly distributed across a genome nor invariant over time, nor unrelated to their potential adaptive value. Because selection acts upon variation, multiple biochemical mechanisms can and have evolved that increase the relative probability of adaptive mutations. In effect, the generation of heritable variation is in a feedback loop with selection, such that those mechanisms that tend to generate variants that survive recurring challenges in the environment would be captured by this survival and thus inherited and accumulated within lineages of genomes. Moreover, because genome variation is affected by a wide range of biochemical processes, genome variation can be regulated. Biochemical mechanisms that sense stress, from lack of nutrients to DNA damage, can increase the probability of specific classes of variation. A deeper understanding of evolution involves attention to the evolution of, and environmental influences upon, the intrinsic variation generated in gametes, in other words upon the biochemical mechanisms that generate variation across generations. These concepts have profound implications for the types of questions that can and should be asked, as omics databases become more comprehensive, detection methods more sensitive, and computation and experimental analyses even more high throughput and thus capable of revealing the intrinsic generation of variation in individual gametes. These concepts also have profound implications for evolutionary theory, which, upon reflection it will be argued, predicts that selection would increase the probability of generating adaptive mutations, in other words, predicts that the ability to evolve itself evolves.
Collapse
|
7
|
Sureshkumar S, Bandaranayake C, Lv J, Dent CI, Bhagat PK, Mukherjee S, Sarwade R, Atri C, York HM, Tamizhselvan P, Shamaya N, Folini G, Bergey BG, Yadav AS, Kumar S, Grummisch OS, Saini P, Yadav RK, Arumugam S, Rosonina E, Sadanandom A, Liu H, Balasubramanian S. SUMO protease FUG1, histone reader AL3 and chromodomain protein LHP1 are integral to repeat expansion-induced gene silencing in Arabidopsis thaliana. NATURE PLANTS 2024; 10:749-759. [PMID: 38641663 DOI: 10.1038/s41477-024-01672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Epigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway. Here, using a genetic suppressor screen and yeast two-hybrid assays, we identified novel components required for epigenetic silencing caused by expanded repeats. We show that FOURTH ULP GENE CLASS 1 (FUG1)-an uncharacterized SUMO protease with no known role in gene silencing-is required for epigenetic silencing caused by expanded repeats. In addition, we demonstrate that FUG1 physically interacts with ALFIN-LIKE 3 (AL3)-a histone reader that is known to bind to active histone mark H3K4me2/3. Loss of function of AL3 abolishes epigenetic silencing caused by expanded repeats. AL3 physically interacts with the chromodomain protein LIKE HETEROCHROMATIN 1 (LHP1)-known to be associated with the spread of the repressive histone mark H3K27me3 to cause repeat expansion-induced epigenetic silencing. Loss of any of these components suppresses repeat expansion-associated phenotypes coupled with an increase in IIL1 expression with the reversal of gene silencing and associated change in epigenetic marks. Our findings suggest that the FUG1-AL3-LHP1 module is essential to confer repeat expansion-associated epigenetic silencing and highlight the importance of post-translational modifiers and histone readers in epigenetic silencing.
Collapse
Affiliation(s)
- Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | - Champa Bandaranayake
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Junqing Lv
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Craig I Dent
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Sourav Mukherjee
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Rucha Sarwade
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Chhaya Atri
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prashanth Tamizhselvan
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Nawar Shamaya
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Giulia Folini
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Avilash Singh Yadav
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Subhasree Kumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Oliver S Grummisch
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prince Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Ram K Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, UK
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
8
|
Jabbur ML, Dani C, Spoelstra K, Dodd AN, Johnson CH. Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution. J Biol Rhythms 2024; 39:115-134. [PMID: 38185853 PMCID: PMC10994774 DOI: 10.1177/07487304231219206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Surely most chronobiologists believe circadian clocks are an adaptation of organisms that enhances fitness, but are we certain that this focus of our research effort really confers a fitness advantage? What is the evidence, and how do we evaluate it? What are the best criteria? These questions are the topic of this review. In addition, we will discuss selective pressures that might have led to the historical evolution of circadian systems while considering the intriguing question of whether the ongoing climate change is modulating these selective pressures so that the clock is still evolving.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Chitrang Dani
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
9
|
Reinar WB, Greulich A, Stø IM, Knutsen JB, Reitan T, Tørresen OK, Jentoft S, Butenko MA, Jakobsen KS. Adaptive protein evolution through length variation of short tandem repeats in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadd6960. [PMID: 36947624 PMCID: PMC10032594 DOI: 10.1126/sciadv.add6960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered protein regions are of high importance for biotic and abiotic stress responses in plants. Tracts of identical amino acids accumulate in these regions and can vary in length over generations because of expansions and retractions of short tandem repeats at the genomic level. However, little attention has been paid to what extent length variation is shaped by natural selection. By environmental association analysis on 2514 length variable tracts in 770 whole-genome sequenced Arabidopsis thaliana, we show that length variation in glutamine and asparagine amino acid homopolymers, as well as in interaction hotspots, correlate with local bioclimatic habitat. We determined experimentally that the promoter activity of a light-stress gene depended on polyglutamine length variants in a disordered transcription factor. Our results show that length variations affect protein function and are likely adaptive. Length variants modulating protein function at a global genomic scale has implications for understanding protein evolution and eco-evolutionary biology.
Collapse
Affiliation(s)
- William B. Reinar
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Anne Greulich
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ida M. Stø
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jonfinn B. Knutsen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Trond Reitan
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Melinka A. Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
10
|
Kyriacou CP, Menegazzi P, Dolezel D. Editorial: Biological rhythms: Evolution, population biology, and adaptation. Front Physiol 2023; 14:1157631. [PMID: 36866177 PMCID: PMC9971991 DOI: 10.3389/fphys.2023.1157631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Affiliation(s)
- Charalambos P. Kyriacou
- Department Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom,*Correspondence: Charalambos P. Kyriacou,
| | - Pamela Menegazzi
- Neurobiology and Genetics, University of Würzburg, Würzburg, Germany
| | - David Dolezel
- The Czech Academy of Sciences, AVCR, Institute of Entomology, Ceske Budejovice, Czechia
| |
Collapse
|
11
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
12
|
Giesecke A, Johnstone PS, Lamaze A, Landskron J, Atay E, Chen KF, Wolf E, Top D, Stanewsky R. A novel period mutation implicating nuclear export in temperature compensation of the Drosophila circadian clock. Curr Biol 2023; 33:336-350.e5. [PMID: 36584676 DOI: 10.1016/j.cub.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Circadian clocks are self-sustained molecular oscillators controlling daily changes of behavioral activity and physiology. For functional reliability and precision, the frequency of these molecular oscillations must be stable at different environmental temperatures, known as "temperature compensation." Despite being an intrinsic property of all circadian clocks, this phenomenon is not well understood at the molecular level. Here, we use behavioral and molecular approaches to characterize a novel mutation in the period (per) clock gene of Drosophila melanogaster, which alters a predicted nuclear export signal (NES) of the PER protein and affects temperature compensation. We show that this new perI530A allele leads to progressively longer behavioral periods and clock oscillations with increasing temperature in both clock neurons and peripheral clock cells. While the mutant PERI530A protein shows normal circadian fluctuations and post-translational modifications at cool temperatures, increasing temperatures lead to both severe amplitude dampening and hypophosphorylation of PERI530A. We further show that PERI530A displays reduced repressor activity at warmer temperatures, presumably because it cannot inactivate the transcription factor CLOCK (CLK), indicated by temperature-dependent altered CLK post-translational modification in perI530A flies. With increasing temperatures, nuclear accumulation of PERI530A within clock neurons is increased, suggesting that wild-type PER is exported out of the nucleus at warm temperatures. Downregulating the nuclear export factor CRM1 also leads to temperature-dependent changes of behavioral rhythms, suggesting that the PER NES and the nuclear export of clock proteins play an important role in temperature compensation of the Drosophila circadian clock.
Collapse
Affiliation(s)
- Astrid Giesecke
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Peter S Johnstone
- Department of Biochemistry and Molecular Biology and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Angelique Lamaze
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Johannes Landskron
- Centre for Molecular Medicine Norway, University of Oslo, 0318 Oslo, Norway
| | - Ezgi Atay
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Ko-Fan Chen
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Eva Wolf
- Johannes Gutenberg University (JGU) and Institute of Molecular Biology (IMB) Mainz, 55128 Mainz, Germany
| | - Deniz Top
- Department of Biochemistry and Molecular Biology and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
| |
Collapse
|
13
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
14
|
van Dis NE, Risse JE, Pijl AS, Hut RA, Visser ME, Wertheim B. Transcriptional regulation underlying the temperature response of embryonic development rate in the winter moth. Mol Ecol 2022; 31:5795-5812. [PMID: 36161402 PMCID: PMC9828122 DOI: 10.1111/mec.16705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
Climate change will strongly affect the developmental timing of insects, as their development rate depends largely on ambient temperature. However, we know little about the genetic mechanisms underlying the temperature sensitivity of embryonic development in insects. We investigated embryonic development rate in the winter moth (Operophtera brumata), a species with egg dormancy which has been under selection due to climate change. We used RNA sequencing to investigate which genes are involved in the regulation of winter moth embryonic development rate in response to temperature. Over the course of development, we sampled eggs before and after an experimental change in ambient temperature, including two early development weeks when the temperature sensitivity of eggs is low and two late development weeks when temperature sensitivity is high. We found temperature-responsive genes that responded in a similar way across development, as well as genes with a temperature response specific to a particular development week. Moreover, we identified genes whose temperature effect size changed around the switch in temperature sensitivity of development rate. Interesting candidate genes for regulating the temperature sensitivity of egg development rate included genes involved in histone modification, hormonal signalling, nervous system development and circadian clock genes. The diverse sets of temperature-responsive genes we found here indicate that there are many potential targets of selection to change the temperature sensitivity of embryonic development rate. Identifying for which of these genes there is genetic variation in wild insect populations will give insight into their adaptive potential in the face of climate change.
Collapse
Affiliation(s)
- Natalie E. van Dis
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands,Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Judith E. Risse
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Agata S. Pijl
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands,Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
15
|
Comparative analysis of microsatellites in coding regions provides insights into the adaptability of the giant panda, polar bear and brown bear. Genetica 2022; 150:355-366. [DOI: 10.1007/s10709-022-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
|
16
|
Pholtaisong J, Chaiyaratana N, Aporntewan C, Mutirangura A. Mononucleotide A-repeats may Play a Regulatory Role in Endothermic Housekeeping Genes. Evol Bioinform Online 2022; 18:11769343221110656. [PMID: 35860694 PMCID: PMC9290108 DOI: 10.1177/11769343221110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Coding and non-coding short tandem repeats (STRs) facilitate a great diversity of phenotypic traits. The imbalance of mononucleotide A-repeats around transcription start sites (TSSs) was found in 3 mammals: H. sapiens, M. musculus, and R. norvegicus. Principal Findings: We found that the imbalance pattern originated in some vertebrates. A similar pattern was observed in mammals and birds, but not in amphibians and reptiles. We proposed that the enriched A-repeats upstream of TSSs is a novel hallmark of endotherms or warm-blooded animals. Gene ontology analysis indicates that the primary function of upstream A-repeats involves metabolism, cellular transportation, and sensory perception (smell and chemical stimulus) through housekeeping genes. Conclusions: Upstream A-repeats may play a regulatory role in the metabolic process of endothermic animals.
Collapse
Affiliation(s)
- Jatuphol Pholtaisong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Nachol Chaiyaratana
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.,Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchawit Aporntewan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Omics Sciences and Bioinformatics Center, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
17
|
Ranathunge C, Chimahusky ME, Welch ME. A comparative study of population genetic structure reveals patterns consistent with selection at functional microsatellites in common sunflower. Mol Genet Genomics 2022; 297:1329-1342. [PMID: 35786764 DOI: 10.1007/s00438-022-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Microsatellites, also known as short tandem repeats (STRs), have long been considered non-functional, neutrally evolving regions of the genome. Recent findings suggest that they can function as drivers of rapid adaptive evolution. Previous work on the common sunflower identified 479 transcribed microsatellites where allele length significantly correlates with gene expression (eSTRs) in a stepwise manner. Here, a population genetic approach is used to test whether eSTR allele length variation is under selection. Genotypic variation among and within populations at 13 eSTRs was compared with that at 19 anonymous microsatellites in 672 individuals from 17 natural populations of sunflower from across a cline running from Saskatchewan to Oklahoma (distance of approximately 1600 km). Expected heterozygosity, allelic richness, and allelic diversity were significantly lower at eSTRs, a pattern consistent with higher relative rates of purifying selection. Further, an analysis of variation in microsatellite allele lengths (lnRV), and heterozygosities (lnRH), indicate recent selective sweeps at the eSTRs. Mean microsatellite allele lengths at four eSTRs within populations are significantly correlated with latitude consistent with the predictions of the tuning-knob model which predicts stepwise relationships between microsatellite allele length and phenotypes. This finding suggests that shorter or longer alleles at eSTRs may be favored in climatic extremes. Collectively, our results imply that eSTRs are likely under selection and that they may be playing a role in facilitating local adaptation across a well-defined cline in the common sunflower.
Collapse
Affiliation(s)
- Chathurani Ranathunge
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA.
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Melody E Chimahusky
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| |
Collapse
|
18
|
Joshi R, Cai YD, Xia Y, Chiu JC, Emery P. PERIOD Phosphoclusters Control Temperature Compensation of the Drosophila Circadian Clock. Front Physiol 2022; 13:888262. [PMID: 35721569 PMCID: PMC9201207 DOI: 10.3389/fphys.2022.888262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ambient temperature varies constantly. However, the period of circadian pacemakers is remarkably stable over a wide-range of ecologically- and physiologically-relevant temperatures, even though the kinetics of most biochemical reactions accelerates as temperature rises. This thermal buffering phenomenon, called temperature compensation, is a critical feature of circadian rhythms, but how it is achieved remains elusive. Here, we uncovered the important role played by the Drosophila PERIOD (PER) phosphodegron in temperature compensation. This phosphorylation hotspot is crucial for PER proteasomal degradation and is the functional homolog of mammalian PER2 S478 phosphodegron, which also impacts temperature compensation. Using CRISPR-Cas9, we introduced a series of mutations that altered three Serines of the PER phosphodegron. While all three Serine to Alanine substitutions lengthened period at all temperatures tested, temperature compensation was differentially affected. S44A and S45A substitutions caused undercompensation, while S47A resulted in overcompensation. These results thus reveal unexpected functional heterogeneity of phosphodegron residues in thermal compensation. Furthermore, mutations impairing phosphorylation of the per s phosphocluster showed undercompensation, consistent with its inhibitory role on S47 phosphorylation. We observed that S47A substitution caused increased accumulation of hyper-phosphorylated PER at warmer temperatures. This finding was corroborated by cell culture assays in which S47A slowed down phosphorylation-dependent PER degradation at high temperatures, causing PER degradation to be excessively temperature-compensated. Thus, our results point to a novel role of the PER phosphodegron in temperature compensation through temperature-dependent modulation of the abundance of hyper-phosphorylated PER. Our work reveals interesting mechanistic convergences and differences between mammalian and Drosophila temperature compensation of the circadian clock.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Yao D. Cai
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Yongliang Xia
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Joanna C. Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
19
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
20
|
Pegoraro M, Sayegh Rezek E, Fishman B, Tauber E. Nucleotide Variation in Drosophila cryptochrome Is Linked to Circadian Clock Function: An Association Analysis. Front Physiol 2022; 13:781380. [PMID: 35250608 PMCID: PMC8892179 DOI: 10.3389/fphys.2022.781380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
Cryptochrome (CRY) is a conserved protein associated with the circadian clock in a broad range of organisms, including plants, insects, and mammals. In Drosophila, cry is a pleiotropic gene that encodes a blue light-dedicated circadian photoreceptor, as well as an electromagnetic field sensor and a geotaxis behavior regulator. We have generated a panel of nearly-isogenic strains that originated from various wild populations and which carry different natural alleles of cry. Sequencing of these alleles revealed substantial polymorphism, the functional role of which was elusive. To link this natural molecular diversity to gene function, we relied on association mapping. Such analysis revealed two major haplogroups consisting of six linked nucleotides associated with circadian phase (haplotypes All1/All2). We also generated a maximum-likelihood gene-tree that uncovered an additional pair of haplogroups (B1/B2). Behavioral analysis of the different haplotypes indicated significant effect on circadian phase and period, as well on the amount of activity and sleep. The data also suggested substantial epistasis between the All and B haplogroups. Intriguingly, circadian photosensitivity, assessed by light-pulse experiments, did not differ between the genotypes. Using CRISPR-mediated transgenic flies, we verified the effect of B1/B2 polymorphism on circadian phase. The transgenic flies also exhibited substantially different levels of cry transcription. We, moreover, analyzed the geographical distribution of the B1/B2 haplotypes, focusing on a 12 bp insertion/deletion polymorphism that differentiates the two haplotypes. Analysis of cry sequences in wild populations across Europe revealed a geographical cline of B1/B2 indel frequency, which correlated with seasonal bioclimatic variables. This spatial distribution of cry polymorphism reinforces the functional importance of these haplotypes in the circadian system and local adaptation.
Collapse
Affiliation(s)
- Mirko Pegoraro
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Genetics and Biology, University of Leicester, Leicester, United Kingdom
| | - Emily Sayegh Rezek
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eran Tauber
- Department of Genetics and Biology, University of Leicester, Leicester, United Kingdom
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
- *Correspondence: Eran Tauber,
| |
Collapse
|
21
|
Ikeda K, Daimon T, Shiomi K, Udaka H, Numata H. Involvement of the Clock Gene Period in the Photoperiodism of the Silkmoth Bombyx mori. Zoolog Sci 2021; 38:523-530. [PMID: 34854284 DOI: 10.2108/zs210081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
We established a knockout strain of a clock gene, period (per), by using TALEN in a bivoltine strain (Kosetsu) of Bombyx mori (Insecta, Lepidoptera), and examined the effect of per knockout on the circadian rhythm and photoperiodism. The generated per knockout allele was considered to be null, because a new stop codon was present in the insertion allele. The wild type (Kosetsu) showed clear circadian rhythms in eclosion and hatching, whereas the per knockout strain showed arrhythmic eclosion and hatching under constant darkness. In this strain, moreover, temporal expression changes of clock genes per and timeless were disrupted. The wild type showed a clear long-day response for induction of embryonic diapause: when larvae were reared under long-day and short-day conditions at 25°C, adults produced nondiapause and diapause eggs, respectively. However, the per knockout strain lost the sensitivity to photoperiod and laid nondiapause eggs under both conditions. We conclude that per plays an important role both in circadian rhythms and in photoperiodism of B. mori, indicating the involvement of the circadian clock consisting of per in the photoperiodism.
Collapse
Affiliation(s)
- Kento Ikeda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Hiroko Udaka
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hideharu Numata
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan,
| |
Collapse
|
22
|
Burt P, Grabe S, Madeti C, Upadhyay A, Merrow M, Roenneberg T, Herzel H, Schmal C. Principles underlying the complex dynamics of temperature entrainment by a circadian clock. iScience 2021; 24:103370. [PMID: 34816105 PMCID: PMC8593569 DOI: 10.1016/j.isci.2021.103370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.
Collapse
Affiliation(s)
- Philipp Burt
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Saskia Grabe
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Cornelia Madeti
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Abhishek Upadhyay
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Till Roenneberg
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
23
|
Cai YD, Chiu JC. Timeless in animal circadian clocks and beyond. FEBS J 2021; 289:6559-6575. [PMID: 34699674 PMCID: PMC9038958 DOI: 10.1111/febs.16253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), its mammalian paralog, was first identified as a potential circadian clock component in 1990s due to sequence similarity to dTIM, its role in clock regulation has been more controversial. Mammalian TIM has now been characterized as a DNA replication fork component and has been shown to promote fork progression and participate in cell cycle checkpoint signaling in response to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains controversial whether the regulation of circadian clocks by mTIM is direct, especially given the interconnection between the cell cycle and circadian clocks. In this review, we provide a historical perspective on the identification of animal tim genes, summarize the roles of TIM proteins in biological timing and genomic stability, and draw parallels between dTIM and mTIM despite apparent functional divergence.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| |
Collapse
|
24
|
Stanley RA, Kyriacou CP. A latitudinal cline in a courtship song character of Drosophila melanogaster. J Neurogenet 2021; 35:333-340. [PMID: 34100669 DOI: 10.1080/01677063.2021.1933968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The courtship song of male Drosophila melanogaster is generated by wing vibration and contains an interpulse interval (IPI) which is species-specific and usually falls in the mean range of 30-40 ms. The IPI is extremely temperature-sensitive, so we wondered whether flies collected along the eastern coast of Australia between latitudes 16.9°S and 42.9°S might have adapted to the different thermal conditions and show differences in mean IPI. We observe a significant correlation between IPI and latitude in addition to the well-known association between latitude and body size (Bergmannn's Rule). However, somewhat surprisingly we could not detect a significant association between body size and IPI. We also examined flies collected from the North and South-facing slopes of 'Evolution Canyon' in Israel and observed differences in IPI that support the view that thermal adaptation can shape this important song character. We also examined the songs of flies from Kenya and observed no correlation between altitude of collection and IPI. In all three experiments, body size did not correlate with IPI. A global analysis of all three sets of populations on three continents revealed a strong association between IPI and latitude. We speculate that IPI is shaped by thermal and sexual selection whereas body size is also shaped by natural selection.
Collapse
Affiliation(s)
- Rosamund A Stanley
- Department of Genetics & Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
25
|
Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p. PLoS One 2021; 16:e0247285. [PMID: 34019539 PMCID: PMC8139511 DOI: 10.1371/journal.pone.0247285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function.
Collapse
|
26
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
27
|
McClung CR. Circadian Clock Components Offer Targets for Crop Domestication and Improvement. Genes (Basel) 2021; 12:genes12030374. [PMID: 33800720 PMCID: PMC7999361 DOI: 10.3390/genes12030374] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
During plant domestication and improvement, farmers select for alleles present in wild species that improve performance in new selective environments associated with cultivation and use. The selected alleles become enriched and other alleles depleted in elite cultivars. One important aspect of crop improvement is expansion of the geographic area suitable for cultivation; this frequently includes growth at higher or lower latitudes, requiring the plant to adapt to novel photoperiodic environments. Many crops exhibit photoperiodic control of flowering and altered photoperiodic sensitivity is commonly required for optimal performance at novel latitudes. Alleles of a number of circadian clock genes have been selected for their effects on photoperiodic flowering in multiple crops. The circadian clock coordinates many additional aspects of plant growth, metabolism and physiology, including responses to abiotic and biotic stresses. Many of these clock-regulated processes contribute to plant performance. Examples of selection for altered clock function in tomato demonstrate that with domestication, the phasing of the clock is delayed with respect to the light–dark cycle and the period is lengthened; this modified clock is associated with increased chlorophyll content in long days. These and other data suggest the circadian clock is an attractive target during breeding for crop improvement.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
28
|
Kim SM, Vadnie CA, Philip VM, Gagnon LH, Chowdari KV, Chesler EJ, McClung CA, Logan RW. High-throughput measurement of fibroblast rhythms reveals genetic heritability of circadian phenotypes in diversity outbred mice and their founder strains. Sci Rep 2021; 11:2573. [PMID: 33510298 PMCID: PMC7843998 DOI: 10.1038/s41598-021-82069-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 01/21/2023] Open
Abstract
Circadian variability is driven by genetics and Diversity Outbred (DO) mice is a powerful tool for examining the genetics of complex traits because their high genetic and phenotypic diversity compared to conventional mouse crosses. The DO population combines the genetic diversity of eight founder strains including five common inbred and three wild-derived strains. In DO mice and their founders, we established a high-throughput system to measure cellular rhythms using in vitro preparations of skin fibroblasts. Among the founders, we observed strong heritability for rhythm period, robustness, phase and amplitude. We also found significant sex and strain differences for these rhythms. Extreme differences in period for molecular and behavioral rhythms were found between the inbred A/J strain and the wild-derived CAST/EiJ strain, where A/J had the longest period and CAST/EiJ had the shortest. In addition, we measured cellular rhythms in 329 DO mice, which displayed far greater phenotypic variability than the founders—80% of founders compared to only 25% of DO mice had periods of ~ 24 h. Collectively, our findings demonstrate that genetic diversity contributes to phenotypic variability in circadian rhythms, and high-throughput characterization of fibroblast rhythms in DO mice is a tractable system for examining the genetics of circadian traits.
Collapse
Affiliation(s)
- Sam-Moon Kim
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, ME, USA
| | - Chelsea A Vadnie
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Vivek M Philip
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, ME, USA
| | - Leona H Gagnon
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, ME, USA
| | - Kodavali V Chowdari
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Elissa J Chesler
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, ME, USA
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA. .,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, ME, USA.
| | - Ryan W Logan
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, ME, USA. .,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 700 Albany Street, Boston, 02118, MA, USA.
| |
Collapse
|
29
|
Persi E, Wolf YI, Horn D, Ruppin E, Demichelis F, Gatenby RA, Gillies RJ, Koonin EV. Mutation-selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet 2020; 22:251-262. [PMID: 33257848 DOI: 10.1038/s41576-020-00299-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Horn
- School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Demichelis
- Department for Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Robert A Gatenby
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Souto-Maior C, Serrano Negron YL, Harbison ST. Natural selection on sleep duration in Drosophila melanogaster. Sci Rep 2020; 10:20652. [PMID: 33244154 PMCID: PMC7691507 DOI: 10.1038/s41598-020-77680-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Sleep is ubiquitous across animal species, but why it persists is not well understood. Here we observe natural selection act on Drosophila sleep by relaxing bi-directional artificial selection for extreme sleep duration for 62 generations. When artificial selection was suspended, sleep increased in populations previously selected for short sleep. Likewise, sleep decreased in populations previously selected for long sleep when artificial selection was relaxed. We measured the corresponding changes in the allele frequencies of genomic variants responding to artificial selection. The allele frequencies of these variants reversed course in response to relaxed selection, and for short sleepers, the changes exceeded allele frequency changes that would be expected under random genetic drift. These observations suggest that the variants are causal polymorphisms for sleep duration responding to natural selection pressure. These polymorphisms may therefore pinpoint the most important regions of the genome maintaining variation in sleep duration.
Collapse
Affiliation(s)
- Caetano Souto-Maior
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Yazmin L Serrano Negron
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Susan T Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
31
|
Breda C, Rosato E, Kyriacou CP. Norpa Signalling and the Seasonal Circadian Locomotor Phenotype in Drosophila. BIOLOGY 2020; 9:biology9060130. [PMID: 32560221 PMCID: PMC7345481 DOI: 10.3390/biology9060130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Abstract
In this paper, we review the role of the norpA-encoded phospholipase C in light and thermal entrainment of the circadian clock in Drosophila melanogaster. We extend our discussion to the role of norpA in the thermo-sensitive splicing of the per 3′ UTR, which has significant implications for seasonal adaptations of circadian behaviour. We use the norpA mutant-generated enhancement of per splicing and the corresponding advance that it produces in the morning (M) and evening (E) locomotor component to dissect out the neurons that are contributing to this norpA phenotype using GAL4/UAS. We initially confirmed, by immunocytochemistry and in situ hybridisation in adult brains, that norpA expression is mostly concentrated in the eyes, but we were unable to unequivocally reveal norpA expression in the canonical clock cells using these methods. In larval brains, we did see some evidence for co-expression of NORPA with PDF in clock neurons. Nevertheless, downregulation of norpA in clock neurons did generate behavioural advances in adults, with the eyes playing a significant role in the norpA seasonal phenotype at high temperatures, whereas the more dorsally located CRYPTOCHROME-positive clock neurons are the likely candidates for generating the norpA behavioural effects in the cold. We further show that knockdown of the related plc21C encoded phospholipase in clock neurons does not alter per splicing nor generate any of the behavioural advances seen with norpA. Our results with downregulating norpA and plc21C implicate the rhodopsins Rh2/Rh3/Rh4 in the eyes as mediating per 3′ UTR splicing at higher temperatures and indicate that the CRY-positive LNds, also known as ‘evening’ cells are likely mediating the low-temperature seasonal effects on behaviour via altering per 3′UTR splicing.
Collapse
|
32
|
Barré BP, Hallin J, Yue JX, Persson K, Mikhalev E, Irizar A, Holt S, Thompson D, Molin M, Warringer J, Liti G. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res 2020; 30:697-710. [PMID: 32277013 PMCID: PMC7263189 DOI: 10.1101/gr.253351.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
Collapse
Affiliation(s)
| | - Johan Hallin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | | | | | - Sylvester Holt
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Dawn Thompson
- Ginkgo Bioworks Incorporated, Boston, Massachusetts 02210, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| |
Collapse
|
33
|
Smith BH, Cook CN. Experimental psychology meets behavioral ecology: what laboratory studies of learning polymorphisms mean for learning under natural conditions, and vice versa. J Neurogenet 2020; 34:178-183. [PMID: 32024408 DOI: 10.1080/01677063.2020.1718674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Behavior genetics, and specifically the study of learning and memory, has benefitted immensely from the development of powerful forward- and reverse-genetic methods for investigating the relationships between genes and behavior. Application of these methods in controlled laboratory settings has led to insights into gene-behavior relationships. In this perspective article, we argue that the field is now poised to make significant inroads into understanding the adaptive value of heritable variation in behavior in natural populations. Studies of natural variation with several species, in particular, are now in a position to complement laboratory studies of mechanisms, and sometimes this work can lead to counterintuitive insights into the mechanism of gene action on behavior. We make this case using a recent example from work with the honey bee, Apis mellifera.
Collapse
Affiliation(s)
- Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Chelsea N Cook
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
34
|
Mohanty PS, Saikia D, Kalra S, Naaz F, Bansal AK, Pawar HS, Mohanty KK, Sharma S, Singh M, Patil SA. LEPStr: A database for Mycobacterium leprae short tandem repeats. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Abstract
In Neurospora and other fungi, the protein frequency (FRQ) is an integral part and a negative element in the fungal circadian oscillator. In Drosophila and many other higher organisms, the protein period (PER) is an integral part and a negative element of their circadian oscillator. Employing bioinformatic techniques, such as BLAST, CLUSTAL, and MEME (Multiple Em for Motif Elicitation), 11 regions (sequences) of potential similarity were found between the fungal FRQ and the Drosophila PER. Many of these FRQ regions are conserved in many fungal FRQ(s). Many of these PER regions are conserved in many insects. In addition, these regions are also of biological significance since mutations in these regions lead to changes in the circadian clock of Neurospora and Drosophila. Many of these regions of similarity between FRQ and PER are also conserved between the Drosophila PER and the mouse PER (mPER2). This suggests conserved and important regions for all 3 proteins and a common ancestor, possibly in those amoeba, such as Capsaspora, that sits at the base of the phylogenetic tree where fungi and animals diverged. Two additional examples of a possible common ancestor between Neurospora and Drosophila were found. One, the white collar (WC-1) protein of Neurospora and the Drosophila PER, shows significant similarity in its Per/Arnt/Sim (PAS) motifs to the PAS motif of an ARNT-like protein found in the amoeba, Capsaspora. Two, both of the positive elements in each system (i.e., WC-1 in Neurospora and cycle [CYC] in Drosophila), show significant similarity to this Capsaspora ARNT protein. A discussion of these findings centers on the long-time debate about the origins of the many different clock systems (i.e., independent evolution or common ancestor as well as to the question of how new genes are formed).
Collapse
Affiliation(s)
- Stuart Brody
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, and Center for Circadian Biology, UCSD, La Jolla, California
| |
Collapse
|
36
|
Ragland GJ, Armbruster PA, Meuti ME. Evolutionary and functional genetics of insect diapause: a call for greater integration. CURRENT OPINION IN INSECT SCIENCE 2019; 36:74-81. [PMID: 31539788 PMCID: PMC7212789 DOI: 10.1016/j.cois.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Diapause in response to seasonality is an important model for rapid evolutionary adaptation that is highly genetically variable, and experiences strong natural selection. Forward genetic methods using various genomic and transcriptomic approaches have begun to characterize the genetic architecture and candidate genes underlying diapause evolution. Largely in parallel, reverse genetic studies have identified functional roles for candidate genes that may or may not be genetically variable. We illustrate the disconnect between the evolutionary and physiological literature using a suite of studies of the role of the circadian clock in diapause regulation. These extensive studies in two different disciplines provide excellent opportunities for integration, which should facilitate rapid progress in understanding both the regulation and evolution of diapause.
Collapse
Affiliation(s)
- Gregory J Ragland
- Department of Integrative Biology, University of Colorado, Denver, 1151 Arapahoe St., SI 2071, Denver, CO 80204, USA.
| | - Peter A Armbruster
- Department of Biology, Georgetown University, Reiss Science Building, Room 406 37th and O Streets, NW Washington DC 20057, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 216 Kottman Hall 2021 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Williams-Simon PA, Posey C, Mitchell S, Ng'oma E, Mrkvicka JA, Zars T, King EG. Multiple genetic loci affect place learning and memory performance in Drosophila melanogaster. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12581. [PMID: 31095869 PMCID: PMC6718298 DOI: 10.1111/gbb.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022]
Abstract
Learning and memory are critical functions for all animals, giving individuals the ability to respond to changes in their environment. Within populations, individuals vary, however the mechanisms underlying this variation in performance are largely unknown. Thus, it remains to be determined what genetic factors cause an individual to have high learning ability and what factors determine how well an individual will remember what they have learned. To genetically dissect learning and memory performance, we used the Drosophila synthetic population resource (DSPR), a multiparent mapping resource in the model system Drosophila melanogaster, consisting of a large set of recombinant inbred lines (RILs) that naturally vary in these and other traits. Fruit flies can be trained in a "heat box" to learn to remain on one side of a chamber (place learning) and can remember this (place memory) over short timescales. Using this paradigm, we measured place learning and memory for ~49 000 individual flies from over 700 DSPR RILs. We identified 16 different loci across the genome that significantly affect place learning and/or memory performance, with 5 of these loci affecting both traits. To identify transcriptomic differences associated with performance, we performed RNA-Seq on pooled samples of seven high performing and seven low performing RILs for both learning and memory and identified hundreds of genes with differences in expression in the two sets. Integrating our transcriptomic results with the mapping results allowed us to identify nine promising candidate genes, advancing our understanding of the genetic basis underlying natural variation in learning and memory performance.
Collapse
Affiliation(s)
| | - Christopher Posey
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Samuel Mitchell
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Enoch Ng'oma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - James A Mrkvicka
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
38
|
Hansen CN, Özkaya Ö, Roe H, Kyriacou CP, Giongo L, Rosato E. Locomotor Behaviour and Clock Neurons Organisation in the Agricultural Pest Drosophila suzukii. Front Physiol 2019; 10:941. [PMID: 31396106 PMCID: PMC6667661 DOI: 10.3389/fphys.2019.00941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
Drosophila suzukii (Matsumara) also called Spotted Wing Drosophila (SWD), is an invasive pest species originally from Asia that has now spread widely across Europe and North America. The majority of drosophilids including the best known Drosophila melanogaster only breed on decaying fruits. On the contrary, the presence of a strong serrated ovipositor and behavioural and metabolic adaptations allow D. suzukii to lay eggs inside healthy, ripening fruits that are still on the plant. Here we present an analysis of the rhythmic locomotor activity behaviour of D. suzukii under several laboratory settings. Moreover, we identify the canonical clock neurons in this species by reporting the expression pattern of the major clock proteins in the brain. Interestingly, a fundamentally similar organisation of the clock neurons network between D. melanogaster and D. suzukii does not correspond to similar characteristics in rhythmic locomotor activity behaviour.
Collapse
Affiliation(s)
- Celia Napier Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Özge Özkaya
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Helen Roe
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lara Giongo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, Trento, Italy
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
39
|
Genome-wide investigation of microsatellite polymorphism in coding region of the giant panda (Ailuropoda melanoleuca) genome: a resource for study of phenotype diversity and abnormal traits. MAMMAL RES 2019. [DOI: 10.1007/s13364-019-00418-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Hickner PV, Mori A, Rund SSC, Sheppard AD, Cunningham JM, Chadee DD, Duffield GE, Severson DW. QTL Determining Diel Flight Activity in Male Culex pipiens Mosquitoes. J Hered 2019; 110:310-320. [PMID: 30668763 PMCID: PMC6503456 DOI: 10.1093/jhered/esz003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
Members of the Culex pipiens complex differ in physiological traits that facilitate their survival in diverse environments. Assortative mating within the complex occurs in some regions where autogenous (the ability to lay a batch of eggs without a blood meal) and anautogenous populations are sympatric, and differences in mating behaviors may be involved. For example, anautogenous populations mate in flight/swarms, while autogenous populations often mate at rest. Here, we characterized flight activity of males and found that anautogenous strain males were crepuscular, while autogenous strain males were crepuscular and nocturnal, with earlier activity onset times. We conducted quantitative trait locus (QTL) mapping to explore the genetic basis of circadian chronotype (crepuscular vs. crepuscular and nocturnal) and time of activity onset. One major-effect QTL was identified for chronotype, while 3 QTLs were identified for activity onset. The highest logarithm of the odds (LOD) score for the chronotype QTL coincides with a chromosome 3 marker that contains a 15-nucleotide indel within the coding region of the canonical clock gene, cryptochrome 2. Sequencing of this locus in 7 different strains showed that the C-terminus of CRY2 in the autogenous forms contain deletions not found in the anautogenous forms. Consequently, we monitored activity in constant darkness and found males from the anautogenous strain exhibited free running periods of ~24 h while those from the autogenous strain were ~22 h. This study provides novel insights into the genetic basis of flight behaviors that likely reflect adaptation to their distinct ecological niches.
Collapse
Affiliation(s)
- Paul V Hickner
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| | - Akio Mori
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| | - Samuel S C Rund
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Aaron D Sheppard
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| | - Joanne M Cunningham
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| | - Dave D Chadee
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad, West Indies
| | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| | - David W Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
41
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
42
|
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pankaj Yadav
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
43
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
44
|
Nojima T, Chauvel I, Houot B, Bousquet F, Farine JP, Everaerts C, Yamamoto D, Ferveur JF. The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster. J Neurogenet 2019; 33:96-115. [PMID: 30724684 DOI: 10.1080/01677063.2018.1559843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in Drosophila melanogaster. In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones. Each of these two sensory communication aspects depends on distinct desat1 putative regulatory regions. Here, we used (i) mutant alleles resulting from the insertion/excision of a transposable genomic element inserted in a desat1 regulatory region, and (ii) transgenics made with desat1 regulatory regions used to target desat1 RNAi. These genetic variants were used to study several reproduction-related phenotypes. In particular, we compared the fecundity of various mutant and transgenic desat1 females with regard to the developmental fate of their progeny. We also compared the mating performance in pairs of flies with altered desat1 expression in various desat1-expressing tissues together with their inability to disengage at the end of copulation. Moreover, we investigated the developmental origin of altered sex pheromone discrimination in male flies. We attempted to map some of the tissues involved in these reproduction-related phenotypes. Given that desat1 is expressed in many brain neurons and in non-neuronal tissues required for varied aspects of reproduction, our data suggest that the regulation of this gene has evolved to allow the optimal reproduction and a successful adaptation to varied environments in this cosmopolitan species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,c Centre for Neural Circuits and Behaviour , University of Oxford , Oxford , United Kingdom
| | - Isabelle Chauvel
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Benjamin Houot
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,d Division of Chemical Ecology, Department of Plant Protection Biology , Swedish University of Agricultural Sciences , Alnarp , Sweden
| | - François Bousquet
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Jean-Pierre Farine
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Claude Everaerts
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Daisuke Yamamoto
- b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,e Neuro-Network Evolution Project, Advanced ICT Research Institute , National Institute of Information and Communications Technology , Nishi-Ku , Japan Kobe
| | - Jean-François Ferveur
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| |
Collapse
|
45
|
Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus. G3-GENES GENOMES GENETICS 2019; 9:105-116. [PMID: 30591433 PMCID: PMC6325909 DOI: 10.1534/g3.118.200647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.
Collapse
|
46
|
Harbison ST, Kumar S, Huang W, McCoy LJ, Smith KR, Mackay TFC. Genome-Wide Association Study of Circadian Behavior in Drosophila melanogaster. Behav Genet 2018; 49:60-82. [PMID: 30341464 PMCID: PMC6326971 DOI: 10.1007/s10519-018-9932-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Circadian rhythms influence physiological processes from sleep–wake cycles to body temperature and are controlled by highly conserved cycling molecules. Although the mechanistic basis of the circadian clock has been known for decades, the extent to which circadian rhythms vary in nature and the underlying genetic basis for that variation is not well understood. We measured circadian period (Ʈ) and rhythmicity index in the Drosophila Genetic Reference Panel (DGRP) and observed extensive genetic variation in both. Seven DGRP lines had sexually dimorphic arrhythmicity and one line had an exceptionally long Ʈ. Genome-wide analyses identified 584 polymorphisms in 268 genes. We observed differences among transcripts for nine genes predicted to interact among themselves and canonical clock genes in the long period line and a control. Mutations/RNAi knockdown targeting these genes also affected circadian behavior. Our observations reveal that complex genetic interactions influence high levels of variation in circadian phenotypes.
Collapse
Affiliation(s)
- Susan T Harbison
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, Building 10, Room 7D13, 10 Center Drive, Bethesda, MD, 20892-1640, USA.
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Lenovia J McCoy
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kirklin R Smith
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| |
Collapse
|
47
|
Joy N, Maimoonath Beevi YP, Soniya EV. A deeper view into the significance of simple sequence repeats in pre-miRNAs provides clues for its possible roles in determining the function of microRNAs. BMC Genet 2018; 19:29. [PMID: 29739315 PMCID: PMC5941480 DOI: 10.1186/s12863-018-0615-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Background The central tenet of ‘genome content’ has been that the ‘non-coding’ parts are highly enriched with ‘microsatellites’ or ‘Simple Sequence Repeats’ (SSRs). We presume that the presence and change in number of repeat unit (n) of SSRs in different genomic locations may or may not become beneficial, depending on the position of SSRs in a gene. Very few studies have looked into the existence of SSRs in the hair-pin precursors of miRNAs (pre-miRNAs). The interplay between SSRs and miRNAs is not yet clearly understood. Results Considering the potential significance of SSRs in pre-miRNAs, we analysed the miRNA hair-pin precursors of 171 organisms, which revealed a noticeable (29.8%) existence of SSRs in their pre-miRNAs. The maintenance of SSRs in pre-miRNAs even in the complex, highly evolved phyla like Chordata and Magnoliophyta shed light upon its diverse functions. Putative effects of SSRs in either regulating the biogenesis or function of miRNAs were more underlined based on computational and experimental analysis. A preliminary computational analysis to explore the relevance of such SSRs maintained in pre-miRNA sequences led to the detection of splicing regulatory elements (SREs) either in or near to the SSRs. The absence of SSRs correspondingly decreased the detection of SREs. Conclusion The present study is the first implication for the possible involvement of SSRs in shaping the SREs to undergo Alternative Splicing events to produce miRNA isoforms in accordance with different stress environments. This part of work well demonstrates the importance of studying such consistently maintained SSRs residing in pre-miRNAs and can enhance more and more research towards deciphering the exact function of SSRs in the near future. Electronic supplementary material The online version of this article (10.1186/s12863-018-0615-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nisha Joy
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Center for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India.
| | - Y P Maimoonath Beevi
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Center for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - E V Soniya
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Center for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
48
|
Noreen S, Pegoraro M, Nouroz F, Tauber E, Kyriacou CP. Interspecific studies of circadian genes period and timeless in Drosophila. Gene 2018; 648:106-114. [PMID: 29353056 PMCID: PMC5818170 DOI: 10.1016/j.gene.2018.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022]
Abstract
The level of rescue of clock function in genetically arrhythmic Drosophila melanogaster hosts using interspecific clock gene transformation was used to study the putative intermolecular coevolution between interacting clock proteins. Among them PER and TIM are the two important negative regulators of the circadian clock feedback loop. We transformed either the D. pseudoobscura per or tim transgenes into the corresponding arrhythmic D. melanogaster mutant (per01 or tim01) and observed >50% rhythmicity but the period of activity rhythm was either longer (D. pseudoobscura-per) or shorter than 24 h (D. pseudoobscura-tim) compared to controls. By introducing both transgenes simultaneously into double mutants, we observed that the period of the activity rhythm was rescued by the pair of hemizygous transgenes (~24 h). These flies also showed a more optimal level of temperature compensation for the period. Under LD 12:12 these flies have a D. pseudoobscura like activity profile with the absence of morning anticipation as well as a very prominent earlier evening peak of activity rhythm. These observation are consistent with the view that TIM and PER form a heterospecific coevolved module at least for the circadian period of activity rhythms. However the strength of rhythmicity was reduced by having both transgenes present, so while evidence for a coevolution between PER and TIM is observed for some characters it is not for others.
Collapse
Affiliation(s)
- Shumaila Noreen
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom; Molecular Genetics Lab, Department of Zoology, University of Peshawar, Pakistan.
| | - Mirko Pegoraro
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Faisal Nouroz
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Eran Tauber
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom; Department of Evolutionary & Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | | |
Collapse
|
49
|
Zhang Z, Cao W, Edery I. The SR protein B52/SRp55 regulates splicing of the period thermosensitive intron and mid-day siesta in Drosophila. Sci Rep 2018; 8:1872. [PMID: 29382842 PMCID: PMC5789894 DOI: 10.1038/s41598-017-18167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022] Open
Abstract
Similar to many diurnal animals, Drosophila melanogaster exhibits a mid-day siesta that is more robust as temperature increases, an adaptive response that aims to minimize the deleterious effects from exposure to heat. This temperature-dependent plasticity in mid-day sleep levels is partly based on the thermal sensitive splicing of an intron in the 3' untranslated region (UTR) of the circadian clock gene termed period (per). In this study, we evaluated a possible role for the serine/arginine-rich (SR) splicing factors in the regulation of dmpi8 splicing efficiency and mid-day siesta. Using a Drosophila cell culture assay we show that B52/SRp55 increases dmpi8 splicing efficiency, whereas other SR proteins have little to no effect. The magnitude of the stimulatory effect of B52 on dmpi8 splicing efficiency is modulated by natural variation in single nucleotide polymorphisms (SNPs) in the per 3' UTR that correlate with B52 binding levels. Down-regulating B52 expression in clock neurons increases mid-day siesta and reduces dmpi8 splicing efficiency. Our results establish a novel role for SR proteins in sleep and suggest that polymorphisms in the per 3' UTR contribute to natural variation in sleep behavior by modulating the binding efficiencies of SR proteins.
Collapse
Affiliation(s)
- Zhichao Zhang
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA
- Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Huimin Road 211#, Chengdu, Sichuan Province, 611130, P. R. China
| | - Weihuan Cao
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA
- Human Genetics Institute of New Jersey, Nelson Biology Laboratories, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA.
| |
Collapse
|
50
|
Biscontin A, Wallach T, Sales G, Grudziecki A, Janke L, Sartori E, Bertolucci C, Mazzotta G, De Pittà C, Meyer B, Kramer A, Costa R. Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Sci Rep 2017; 7:17742. [PMID: 29255161 PMCID: PMC5735174 DOI: 10.1038/s41598-017-18009-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022] Open
Abstract
Antarctic krill (Euphausia superba) is a key species in Southern Ocean ecosystem where it plays a central role in the Antarctic food web. Available information supports the existence of an endogenous timing system in krill enabling it to synchronize metabolism and behavior with an environment characterized by extreme seasonal changes in terms of day length, food availability, and surface ice extent. A screening of our transcriptome database “KrillDB” allowed us to identify the putative orthologues of 20 circadian clock components. Mapping of conserved domains and phylogenetic analyses strongly supported annotations of the identified sequences. Luciferase assays and co-immunoprecipitation experiments allowed us to define the role of the main clock components. Our findings provide an overall picture of the molecular mechanisms underlying the functioning of the endogenous circadian clock in the Antarctic krill and shed light on their evolution throughout crustaceans speciation. Interestingly, the core clock machinery shows both mammalian and insect features that presumably contribute to an evolutionary strategy to cope with polar environment’s challenges. Moreover, despite the extreme variability characterizing the Antarctic seasonal day length, the conserved light mediated degradation of the photoreceptor EsCRY1 suggests a persisting pivotal role of light as a Zeitgeber.
Collapse
Affiliation(s)
- Alberto Biscontin
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany.,Department of Biology, University of Padova, 35121, Padova, Italy
| | - Thomas Wallach
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Gabriele Sales
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Astrid Grudziecki
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Leonard Janke
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Elena Sartori
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | | | | | - Bettina Meyer
- Alfred Wegener Polar Biological Oceanography, 27570, Bremerhaven, Germany.,Carl von Ossietzky University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129, Oldenburg, Germany
| | - Achim Kramer
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany.
| | - Rodolfo Costa
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|