1
|
Vallés AM, Rubin T, Macaisne N, Dal Toe L, Molla-Herman A, Antoniewski C, Huynh JR. Transcriptomic analysis of meiotic genes during the mitosis-to-meiosis transition in Drosophila females. Genetics 2024; 228:iyae130. [PMID: 39225982 DOI: 10.1093/genetics/iyae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Germline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females. Here, to assess if additional meiotic genes were expressed earlier than expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our transcriptomic analysis reveals that all known meiosis I genes are already expressed in the mitotic region; however, only some of them are translated. As a case study, we focused on mei-W68, the Drosophila homolog of Spo11, to assess its expression at both the mRNA and protein levels and used different mutant alleles to assay for a premeiotic function. We could not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing germ cells. Our study paves the way for further functional analysis of meiotic genes expressed in the mitotic region.
Collapse
Affiliation(s)
- Ana Maria Vallés
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Thomas Rubin
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Nicolas Macaisne
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Laurine Dal Toe
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Anahi Molla-Herman
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005 Paris, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| |
Collapse
|
2
|
Man B, Kim E, Vadlakonda A, Stern DL, Crown KN. Analysis of meiotic recombination in Drosophila simulans shows no evidence of an interchromosomal effect. Genetics 2024; 227:iyae084. [PMID: 38762892 PMCID: PMC11304986 DOI: 10.1093/genetics/iyae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Chromosome inversions are of unique importance in the evolution of genomes and species because when heterozygous with a standard arrangement chromosome, they suppress meiotic crossovers within the inversion. In Drosophila species, heterozygous inversions also cause the interchromosomal effect, whereby the presence of a heterozygous inversion induces a dramatic increase in crossover frequencies in the remainder of the genome within a single meiosis. To date, the interchromosomal effect has been studied exclusively in species that also have high frequencies of inversions in wild populations. We took advantage of a recently developed approach for generating inversions in Drosophila simulans, a species that does not have inversions in wild populations, to ask if there is an interchromosomal effect. We used the existing chromosome 3R balancer and generated a new chromosome 2L balancer to assay for the interchromosomal effect genetically and cytologically. We found no evidence of an interchromosomal effect in D. simulans. To gain insights into the underlying mechanistic reasons, we qualitatively analyzed the relationship between meiotic double-stranded break (DSB) formation and synaptonemal complex (SC) assembly. We found that the SC is assembled prior to DSB formation as in D. melanogaster; however, we show that the SC is assembled prior to localization of the oocyte determination factor Orb, whereas in D. melanogaster, SC formation does not begin until the Orb is localized. Together, our data show no evidence that heterozygous inversions in D. simulans induce an interchromosomal effect and that there are differences in the developmental programming of the early stages of meiosis.
Collapse
Affiliation(s)
- Bowen Man
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alekhya Vadlakonda
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Olaya I, Burgess SM, Rog O. Formation and resolution of meiotic chromosome entanglements and interlocks. J Cell Sci 2024; 137:jcs262004. [PMID: 38985540 PMCID: PMC11267460 DOI: 10.1242/jcs.262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.
Collapse
Affiliation(s)
- Iván Olaya
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
5
|
Mikhalchenko A, Gutierrez NM, Frana D, Safaei Z, Van Dyken C, Li Y, Ma H, Koski A, Liang D, Lee SG, Amato P, Mitalipov S. Induction of somatic cell haploidy by premature cell division. SCIENCE ADVANCES 2024; 10:eadk9001. [PMID: 38457500 PMCID: PMC10923512 DOI: 10.1126/sciadv.adk9001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.
Collapse
Affiliation(s)
- Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Frana
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022 Anhui, China
| | - Sang-Goo Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Lee L, Rosin LF. Uncharted territories: Solving the mysteries of male meiosis in flies. PLoS Genet 2024; 20:e1011185. [PMID: 38489251 PMCID: PMC10942038 DOI: 10.1371/journal.pgen.1011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The segregation of homologous chromosomes during meiosis typically requires tight end-to-end chromosome pairing. However, in Drosophila spermatogenesis, male flies segregate their chromosomes without classic synaptonemal complex formation and without recombination, instead compartmentalizing homologs into subnuclear domains known as chromosome territories (CTs). How homologs find each other in the nucleus and are separated into CTs has been one of the biggest riddles in chromosome biology. Here, we discuss our current understanding of pairing and CT formation in flies and review recent data on how homologs are linked and partitioned during meiosis in male flies.
Collapse
Affiliation(s)
- LingSze Lee
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Solé M, Pascual Á, Anton E, Blanco J, Sarrate Z. The courtship choreography of homologous chromosomes: timing and mechanisms of DSB-independent pairing. Front Cell Dev Biol 2023; 11:1191156. [PMID: 37377734 PMCID: PMC10291267 DOI: 10.3389/fcell.2023.1191156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meiosis involves deep changes in the spatial organisation and interactions of chromosomes enabling the two primary functions of this process: increasing genetic diversity and reducing ploidy level. These two functions are ensured by crucial events such as homologous chromosomal pairing, synapsis, recombination and segregation. In most sexually reproducing eukaryotes, homologous chromosome pairing depends on a set of mechanisms, some of them associated with the repair of DNA double-strand breaks (DSBs) induced at the onset of prophase I, and others that operate before DSBs formation. In this article, we will review various strategies utilised by model organisms for DSB-independent pairing. Specifically, we will focus on mechanisms such as chromosome clustering, nuclear and chromosome movements, as well as the involvement of specific proteins, non-coding RNA, and DNA sequences.
Collapse
Affiliation(s)
| | | | | | - Joan Blanco
- *Correspondence: Joan Blanco, ; Zaida Sarrate,
| | | |
Collapse
|
9
|
Tabara H, Mitani S, Mochizuki M, Kohara Y, Nagata K. A small RNA system ensures accurate homologous pairing and unpaired silencing of meiotic chromosomes. EMBO J 2023; 42:e105002. [PMID: 37078421 PMCID: PMC10233376 DOI: 10.15252/embj.2020105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
During meiosis, chromosomes with homologous partners undergo synaptonemal complex (SC)-mediated pairing, while the remaining unpaired chromosomes are heterochromatinized through unpaired silencing. Mechanisms underlying homolog recognition during SC formation are still unclear. Here, we show that the Caenorhabditis elegans Argonaute proteins, CSR-1 and its paralog CSR-2, interacting with 22G-RNAs, are required for synaptonemal complex formation with accurate homology. CSR-1 in nuclei and meiotic cohesin, constituting the SC lateral elements, were associated with nonsimple DNA repeats, including minisatellites and transposons, and weakly associated with coding genes. CSR-1-associated CeRep55 minisatellites were expressing 22G-RNAs and long noncoding (lnc) RNAs that colocalized with synaptonemal complexes on paired chromosomes and with cohesin regions of unpaired chromosomes. CeRep55 multilocus deletions reduced the efficiencies of homologous pairing and unpaired silencing, which were supported by the csr-1 activity. Moreover, CSR-1 and CSR-2 were required for proper heterochromatinization of unpaired chromosomes. These findings suggest that CSR-1 and CSR-2 play crucial roles in homology recognition, achieving accurate SC formation between chromosome pairs and condensing unpaired chromosomes by targeting repeat-derived lncRNAs.
Collapse
Affiliation(s)
- Hiroaki Tabara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
- Tokyo Women's Medical UniversityTokyoJapan
- Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | | | | | - Yuji Kohara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
| | | |
Collapse
|
10
|
Li H, Berent E, Hadjipanteli S, Galey M, Muhammad-Lahbabi N, Miller DE, Crown KN. Heterozygous inversion breakpoints suppress meiotic crossovers by altering recombination repair outcomes. PLoS Genet 2023; 19:e1010702. [PMID: 37053290 PMCID: PMC10128924 DOI: 10.1371/journal.pgen.1010702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/25/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Heterozygous chromosome inversions suppress meiotic crossover (CO) formation within an inversion, potentially because they lead to gross chromosome rearrangements that produce inviable gametes. Interestingly, COs are also severely reduced in regions nearby but outside of inversion breakpoints even though COs in these regions do not result in rearrangements. Our mechanistic understanding of why COs are suppressed outside of inversion breakpoints is limited by a lack of data on the frequency of noncrossover gene conversions (NCOGCs) in these regions. To address this critical gap, we mapped the location and frequency of rare CO and NCOGC events that occurred outside of the dl-49 chrX inversion in D. melanogaster. We created full-sibling wildtype and inversion stocks and recovered COs and NCOGCs in the syntenic regions of both stocks, allowing us to directly compare rates and distributions of recombination events. We show that COs outside of the proximal inversion breakpoint are distributed in a distance-dependent manner, with strongest suppression near the inversion breakpoint. We find that NCOGCs occur evenly throughout the chromosome and, importantly, are not suppressed near inversion breakpoints. We propose a model in which COs are suppressed by inversion breakpoints in a distance-dependent manner through mechanisms that influence DNA double-strand break repair outcome but not double-strand break formation. We suggest that subtle changes in the synaptonemal complex and chromosome pairing might lead to unstable interhomolog interactions during recombination that permits NCOGC formation but not CO formation.
Collapse
Affiliation(s)
- Haosheng Li
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Erica Berent
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Savannah Hadjipanteli
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Nigel Muhammad-Lahbabi
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
11
|
Munro C, Cadis H, Pagnotta S, Houliston E, Huynh JR. Conserved meiotic mechanisms in the cnidarian Clytia hemisphaerica revealed by Spo11 knockout. SCIENCE ADVANCES 2023; 9:eadd2873. [PMID: 36706182 PMCID: PMC9882977 DOI: 10.1126/sciadv.add2873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
During meiosis, DNA recombination allows the shuffling of genetic information between the maternal and paternal chromosomes. Recombination is initiated by double-strand breaks (DSBs) catalyzed by the conserved enzyme Spo11. How this crucial event is connected to other meiotic processes is unexpectedly variable depending on the species. Here, we knocked down Spo11 by CRISPR in the jellyfish Clytia hemisphaerica. Germ cells in Clytia Spo11 mutants fail to assemble synaptonemal complexes and chiasmata, and in consequence, homologous chromosome pairs in females remain unassociated during oocyte growth and meiotic divisions, creating aneuploid but fertilizable eggs that develop into viable larvae. Clytia thus shares an ancient eukaryotic dependence of synapsis and chromosome segregation on Spo11-generated DSBs. Phylogenetically, Clytia belongs to Cnidaria, the sister clade to Bilateria where classical animal model species are found, so these results provide fresh evolutionary perspectives on meiosis regulation.
Collapse
Affiliation(s)
- Catriona Munro
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Hugo Cadis
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Nice Côte d’Azur, Parc Valrose, Nice 06108, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer 06230, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
12
|
Li M, Li S, He Y, Wang Y, Zhang T, Li P, He Y. ZmSPO11-2 is critical for meiotic recombination in maize. Chromosome Res 2022; 30:415-428. [PMID: 35674907 DOI: 10.1007/s10577-022-09694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
Most plant species have three or more SPO11/TOPOVIA homologs and two TOPOVIB homologs, which associate to trigger meiotic double-strand break (DSB) formation and subsequent meiotic recombination. In Zea mays L. (maize), ZmSPO11-1 and ZmMTOPVIB have been reported to be indispensable for the initiation of meiotic recombination, yet the function of ZmSPO11-2 remains unclear. In this study, we characterized meiotic functions of ZmSPO11-2 during male meiosis in maize. Two independent Zmspo11-1 knock-out mutants exhibited normal vegetative growth but both male and female sterility. The formation of meiotic DSBs of DNA molecules was fully abolished in the Zmspo11-2 plants, leading to the defective homologous chromosome paring, synapsis, recombination, and segregation. However, the bipolar spindle assembly was not noticeably affected in Zmspo11-2 meiocytes. Overall, our results demonstrate that as its partner ZmSPO11-1 and ZmMTOPVIB, ZmSPO11-2 plays essential roles in DSB formation and homologous recombination in maize meiosis.
Collapse
Affiliation(s)
- Menghan Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China.,College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China
| | - Shuyue Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Yan He
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ting Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ping Li
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China.
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
13
|
Feijão T, Marques B, Silva RD, Carvalho C, Sobral D, Matos R, Tan T, Pereira A, Morais-de-Sá E, Maiato H, DeLuca SZ, Martinho RG. Polycomb group (PcG) proteins prevent the assembly of abnormal synaptonemal complex structures during meiosis. Proc Natl Acad Sci U S A 2022; 119:e2204701119. [PMID: 36215502 PMCID: PMC9586294 DOI: 10.1073/pnas.2204701119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold that is assembled between paired homologous chromosomes during the onset of meiosis. Timely expression of SC coding genes is essential for SC assembly and successful meiosis. However, SC components have an intrinsic tendency to self-organize into abnormal repetitive structures, which are not assembled between the paired homologs and whose formation is potentially deleterious for meiosis and gametogenesis. This creates an interesting conundrum, where SC genes need to be robustly expressed during meiosis, but their expression must be carefully regulated to prevent the formation of anomalous SC structures. In this manuscript, we show that the Polycomb group protein Sfmbt, the Drosophila ortholog of human MBTD1 and L3MBTL2, is required to avoid excessive expression of SC genes during prophase I. Although SC assembly is normal after Sfmbt depletion, SC disassembly is abnormal with the formation of multiple synaptonemal complexes (polycomplexes) within the oocyte. Overexpression of the SC gene corona and depletion of other Polycomb group proteins are similarly associated with polycomplex formation during SC disassembly. These polycomplexes are highly dynamic and have a well-defined periodic structure. Further confirming the importance of Sfmbt, germ line depletion of this protein is associated with significant metaphase I defects and a reduction in female fertility. Since transcription of SC genes mostly occurs during early prophase I, our results suggest a role of Sfmbt and other Polycomb group proteins in downregulating the expression of these and other early prophase I genes during later stages of meiosis.
Collapse
Affiliation(s)
- Tália Feijão
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Marques
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rui D. Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, Caparica, 2819-516 Portugal
| | - Ricardo Matos
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Tian Tan
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - António Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Eurico Morais-de-Sá
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Hélder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | | | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
14
|
Time to match; when do homologous chromosomes become closer? Chromosoma 2022; 131:193-205. [PMID: 35960388 DOI: 10.1007/s00412-022-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022]
Abstract
In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a three-dimensional fluorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.
Collapse
|
15
|
Abstract
Sexual reproduction and the specialized cell division it relies upon, meiosis, are biological processes that present an incredible degree of both evolutionary conservation and divergence. One clear example of this paradox is the role of the evolutionarily ancient PCH-2/HORMAD module during meiosis. On one hand, the complex, and sometimes disparate, meiotic defects observed when PCH-2 and/or the meiotic HORMADS are mutated in different model systems have prevented a straightforward characterization of their conserved functions. On the other hand, these functional variations demonstrate the impressive molecular rewiring that accompanies evolution of the meiotic processes these factors are involved in. While the defects observed in pch-2 mutants appear to vary in different systems, in this review, I argue that PCH-2 has a conserved meiotic function: to coordinate meiotic recombination with synapsis to ensure an appropriate number and distribution of crossovers. Further, given the dramatic variation in how the events of recombination and synapsis are themselves regulated in different model systems, the mechanistic differences in PCH-2 and meiotic HORMAD function make biological sense when viewed as species-specific elaborations layered onto this fundamental, conserved role.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
16
|
Guo H, Stamper EL, Sato-Carlton A, Shimazoe MA, Li X, Zhang L, Stevens L, Tam KCJ, Dernburg AF, Carlton PM. Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. eLife 2022; 11:77956. [PMID: 35758641 PMCID: PMC9278955 DOI: 10.7554/elife.77956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.
Collapse
Affiliation(s)
- Heyun Guo
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Ericca L Stamper
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Masa A Shimazoe
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Department of Science, Kyoto University, Kyoto, Japan
| | - Xuan Li
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - K C Jacky Tam
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
A Brief History of Drosophila (Female) Meiosis. Genes (Basel) 2022; 13:genes13050775. [PMID: 35627159 PMCID: PMC9140851 DOI: 10.3390/genes13050775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.
Collapse
|
19
|
Carlier F, Nguyen TS, Mazur AK, Gladyshev E. Modulation of C-to-T mutation by recombination-independent pairing of closely positioned DNA repeats. Biophys J 2021; 120:4325-4336. [PMID: 34509507 DOI: 10.1016/j.bpj.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Repeat-induced point mutation is a genetic process that creates cytosine-to-thymine (C-to-T) transitions in duplicated genomic sequences in fungi. Repeat-induced point mutation detects duplications (irrespective of their origin, specific sequence, coding capacity, and genomic positions) by a recombination-independent mechanism that likely matches intact DNA double helices directly, without relying on the annealing of complementary single strands. In the fungus Neurospora crassa, closely positioned repeats can induce mutation of the adjoining nonrepetitive regions. This process is related to heterochromatin assembly and requires the cytosine methyltransferase DIM-2. Using DIM-2-dependent mutation as a readout of homologous pairing, we find that GC-rich repeats produce a much stronger response than AT-rich repeats, independently of their intrinsic propensity to become mutated. We also report that direct repeats trigger much stronger DIM-2-dependent mutation than inverted repeats. These results can be rationalized in the light of a recently proposed model of homologous DNA pairing, in which DNA double helices associate by forming sequence-specific quadruplex-based contacts with a concomitant release of supercoiling. A similar process featuring pairing-induced supercoiling may initiate epigenetic silencing of repetitive DNA in other organisms, including humans.
Collapse
Affiliation(s)
- Florian Carlier
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Tinh-Suong Nguyen
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Alexey K Mazur
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France; CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.
| | - Eugene Gladyshev
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France.
| |
Collapse
|
20
|
Epigenetic Dysregulation of Mammalian Male Meiosis Caused by Interference of Recombination and Synapsis. Cells 2021; 10:cells10092311. [PMID: 34571960 PMCID: PMC8467405 DOI: 10.3390/cells10092311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Meiosis involves a series of specific chromosome events, namely homologous synapsis, recombination, and segregation. Disruption of either recombination or synapsis in mammals results in the interruption of meiosis progression during the first meiotic prophase. This is usually accompanied by a defective transcriptional inactivation of the X and Y chromosomes, which triggers a meiosis breakdown in many mutant models. However, epigenetic changes and transcriptional regulation are also expected to affect autosomes. In this work, we studied the dynamics of epigenetic markers related to chromatin silencing, transcriptional regulation, and meiotic sex chromosome inactivation throughout meiosis in knockout mice for genes encoding for recombination proteins SPO11, DMC1, HOP2 and MLH1, and the synaptonemal complex proteins SYCP1 and SYCP3. These models are defective in recombination and/or synapsis and promote apoptosis at different stages of progression. Our results indicate that impairment of recombination and synapsis alter the dynamics and localization pattern of epigenetic marks, as well as the transcriptional regulation of both autosomes and sex chromosomes throughout prophase-I progression. We also observed that the morphological progression of spermatocytes throughout meiosis and the dynamics of epigenetic marks are processes that can be desynchronized upon synapsis or recombination alteration. Moreover, we detected an overlap of early and late epigenetic signatures in most mutants, indicating that the normal epigenetic transitions are disrupted. This can alter the transcriptional shift that occurs in spermatocytes in mid prophase-I and suggest that the epigenetic regulation of sex chromosomes, but also of autosomes, is an important factor in the impairment of meiosis progression in mammals.
Collapse
|
21
|
Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HMG, Chi P, Villeneuve AM. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci U S A 2021; 118:e2109306118. [PMID: 34389685 PMCID: PMC8379965 DOI: 10.1073/pnas.2109306118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.
Collapse
Affiliation(s)
- Albert W Hinman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Henri-Marc G Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, 31000 Toulouse, France
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
22
|
Pazhayam NM, Turcotte CA, Sekelsky J. Meiotic Crossover Patterning. Front Cell Dev Biol 2021; 9:681123. [PMID: 34368131 PMCID: PMC8344875 DOI: 10.3389/fcell.2021.681123] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Proper number and placement of meiotic crossovers is vital to chromosome segregation, with failures in normal crossover distribution often resulting in aneuploidy and infertility. Meiotic crossovers are formed via homologous repair of programmed double-strand breaks (DSBs). Although DSBs occur throughout the genome, crossover placement is intricately patterned, as observed first in early genetic studies by Muller and Sturtevant. Three types of patterning events have been identified. Interference, first described by Sturtevant in 1915, is a phenomenon in which crossovers on the same chromosome do not occur near one another. Assurance, initially identified by Owen in 1949, describes the phenomenon in which a minimum of one crossover is formed per chromosome pair. Suppression, first observed by Beadle in 1932, dictates that crossovers do not occur in regions surrounding the centromere and telomeres. The mechanisms behind crossover patterning remain largely unknown, and key players appear to act at all scales, from the DNA level to inter-chromosome interactions. There is also considerable overlap between the known players that drive each patterning phenomenon. In this review we discuss the history of studies of crossover patterning, developments in methods used in the field, and our current understanding of the interplay between patterning phenomena.
Collapse
Affiliation(s)
- Nila M. Pazhayam
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carolyn A. Turcotte
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Almanzar DE, Gordon SG, Rog O. Meiotic sister chromatid exchanges are rare in C. elegans. Curr Biol 2021; 31:1499-1507.e3. [PMID: 33740426 PMCID: PMC8051885 DOI: 10.1016/j.cub.2020.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template.1 Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common.2-11 Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLMHIM-6. Second, the synaptonemal complex-a conserved interface that promotes crossover repair12,13-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.
Collapse
Affiliation(s)
- David E Almanzar
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Spencer G Gordon
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Ofer Rog
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
24
|
Hatkevich T, Miller DE, Turcotte CA, Miller MC, Sekelsky J. A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Res 2021; 49:879-890. [PMID: 33406239 PMCID: PMC7826270 DOI: 10.1093/nar/gkaa1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) made during meiosis are repaired by recombination with the homologous chromosome to generate, at selected sites, reciprocal crossovers that are critical for the proper separation of homologs in the first meiotic division. Backup repair processes can compensate when the normal meiotic recombination processes are non-functional. We describe a novel backup repair mechanism that occurs when the homologous chromosome is not available in Drosophila melanogaster meiosis. In the presence of a previously described mutation (Mcm5A7) that disrupts chromosome pairing, DSB repair is initiated by homologous recombination but is completed by non-homologous end joining (NHEJ). Remarkably, this process yields precise repair products. Our results provide support for a recombination intermediate recently proposed in mouse meiosis, in which an oligonucleotide bound to the Spo11 protein that catalyzes DSB formation remains bound after resection. We propose that this oligonucleotide functions as a primer for fill-in synthesis to allow scarless repair by NHEJ. We argue that this is a conserved repair mechanism that is likely to be invoked to overcome occasional challenges in normal meiosis.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Danny E Miller
- Department of Pediatrics, Division of Medical Genetics, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Carolyn A Turcotte
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Margaret C Miller
- Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA.,Integrative Program in Biological and Genome Sciences, 250 Bell Tower Drive, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Mu X, Murakami H, Mohibullah N, Keeney S. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev 2020; 34:1605-1618. [PMID: 33184224 PMCID: PMC7706706 DOI: 10.1101/gad.342873.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
The number of DNA double-strand breaks (DSBs) initiating meiotic recombination is elevated in Saccharomyces cerevisiae mutants that are globally defective in forming crossovers and synaptonemal complex (SC), a protein scaffold juxtaposing homologous chromosomes. These mutants thus appear to lack a negative feedback loop that inhibits DSB formation when homologs engage one another. This feedback is predicted to be chromosome autonomous, but this has not been tested. Moreover, what chromosomal process is recognized as "homolog engagement" remains unclear. To address these questions, we evaluated effects of homolog engagement defects restricted to small portions of the genome using karyotypically abnormal yeast strains with a homeologous chromosome V pair, monosomic V, or trisomy XV. We found that homolog engagement-defective chromosomes incurred more DSBs, concomitant with prolonged retention of the DSB-promoting protein Rec114, while the rest of the genome remained unaffected. SC-deficient, crossover-proficient mutants ecm11 and gmc2 experienced increased DSB numbers diagnostic of homolog engagement defects. These findings support the hypothesis that SC formation provokes DSB protein dissociation, leading in turn to loss of a DSB competent state. Our findings show that DSB number is regulated in a chromosome-autonomous fashion and provide insight into how homeostatic DSB controls respond to aneuploidy during meiosis.
Collapse
Affiliation(s)
- Xiaojing Mu
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neeman Mohibullah
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
26
|
Benyahya F, Nadaud I, Da Ines O, Rimbert H, White C, Sourdille P. SPO11.2 is essential for programmed double-strand break formation during meiosis in bread wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:30-43. [PMID: 32603485 DOI: 10.1111/tpj.14903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 05/20/2023]
Abstract
Meiotic recombination is initiated by formation of DNA double-strand breaks (DSBs). This involves a protein complex that includes in plants the two similar proteins, SPO11-1 and SPO11-2. We analysed the sequences of SPO11-2 in hexaploid bread wheat (Triticum aestivum), as well as in its diploid and tetraploid progenitors. We investigated its role during meiosis using single, double and triple mutants. The three homoeologous SPO11-2 copies of hexaploid wheat exhibit high nucleotide and amino acid similarities with those of the diploids, tetraploids and Arabidopsis. Interestingly, however, two nucleotides deleted in exon-2 of the A copy lead to a premature stop codon and suggest that it encodes a non-functional protein. Remarkably, the mutation was absent from the diploid A-relative Triticum urartu, but present in the tetraploid Triticum dicoccoides and in different wheat cultivars indicating that the mutation occurred after the first polyploidy event and has since been conserved. We further show that triple mutants with all three copies (A, B, D) inactivated are sterile. Cytological analyses of these mutants show synapsis defects, accompanied by severe reductions in bivalent formation and numbers of DMC1 foci, thus confirming the essential role of TaSPO11-2 in meiotic recombination in wheat. In accordance with its 2-nucleotide deletion in exon-2, double mutants for which only the A copy remained are also sterile. Notwithstanding, some DMC1 foci remain visible in this mutant, suggesting a residual activity of the A copy, albeit not sufficient to restore fertility.
Collapse
Affiliation(s)
- Fatiha Benyahya
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Isabelle Nadaud
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293 - Université Clermont Auvergne - INSERM U1103, Clermont-Ferrand, 63001, France
| | - Hélène Rimbert
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Charles White
- Génétique, Reproduction et Développement, UMR CNRS 6293 - Université Clermont Auvergne - INSERM U1103, Clermont-Ferrand, 63001, France
| | - Pierre Sourdille
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| |
Collapse
|
27
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
28
|
Hofstatter PG, Ribeiro GM, Porfírio‐Sousa AL, Lahr DJG. The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit”. Bioessays 2020; 42:e2000037. [DOI: 10.1002/bies.202000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paulo G. Hofstatter
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Giulia M. Ribeiro
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Alfredo L. Porfírio‐Sousa
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Daniel J. G. Lahr
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| |
Collapse
|
29
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
30
|
Hylton CA, Hansen K, Bourgeois A, Tomkiel Dean JE. Sex Chromosome Pairing Mediated by Euchromatic Homology in Drosophila Male Meiosis. Genetics 2020; 214:605-616. [PMID: 31915134 PMCID: PMC7054017 DOI: 10.1534/genetics.119.302936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023] Open
Abstract
Diploid germline cells must undergo two consecutive meiotic divisions before differentiating as haploid sex cells. During meiosis I, homologs pair and remain conjoined until segregation at anaphase. Drosophila melanogaster spermatocytes are unique in that the canonical events of meiosis I including synaptonemal complex formation, double-strand DNA breaks, and chiasmata are absent. Sex chromosomes pair at intergenic spacer sequences within the ribosomal DNA (rDNA). Autosomes pair at numerous euchromatic homologies, but not at heterochromatin, suggesting that pairing may be limited to specific sequences. However, previous work generated from genetic segregation assays or observations of late prophase I/prometaphase I chromosome associations fail to differentiate pairing from maintenance of pairing (conjunction). Here, we separately examined the capability of X euchromatin to pair and conjoin using an rDNA-deficient X and a series of Dp(1;Y) chromosomes. Genetic assays showed that duplicated X euchromatin can substitute for endogenous rDNA pairing sites. Segregation was not proportional to homology length, and pairing could be mapped to nonoverlapping sequences within a single Dp(1;Y) Using fluorescence in situ hybridization to early prophase I spermatocytes, we showed that pairing occurred with high fidelity at all homologies tested. Pairing was unaffected by the presence of X rDNA, nor could it be explained by rDNA magnification. By comparing genetic and cytological data, we determined that centromere proximal pairings were best at segregation. Segregation was dependent on the conjunction protein Stromalin in Meiosis, while the autosomal-specific Teflon was dispensable. Overall, our results suggest that pairing may occur at all homologies, but there may be sequence or positional requirements for conjunction.
Collapse
Affiliation(s)
- Christopher A Hylton
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | - Katie Hansen
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | - Andrew Bourgeois
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | - John E Tomkiel Dean
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| |
Collapse
|
31
|
NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis. Cell Death Differ 2020; 27:2176-2190. [PMID: 31965061 PMCID: PMC7308329 DOI: 10.1038/s41418-020-0493-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/01/2020] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic cells, MRE11-RAD50-NBS1 (MRN) complex-dependent DNA end resection is a prerequisite for HR repair, especially for DSBs that are covalently linked with proteins or chemicals. Interestingly, all meiotic DSBs are linked with SPO11 after being generated. Although MRN complex’s function in meiotic DSB repair has been established in lower organisms, the role of MRN complex in mammalian meiotic DSB repair is not clear. Here, we show that MRN complex is essential for repairing meiotic SPO11-linked DSBs in male mice. In male germ cells, conditional inactivation of NBS1, a key component of MRN complex, causes dramatic reduction of DNA end resection and defective HR repair in meiotic prophase. NBS1 loss severely disrupts chromosome synapsis, generates abnormal chromosome structures, and eventually leads to meiotic arrest and male infertility in mice. Unlike in somatic cells, the recruitment of NBS1 to SPO11-linked DSB sites is MDC1-independent but requires other phosphorylated proteins. Collectively, our study not only reveals the significance of MRN complex in repairing meiotic DSBs but also discovers a unique mechanism that recruits MRN complex to SPO11-linked DSB sites.
Collapse
|
32
|
|
33
|
Alleva B, Clausen S, Koury E, Hefel A, Smolikove S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008486. [PMID: 31738749 PMCID: PMC6886871 DOI: 10.1371/journal.pgen.1008486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/02/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombination. One class of products formed by recombination are crossovers, which are required for proper chromosome segregation in the first meiotic division. The synaptonemal complex (SC) is a protein structure that connects homologous chromosomes during meiotic prophase I. The proper assembly of the SC is important for recombination, crossover formation, and the subsequent chromosome segregation. Here we identify the components of Cullin RING E3 ubiquitin ligase 4 (CRL4) that play a role in SC assembly in Caenorhabditis elegans. Mutants of the CRL4 complex (cul-4, ddb-1, and gad-1) show defects in SC assembly manifested in the formation of polycomplexes (PCs), impaired progression of meiotic recombination, and reduction in crossover numbers. PCs that are formed in cul-4 mutants lack the mobile properties of wild type SC, but are likely not a direct target of ubiquitination. In C. elegans, SC assembly does not require recombination and there is no evidence that PC formation is regulated by recombination as well. However, in one cul-4 mutant PC formation is dependent upon early meiotic recombination, indicating that proper assembly of the SC can be diminished by recombination in some scenarios. Lastly, our studies suggest that CUL-4 deregulation leads to transposition of the Tc3 transposable element, and defects in formation of SPO-11-mediated DSBs. Our studies highlight previously unknown functions of CRL4 in C. elegans meiosis and show that CUL-4 likely plays multiple roles in meiosis that are essential for maintaining genome integrity. Defects in the formation of the structure named the synaptonemal complex (SC) lead to the missegregation of chromosomes in the divisions that generate sperm and egg cells. In humans, this chromosome missegregation is associated with infertility and developmental disabilities of the surviving progeny. Abnormal SC structures composed of misfolded and aggregated SC proteins are associated with an inability to properly repair DNA damage and accurately segregate meiotic chromosomes. How SC proteins assemble such that they do not form misfolded protein aggregates is poorly understood. The germlines of nematodes (Caenorhabditis elegans) that lack protein components of the Cullin 4 E3 Ubiquitin ligase complex (CRL4), have defects in the formation of the SC that can be due to misfolding of SC proteins and their aggregation. CRL4 appears to be involved in other germline functions that directly affect chromosome stability (DNA damage repair and transposition), indicating that CRL4 has a central function in the formation of functional sperm and egg cells.
Collapse
Affiliation(s)
- Benjamin Alleva
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Clausen
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Emily Koury
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam Hefel
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sarit Smolikove
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Mazur AK, Nguyen TS, Gladyshev E. Direct Homologous dsDNA-dsDNA Pairing: How, Where, and Why? J Mol Biol 2019; 432:737-744. [PMID: 31726060 DOI: 10.1016/j.jmb.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The ability of homologous chromosomes (or selected chromosomal loci) to pair specifically in the apparent absence of DNA breakage and recombination represents a prominent feature of eukaryotic biology. The mechanism of homology recognition at the basis of such recombination-independent pairing has remained elusive. A number of studies have supported the idea that sequence homology can be sensed between intact DNA double helices in vivo. In particular, recent analyses of the two silencing phenomena in fungi, known as "repeat-induced point mutation" (RIP) and "meiotic silencing by unpaired DNA" (MSUD), have provided genetic evidence for the existence of the direct homologous dsDNA-dsDNA pairing. Both RIP and MSUD likely rely on the same search strategy, by which dsDNA segments are matched as arrays of interspersed base-pair triplets. This process is general and very efficient, yet it proceeds normally without the RecA/Rad51/Dmc1 proteins. Further studies of RIP and MSUD may yield surprising insights into the function of DNA in the cell.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France; Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Tinh-Suong Nguyen
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France
| | - Eugene Gladyshev
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
35
|
Wei Y, Bettedi L, Ting CY, Kim K, Zhang Y, Cai J, Lilly MA. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila. eLife 2019; 8:e42149. [PMID: 31650955 PMCID: PMC6834368 DOI: 10.7554/elife.42149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Lucia Bettedi
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chun-Yuan Ting
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kuikwon Kim
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yingbiao Zhang
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jiadong Cai
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary A Lilly
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
36
|
Lake CM, Nielsen RJ, Bonner AM, Eche S, White-Brown S, McKim KS, Hawley RS. Narya, a RING finger domain-containing protein, is required for meiotic DNA double-strand break formation and crossover maturation in Drosophila melanogaster. PLoS Genet 2019; 15:e1007886. [PMID: 30615609 PMCID: PMC6336347 DOI: 10.1371/journal.pgen.1007886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination, which is necessary to ensure that homologous chromosomes segregate properly, begins with the induction of meiotic DNA double-strand breaks (DSBs) and ends with the repair of a subset of those breaks into crossovers. Here we investigate the roles of two paralogous genes, CG12200 and CG31053, which we have named Narya and Nenya, respectively, due to their relationship with a structurally similar protein named Vilya. We find that narya recently evolved from nenya by a gene duplication event, and we show that these two RING finger domain-containing proteins are functionally redundant with respect to a critical role in DSB formation. Narya colocalizes with Vilya foci, which are known to define recombination nodules, or sites of crossover formation. A separation-of-function allele of narya retains the capacity for DSB formation but cannot mature those DSBs into crossovers. We further provide data on the physical interaction of Narya, Nenya and Vilya, as assayed by the yeast two-hybrid system. Together these data support the view that all three RING finger domain-containing proteins function in the formation of meiotic DNA DSBs and in the process of crossing over. Errors in chromosome segregation during meiosis are the leading cause of miscarriages and can result in genetic abnormalities like Down syndrome or Turner syndrome. For chromosomes to segregate faithfully, they must recombine with their homolog during the early steps of meiosis. An essential component of the process of meiotic recombination is creating the lesions (double-strand breaks, DSBs) that are required to form a crossover with the homologous chromosome. Crossovers are required to ensure chromosomes segregate properly at the first meiotic division. In this study we have identified two genes, narya and nenya, that are essential in DSB formation. We found that narya arose from a duplication of nenya, and these two genes are functionally redundant. In addition to its role in DSB formation, narya also plays a role in processing DSBs into crossovers. Strengthening our knowledge about the mechanism by which Narya both creates DSBs and processes them into crossovers will lead to a better understanding of the process of meiotic chromosome segregation not only in flies but many other organisms, as these genes have homologs in yeast, worms, plants, mice and humans.
Collapse
Affiliation(s)
- Cathleen M. Lake
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Rachel J. Nielsen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Amanda M. Bonner
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Salam Eche
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sanese White-Brown
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
38
|
Crown KN, Miller DE, Sekelsky J, Hawley RS. Local Inversion Heterozygosity Alters Recombination throughout the Genome. Curr Biol 2018; 28:2984-2990.e3. [PMID: 30174188 DOI: 10.1016/j.cub.2018.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Abstract
Crossovers (COs) are formed during meiosis by the repair of programmed DNA double-strand breaks (DSBs) and are required for the proper segregation of chromosomes. More DSBs are made than COs, and the remaining DSBs are repaired as noncrossovers (NCOs). The distribution of recombination events along a chromosome occurs in a stereotyped pattern that is shaped by CO-promoting and CO-suppressing forces, collectively referred to as crossover patterning mechanisms. Chromosome inversions are structural aberrations that, when heterozygous, disrupt the recombination landscape by suppressing crossing over. In Drosophila species, the local suppression of COs by heterozygous inversions triggers an increase in crossing over on freely recombining chromosomes termed the interchromosomal (IC) effect [1, 2]. The molecular mechanism(s) by which heterozygous inversions suppress COs, whether noncrossover gene conversions (NCOGCs) are similarly affected, and what mediates the increase in COs in the rest of the genome remain open questions. By sequencing whole genomes of individual offspring from mothers containing heterozygous inversions, we show that, although COs are suppressed by inversions, NCOGCs occur throughout inversions at higher than wild-type frequencies. We confirm that CO frequency increases on the freely recombining chromosomes, yet CO interference remains intact. Intriguingly, NCOGCs do not increase in frequency on the freely recombining chromosomes and the total number of DSBs is approximately the same per genome. Together, our data show that heterozygous inversions change the recombination landscape by altering the relative proportions of COs and NCOGCs and suggest that DSB fate may be plastic until a CO assurance checkpoint has been satisfied.
Collapse
Affiliation(s)
- K Nicole Crown
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danny E Miller
- Stowers Institute for Medical Research, Kansas City, MO, USA; MD-PhD Physician Scientist Training Program, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff Sekelsky
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO, USA; MD-PhD Physician Scientist Training Program, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
39
|
Lukaszewicz A, Lange J, Keeney S, Jasin M. Control of meiotic double-strand-break formation by ATM: local and global views. Cell Cycle 2018; 17:1155-1172. [PMID: 29963942 PMCID: PMC6110601 DOI: 10.1080/15384101.2018.1464847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 10/28/2022] Open
Abstract
DNA double-strand breaks (DSBs) generated by the SPO11 protein initiate meiotic recombination, an essential process for successful chromosome segregation during gametogenesis. The activity of SPO11 is controlled by multiple factors and regulatory mechanisms, such that the number of DSBs is limited and DSBs form at distinct positions in the genome and at the right time. Loss of this control can affect genome integrity or cause meiotic arrest by mechanisms that are not fully understood. Here we focus on the DSB-responsive kinase ATM and its functions in regulating meiotic DSB numbers and distribution. We review the recently discovered roles of ATM in this context, discuss their evolutionary conservation, and examine future research perspectives.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
40
|
Hatkevich T, Sekelsky J. Bloom syndrome helicase in meiosis: Pro-crossover functions of an anti-crossover protein. Bioessays 2017; 39. [PMID: 28792069 DOI: 10.1002/bies.201700073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of the Bloom syndrome helicase (BLM) and its orthologs are well characterized in mitotic DNA damage repair, but their roles within the context of meiotic recombination are less clear. In meiotic recombination, multiple repair pathways are used to repair meiotic DSBs, and current studies suggest that BLM may regulate the use of these pathways. Based on literature from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, we present a unified model for a critical meiotic role of BLM and its orthologs. In this model, BLM and its orthologs utilize helicase activity to regulate the use of various pathways in meiotic recombination by continuously disassembling recombination intermediates. This unwinding activity provides the meiotic program with a steady pool of early recombination substrates, increasing the probability for a DSB to be processed by the appropriate pathway. As a result of BLM activity, crossovers are properly placed throughout the genome, promoting proper chromosomal disjunction at the end of meiosis. This unified model can be used to further refine the complex role of BLM and its orthologs in meiotic recombination.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 2017; 23:369-77. [PMID: 27142324 DOI: 10.1038/nsmb.3208] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
The synaptonemal complex (SC) is a meiosis-specific scaffold that links homologous chromosomes from end to end during meiotic prophase and is required for the formation of meiotic crossovers. Assembly of SC components is regulated by a combination of associated nonstructural proteins and post-translational modifications, such as SUMOylation, which together coordinate the timing between homologous chromosome pairing, double-strand-break formation and recombination. In addition, transcriptional and translational control mechanisms ensure the timely disassembly of the SC after crossover resolution and before chromosome segregation at anaphase I.
Collapse
|
42
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
43
|
Koo DH, Liu W, Friebe B, Gill BS. Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 2016; 126:531-540. [PMID: 27909815 DOI: 10.1007/s00412-016-0622-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
A crossover (CO) and its cytological signature, the chiasma, are major features of eukaryotic meiosis. The formation of at least one CO/chiasma between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division and genetic recombination. Polyploid organisms with multiple sets of homoeologous chromosomes have evolved additional mechanisms for the regulation of CO/chiasma. In hexaploid wheat (2n = 6× = 42), this is accomplished by pairing homoeologous (Ph) genes, with Ph1 having the strongest effect on suppressing homoeologous recombination and homoeologous COs. In this study, we observed homoeologous COs between chromosome 5Mg of Aegilops geniculata and 5D of wheat in plants where Ph1 was fully active, indicating that chromosome 5Mg harbors a homoeologous recombination promoter factor(s). Further cytogenetic analysis, with different 5Mg/5D recombinants, showed that the homoeologous recombination promoting factor(s) may be located in proximal regions of 5Mg. In addition, we observed a higher frequency of homoeologous COs in the pericentromeric region between chromosome combination of rec5Mg#2S·5Mg#2L and 5D compared to 5Mg#1/5D, which may be caused by a small terminal region of 5DL homology present in chromosome rec5Mg#2. The genetic stocks reported here will be useful for analyzing the mechanism of Ph1 action and the nature of homoeologous COs.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Wenxuan Liu
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.,Laboratory of Cell and Chromosome Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|
44
|
Maintenance of Heterochromatin by the Large Subunit of the CAF-1 Replication-Coupled Histone Chaperone Requires Its Interaction with HP1a Through a Conserved Motif. Genetics 2016; 205:125-137. [PMID: 27838630 DOI: 10.1534/genetics.116.190785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/30/2016] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells, the organization of genomic DNA into chromatin regulates many biological processes, from the control of gene expression to the regulation of chromosome segregation. The proper maintenance of this structure upon cell division is therefore of prime importance during development for the maintenance of cell identity and genome stability. The chromatin assembly factor 1 (CAF-1) is involved in the assembly of H3-H4 histone dimers on newly synthesized DNA and in the maintenance of a higher order structure, the heterochromatin, through an interaction of its large subunit with the heterochromatin protein HP1a. We identify here a conserved domain in the large subunit of the CAF-1 complex required for its interaction with HP1a in the Drosophila fruit fly. Functional analysis reveals that this domain is dispensable for viability but participates in two processes involving heterochromatin: position-effect variegation and long range chromosomal interactions during meiotic prophase. Importantly, the identification in the large subunit of CAF-1 of a domain required for its interaction with HP1 allows the separation of its functions in heterochromatin-related processes from its function in the assembly of H3-H4 dimers onto newly synthesized DNA.
Collapse
|
45
|
Zhaunova L, Ohkura H, Breuer M. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity. PLoS Genet 2016; 12:e1006241. [PMID: 27494704 PMCID: PMC4975413 DOI: 10.1371/journal.pgen.1006241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/03/2022] Open
Abstract
During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity. Accurate transmission of chromosomes carrying genetic materials from generation to generation is essential for life. Cell divisions that generate gametes, such as eggs and sperm, are critical, as chromosomes inherited from both parents recombine and are accurately sorted into gametes. Errors in these cell divisions often result in infertility, miscarriages or birth defects such as Down syndrome in humans. During these divisions, chromosomes undergo dramatic reorganisation but the molecular mechanisms are not well understood. Chromosome organisation is known to be regulated by various epigenetic marks, which are chemical marks on chromatin crucial for regulating gene expression. We found that an enzyme (Kdm5/Lid) that erases a mark linked to active gene expression regulates multiple aspects of meiotic chromatin organisation in oocytes, including stability of the recombination machinery. Unexpectedly, this function does not require its enzymatic activity. Our findings provide novel insights into how chromosomes are reorganised during reproduction and prompt re-evaluation of the role of this eraser enzyme.
Collapse
Affiliation(s)
- Liudmila Zhaunova
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Manuel Breuer
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
46
|
John A, Vinayan K, Varghese J. Achiasmy: Male Fruit Flies Are Not Ready to Mix. Front Cell Dev Biol 2016; 4:75. [PMID: 27486580 PMCID: PMC4949207 DOI: 10.3389/fcell.2016.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/29/2016] [Indexed: 11/13/2022] Open
Abstract
Maintenance of the chromosomal copy number over generations and recombination between homologous chromosomes are hallmarks of meiotic cell division. This genetic exchange that take place during gamete formation leads to genetic diversity, the main driving force behind natural selection. Formation of chiasmata, the physical link between homologous chromosomes during meiosis, is a requisite for recombination. In addition, chiasmata also aid in proper segregation of homologous chromosomes and has a major impact on reproductive fitness. Given these facts it is intriguing that many insect species have forgone the need for genetic exchange between homologous chromosomes during meiosis. Geneticists for several decades knew that meiotic crossover and recombination is absent in Drosophila males and some female lepidopterans, a condition termed achiasmy. However, a good understanding of the mechanisms that cause achiasmy and the evolutionary benefits of achiasmy is currently lacking. In this article we will discuss possible genetic and molecular basis of achiasmy in male Drosophila.
Collapse
Affiliation(s)
- Alphy John
- Drosophila Research in Energy and Metabolism Lab, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Kavya Vinayan
- Drosophila Research in Energy and Metabolism Lab, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Jishy Varghese
- Drosophila Research in Energy and Metabolism Lab, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| |
Collapse
|
47
|
Lake CM, Hawley RS. Becoming a crossover-competent DSB. Semin Cell Dev Biol 2016; 54:117-25. [PMID: 26806636 DOI: 10.1016/j.semcdb.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
Abstract
The proper execution of meiotic recombination (or crossing over) is essential for chromosome segregation during the first meiotic division, and thus this process is regulated by multiple, and often elaborate, mechanisms. Meiotic recombination begins with the programmed induction of DNA double-strand breaks (DSBs), of which only a subset are selected to be repaired into crossovers. This crossover selection process is carried out by a number of pro-crossover proteins that regulate the fashion in which DSBs are repaired. Here, we highlight recent studies regarding the process of DSB fate selection by a family of pro-crossover proteins known as the Zip-3 homologs.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
48
|
Gómez R, Van Damme K, Gosálvez J, Morán ES, Colbourne JK. Male meiosis in Crustacea: synapsis, recombination, epigenetics and fertility in Daphnia magna. Chromosoma 2015; 125:769-87. [PMID: 26685998 PMCID: PMC5023733 DOI: 10.1007/s00412-015-0558-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 11/28/2022]
Abstract
We present the first detailed cytological study of male meiosis in Daphnia (Crustacea: Branchiopoda: Cladocera)—an aquatic microcrustacean with a cyclical parthenogenetic life cycle. Using immunostaining of the testes in Daphnia magna for baseline knowledge, we characterized the different stages of meiotic division and spermiogenesis in relation to the distribution of proteins involved in synapsis, early recombination events and sister chromatid cohesion. We also studied post-translational histone modifications in male spermatocytes, in relation to the dynamic chromatin progression of meiosis. Finally, we applied a DNA fragmentation test to measure sperm quality of D. magna, with respect to levels of inbreeding. As a proxy for fertility, this technique may be used to assess the reproductive health of a sentinel species of aquatic ecosystems. Daphnia proves to be a model species for comparative studies of meiosis that is poised to improve our understanding of the cytological basis of sexual and asexual reproduction.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049, Madrid, Spain. .,Environmental Genomics Group. School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK. .,Chromosome Dynamics Group. School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Kay Van Damme
- Environmental Genomics Group. School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Jaime Gosálvez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Eugenio Sánchez Morán
- Chromosome Dynamics Group. School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - John K Colbourne
- Environmental Genomics Group. School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
49
|
Naranjo T. Contribution of Structural Chromosome Mutants to the Study of Meiosis in Plants. Cytogenet Genome Res 2015; 147:55-69. [PMID: 26658116 DOI: 10.1159/000442219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Dissection of the molecular mechanisms underlying the transition through the complex events of the meiotic process requires the use of gene mutants or RNAi-mediated gene silencing. A considerable number of meiotic mutants have been isolated in plant species such as Arabidopsis thaliana, maize or rice. However, structural chromosome mutants are also important for the identification of the role developed by different chromosome domains in the meiotic process. This review summarizes the contribution of studies carried out in plants using structural chromosome variations. Meiotic events concerning the search of the homologous partner, the control of number and distribution of chiasmata, the mechanism of pairing correction, and chromosome segregation are considered.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
50
|
Roelens B, Schvarzstein M, Villeneuve AM. Manipulation of Karyotype in Caenorhabditis elegans Reveals Multiple Inputs Driving Pairwise Chromosome Synapsis During Meiosis. Genetics 2015; 201:1363-79. [PMID: 26500263 PMCID: PMC4676528 DOI: 10.1534/genetics.115.182279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/21/2015] [Indexed: 01/12/2023] Open
Abstract
Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination.
Collapse
Affiliation(s)
- Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Mara Schvarzstein
- Department of Biology, Brooklyn College, City University of New York (CUNY), Brooklyn, New York 11210 Molecular, Cellular, and Developmental Biology Program, The Graduate Center, CUNY, New York, New York 10016
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|