1
|
Guo M, Li X, Tao W, Teng F, Li C. Vibrio splendidus infection promotes circRNA-FGL1-regulated coelomocyte apoptosis via competitive binding to Myc with the deubiquitinase OTUB1 in Apostichopus japonicus. PLoS Pathog 2024; 20:e1012463. [PMID: 39146353 PMCID: PMC11349225 DOI: 10.1371/journal.ppat.1012463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Circular RNAs (circRNAs) are involved in various physiological and pathological processes in both vertebrates and invertebrates. However, most studies on circRNAs have focused on their roles as endogenous competitive RNAs. Here, we report a novel function of circRNA derived from the Fibrinogen-like protein 1 gene (circ-FGL1) that inhibits coelomocyte apoptosis via competing with the deubiquitinase AjOTUB1 to bind AjMyc in Apostichopus japonicus during Vibrio splendidus infection. The results showed that circ-FGL1 is significantly downregulated in coelomocytes of V. splendidus-induced A. japonicus and negatively regulates coelomocyte apoptosis through the AjBax-AjCyt c pathway. Mechanistically, the deubiquitinase AjOTUB1 and circ-FGL1 could interact with the transcription factor protein AjMyc in the same region with circ-FGL1/AjMyc having greater affinity. Under normal conditions, high levels of circ-FGL1 bind directly to AjMyc, inhibiting the deubiquitylation of AjMyc by AjOTUB1 and leading to the degradation of AjMyc. After V. splendidus infection, AjMyc disassociates from the depressed expression of circ-FGL1, promoting its deubiquitylation by binding to the induced deubiquitinase AjOTUB1 to inhibit its degradation. AjMyc is then transferred to the nucleus and promotes the transcription of AjCyt c and AjBax to induce coelomocyte apoptosis. The new finding will expand our present outstanding on the functional role of circRNAs and suggest new therapeutic targets for the treatment of echinoderms during bacterial invasion.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Teng
- College of Mathematics and Computer, Jilin Normal University, Siping, Jilin, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Xie S, Sun Y, Zhao X, Xiao Y, Zhou F, Lin L, Wang W, Lin B, Wang Z, Fang Z, Wang L, Zhang Y. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity. Front Pharmacol 2024; 15:1406247. [PMID: 38989148 PMCID: PMC11234178 DOI: 10.3389/fphar.2024.1406247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Anthracycline drugs mainly include doxorubicin, epirubicin, pirarubicin, and aclamycin, which are widely used to treat a variety of malignant tumors, such as breast cancer, gastrointestinal tumors, lymphoma, etc. With the accumulation of anthracycline drugs in the body, they can induce serious heart damage, limiting their clinical application. The mechanism by which anthracycline drugs cause cardiotoxicity is not yet clear. This review provides an overview of the different types of cardiac damage induced by anthracycline-class drugs and delves into the molecular mechanisms behind these injuries. Cardiac damage primarily involves alterations in myocardial cell function and pathological cell death, encompassing mitochondrial dysfunction, topoisomerase inhibition, disruptions in iron ion metabolism, myofibril degradation, and oxidative stress. Mechanisms of uptake and transport in anthracycline-induced cardiotoxicity are emphasized, as well as the role and breakthroughs of iPSC in cardiotoxicity studies. Selected novel cardioprotective therapies and mechanisms are updated. Mechanisms and protective strategies associated with anthracycline cardiotoxicity in animal experiments are examined, and the definition of drug damage in humans and animal models is discussed. Understanding these molecular mechanisms is of paramount importance in mitigating anthracycline-induced cardiac toxicity and guiding the development of safer approaches in cancer treatment.
Collapse
Affiliation(s)
- Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Sun
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Xiao
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Zhou
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Lin
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics, Future Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| | - Zun Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Fang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
3
|
Abdullah KM, Sharma G, Takkar S, Kaushal JB, Pothuraju R, Chakravarti B, Batra SK, Siddiqui JA. α-lipoic acid modulates prostate cancer cell growth and bone cell differentiation. Sci Rep 2024; 14:4404. [PMID: 38388663 PMCID: PMC10884017 DOI: 10.1038/s41598-024-54479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Prostate cancer (PCa) progression leads to bone modulation in approximately 70% of affected men. A nutraceutical, namely, α-lipoic acid (α-LA), is known for its potent anti-cancer properties towards various cancers and has been implicated in treating and promoting bone health. Our study aimed to explore the molecular mechanism behind the role of α-LA as therapeutics in preventing PCa and its associated bone modulation. Notably, α-LA treatment significantly reduced the cell viability, migration, and invasion of PCa cell lines in a dose-dependent manner. In addition, α-LA supplementation dramatically increased reactive oxygen species (ROS) levels and HIF-1α expression, which started the downstream molecular cascade and activated JNK/caspase-3 signaling pathway. Flow cytometry data revealed the arrest of the cell cycle in the S-phase, which has led to apoptosis of PCa cells. Furthermore, the results of ALP (Alkaline phosphatase) and TRAP (tartrate-resistant acid phosphatase) staining signifies that α-LA supplementation diminished the PCa-mediated differentiation of osteoblasts and osteoclasts, respectively, in the MC3T3-E1 and bone marrow macrophages (BMMs) cells. In summary, α-LA supplementation enhanced cellular apoptosis via increased ROS levels, HIF-1α expression, and JNK/caspase-3 signaling pathway in advanced human PCa cell lines. Also, the treatment of α-LA improved bone health by reducing PCa-mediated bone cell modulation.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
4
|
Chong LH, Yip AK, Farm HJ, Mahmoud LN, Zeng Y, Chiam KH. The role of cell-matrix adhesion and cell migration in breast tumor growth and progression. Front Cell Dev Biol 2024; 12:1339251. [PMID: 38374894 PMCID: PMC10875056 DOI: 10.3389/fcell.2024.1339251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
During breast cancer progression, there is typically increased collagen deposition resulting in elevated extracellular matrix rigidity. This results in changes to cell-matrix adhesion and cell migration, impacting processes such as the epithelial-mesenchymal transition (EMT) and metastasis. We aim to investigate the roles of cell-matrix adhesion and cell migration on breast tumor growth and progression by studying the impacts of different types of extracellular matrices and their rigidities. We embedded MCF7 spheroids within three-dimensional (3D) collagen matrices and agarose matrices. MCF7 cells adhere to collagen but not agarose. Contrasting the results between these two matrices allows us to infer the role of cell-matrix adhesion. We found that MCF7 spheroids exhibited the fastest growth rate when embedded in a collagen matrix with a rigidity of 5.1 kPa (0.5 mg/mL collagen), whereas, for the agarose matrix, the rigidity for the fastest growth rate is 15 kPa (1.0% agarose) instead. This discrepancy is attributable to the presence of cell adhesion molecules in the collagen matrix, which initiates collagen matrix remodeling and facilitates cell migration from the tumor through the EMT. As breast tumors do not adhere to agarose matrices, it is suitable to simulate the cell-cell interactions during the early stage of breast tumor growth. We conducted further analysis to characterize the stresses exerted by the expanding spheroid on the agarose matrix. We identified two distinct MCF7 cell populations, namely, those that are non-dividing and those that are dividing, which exerted low and high expansion stresses on the agarose matrix, respectively. We confirmed this using Western blot which showed the upregulation of proliferating cell nuclear antigen, a proliferation marker, in spheroids grown in the 1.0% agarose (≈13 kPa). By treating the embedded MCF7 spheroids with an inhibitor or activator of myosin contractility, we showed that the optimum spheroids' growth can be increased or decreased, respectively. This finding suggests that tumor growth in the early stage, where cell-cell interaction is more prominent, is determined by actomyosin tension, which alters cell rounding pressure during cell division. However, when breast tumors begin generating collagen into the surrounding matrix, collagen remodeling triggers EMT to promote cell migration and invasion, ultimately leading to metastasis.
Collapse
Affiliation(s)
- Lor Huai Chong
- Bioinformatics Institute, ASTAR, Singapore, Singapore
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ai Kia Yip
- Bioinformatics Institute, ASTAR, Singapore, Singapore
| | - Hui Jia Farm
- Bioinformatics Institute, ASTAR, Singapore, Singapore
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Lamees N. Mahmoud
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Helwan, Cairo, Egypt
| | - Yukai Zeng
- Bioinformatics Institute, ASTAR, Singapore, Singapore
| | | |
Collapse
|
5
|
Kumar N, Thorat ST, Kochewad SA, Reddy KS. Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFkB mechanism in fish. Sci Rep 2024; 14:1273. [PMID: 38218897 PMCID: PMC10787825 DOI: 10.1038/s41598-024-51740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
The ongoing challenges of climate change and pollution are major factors disturbing ecosystems, including aquatic systems. They also have an impact on gene regulation and biochemical changes in aquatic animals, including fish. Understanding the mechanisms of gene regulation and biochemical changes due to climate change and pollution in aquatic animals is a challenging task. However, with this backdrop, the present investigation was conducted to explore the effects of arsenic (As) and ammonia (NH3) toxicity and high-temperature (T) stress on gene regulation and biochemical profiles, mitigated by dietary manganese (Mn) in Pangasianodon hypophthalmus. The fish were exposed to different combinations of As, NH3, and T, and fed with dietary Mn at 4, 8, and 12 mg kg-1 to evaluate the gene expression of immunity, antioxidative status, cytokine, and NfKB signaling pathway genes. HSP 70, cytochrome P450 (CYP 450), metallothionein (MT), DNA damage-inducible protein (DDIP), caspase (CAS), tumor necrosis factor (TNFα), toll-like receptor (TLR), interleukin (IL), inducible nitric oxide synthase (iNOS), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were noticeably highly upregulated by As + NH3 + T stress, whereas Mn diet at 8 mg kg-1 downregulated these genes. Further, total immunoglobulin (Ig), myostatin (MYST), somatostatin (SMT), growth hormone (GH), growth hormone regulator 1 and β, insulin-like growth factors (IGF1X1 and IGF1X2) were significantly upregulated by Mn diets. The biochemical profiles were highly affected by stressors (As + NH3 + T). The bioaccumulation of arsenic in different tissues was also notably reduced by Mn diets. Furthermore, the infectivity of the fish was reduced, and survival against pathogenic bacteria was enhanced by Mn diet at 8 mg kg-1. The results of the present investigation revealed that dietary Mn at 8 mg kg-1 controls gene regulation against multiple stressors (As, NH3, As + NH3, NH3 + T, As + NH3 + T) in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | | | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
6
|
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis 2024; 11:148-175. [PMID: 37588226 PMCID: PMC10425757 DOI: 10.1016/j.gendis.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.
Collapse
Affiliation(s)
- Divya Ajmeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| | - Rajanna Ajumeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| |
Collapse
|
7
|
Liu Z, Chen Y, Mei Y, Yan M, Liang H. Gasdermin D-Mediated Pyroptosis in Diabetic Cardiomyopathy: Molecular Mechanisms and Pharmacological Implications. Molecules 2023; 28:7813. [PMID: 38067543 PMCID: PMC10708146 DOI: 10.3390/molecules28237813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.
Collapse
Affiliation(s)
- Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yifan Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Haihai Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| |
Collapse
|
8
|
Kumar N, Thorat ST, Singh AK, Kochewad SA, Reddy KS. Manganese nanoparticles control the gene regulations against multiple stresses in Pangasianodon hypophthalmus. Sci Rep 2023; 13:15900. [PMID: 37741912 PMCID: PMC10517940 DOI: 10.1038/s41598-023-43084-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Ammonia and arsenic pollution, along with the impact of climate change, represent critical factors influencing both the quantity and quality of aquaculture production. Recent developments have underscored the significance of these issues, as they not only disrupt aquatic ecosystems but also have far reaching consequences for human health. To addressed above challenges, an experiment was conducted to delineate the potential of manganese nanoparticles (Mn-NPs) to mitigate arsenic and ammonia pollution as well as high temperature stress in Pangasianodon hypophthalmus. The fish were exposed to different combination of arsenic and ammonia pollution as well as high temperature stress, while simultaneously incorporating diets enriched with Mn-NPs. The inclusion of Mn-NPs at 3 mg kg-1 in the diet led to a noteworthy downregulation of cortisol and HSP 70 gene expression, indicating their potential in mitigating stress responses. Furthermore, immune related gene expressions were markedly altered in response to the stressors but demonstrated improvement with the Mn-NPs diet. Interestingly, the expression of inducible nitric oxide synthase (iNOS), caspase (CAS), metallothionine (MT) and cytochrome P450 (CYP450) genes expression were prominently upregulated, signifying a stress response. Whereas, Mn-NPs at 3 mg kg-1 diet was significantly downregulated theses gene expression and reduces the stress. In addition to stress-related genes, we evaluated the growth-related gene expressions such as growth hormone (GH), growth hormone regulator 1 (GHR1 and GHRβ), Insulin like growth factor (IGF1 and IGF2) were significantly upregulated whereas, myostatin and somatostatin were downregulated upon the supplementation of dietary Mn-NPs with or without stressors in fish. The gene expression of DNA damage inducible protein and DNA damage in response to head DNA % and tail DNA % was protected by Mn-NPs diets. Furthermore, Mn-NPs demonstrated a capacity to enhance the detoxification of arsenic in different fish tissues, resulting in reduced bioaccumulation of arsenic in muscle and other tissues. This finding highlights Mn-NPs as a potential solution for addressing bioaccumulation associated risks. Our study aimed to comprehensively examined the role of dietary Mn-NPs in mitigating the multiple stressors using gene regulation mechanisms, with enhancing the productive performance of P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | | | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | | | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| |
Collapse
|
9
|
Zhang Y, Yu W, Chen M, Zhang B, Zhang L, Li P. The applications of nanozymes in cancer therapy: based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. NANOSCALE 2023. [PMID: 37377098 DOI: 10.1039/d3nr01722b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanozymes are nanomaterials with catalytic properties similar to those of natural enzymes, and they have recently been collectively identified as a class of innovative artificial enzymes. Nanozymes are widely used in various fields, such as biomedicine, due to their high catalytic activity and stability. Nanozymes can trigger changes in reactive oxygen species (ROS) levels in cells and the activation of inflammasomes, leading to the programmed cell death (PCD), including the pyroptosis, ferroptosis, and autophagy, of tumor cells. In addition, some nanozymes consume glucose, starving cancer cells and thus accelerating tumor cell death. In addition, the electric charge of the structure and the catalytic activity of nanozymes are sensitive to external factors such as light and electric and magnetic fields. Therefore, nanozymes can be used with different therapeutic methods, such as chemodynamic therapy (CDT), photodynamic therapy (PDT) and sonodynamic therapy (SDT), to achieve highly efficient antitumor effects. Many cancer therapies induce tumor cell death via the pyroptosis, ferroptosis, and autophagy of tumor cells mediated by nanozymes. We review the mechanisms of pyroptosis, ferroptosis, and autophagy in tumor development, as well as the potential application of nanozymes to regulate pyroptosis, ferroptosis, and autophagy in tumor cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Mengmeng Chen
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Bingqiang Zhang
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
10
|
Paclitaxel Induces the Apoptosis of Prostate Cancer Cells via ROS-Mediated HIF-1α Expression. Molecules 2022; 27:molecules27217183. [PMID: 36364008 PMCID: PMC9654100 DOI: 10.3390/molecules27217183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy to endanger the health of male genitourinary system. Clinically, paclitaxel (PTX) (C47H51NO14), a diterpene alkaloid, is commonly used as an effective natural antineoplastic drug during the treatment of PCa. However, the mechanism and pathway involved in the function of PTX are poorly understood. In the current study, we employed the CCK-8 assay, revealing that PTX can inhibit the survival and induce the apoptosis of PC3M cells (a human prostate cancer cell line) in a concentration-dependent manner. Reactive oxygen species (ROS), as a metabolic intermediate produced by the mitochondrial respiratory chain, are highly accumulated under the PTX treatment, which results in a sharp decrease of the mitochondrial membrane potential in PC3M cells. Additionally, the migration and invasion of PC3M cells are weakened due to PTX treatment. Further analysis reveals that N-acetylcysteine (NAC), which functions as an antioxidant, not only rescues the decreased mitochondrial membrane potential induced by the abnormal ROS level, but also restores the migration and invasion of PC3M cells. In a subsequent exploration of the detailed mechanism, we found that hypoxia-inducible factor (HIF)-1α works as a downstream gene that can respond to the increased ROS in PC3M cells. Under PTX treatment, the expression levels of HIF-1α mRNA and protein are significantly increased, which stimulate the activation of JNK/caspase-3 signaling and promote the apoptosis of PC3M cells. In summary, we demonstrate that PTX regulates the expression of HIF-1α through increased ROS accumulation, thereby promoting the activation of JNK/caspase-3 pathway to induce the apoptosis of PCa cells. This study provides new insights into the mechanism of antineoplastic action of taxanes and unveils the clinical benefit of the ROS-HIF-1α signaling pathway, which may offer a potential therapeutic target to prevent the development of PCa.
Collapse
|
11
|
GÖKER BAĞCA B. Identification of the phenomenon of anastasis in breast cancer cells. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1168087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: This study aimed to define the expression changes and potential roles of the apoptosis-related genes in the anastasis process in breast cancer, which is one of the most common cancer types.
Materials and Methods: Different types of breast cancer cell lines (MCF7 and MDA-MB-231), breast cancer stem cells, and healthy breast cell line (MCF10A) were used. Apoptotic and anastatic cell percentages were determined by the Annexin V test and flow cytometry. Gene expression changes in anastatic cells compared to apoptotic cells were determined by the qRT-PCR and 2-ΔΔCt method. The pathways and biological processes of genes that show significant changes were determined using the STRING v11.5 database.
Results: In all cell groups, it was determined that the percentage of apoptosis increased as a result of ethanol application, and the percentage of apoptotic cells decreased with the removal of the apoptosis-inducing factor. The change in the percentage of apoptotic cells between the control, apoptosis, and anastasis groups was determined the most in MCF7 cells. Consistently, expression changes were determined in the largest number of genes in this cell line. CASP7 and APAF1 genes downregulated in all cell lines. In all cell groups, it was determined that anastasis affects Cysteine-type endopeptidase activity involved in execution phase of apoptosis (GO_ID: 0043027), and drug resistance-related pathways (KEGG_ID: hsa01524).
Conclusion: The definition of the interaction of the anastasis phenomenon in cells with apoptosis regulatory mechanisms is important in terms of elucidating both the oncogenic transformation of healthy cells and the mechanisms of drug resistance in cancer.
Collapse
Affiliation(s)
- Bakiye GÖKER BAĞCA
- Aydın Adnan Menderes Üniversitesi Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Aydın, Türkiye
| |
Collapse
|
12
|
Martinucci B, Cucielo MS, Minatel BC, Cury SS, Caxali GH, Aal MCE, Felisbino SL, Pinhal D, Carvalho RF, Delella FK. Fibronectin Modulates the Expression of miRNAs in Prostate Cancer Cell Lines. Front Vet Sci 2022; 9:879997. [PMID: 35898539 PMCID: PMC9310065 DOI: 10.3389/fvets.2022.879997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is a significant cause of cancer-related deaths among men and companion animals, such as dogs. However, despite its high mortality and incidence rates, the molecular mechanisms underlying this disease remain to be fully elucidated. Among the many factors involved in prostate carcinogenesis, the extracellular matrix (ECM) plays a crucial role. This ECM in the prostate is composed mainly of collagen fibers, reticular fibers, elastic fibers, proteoglycans and glycoproteins, such as fibronectin. Fibronectin is a glycoprotein whose dysregulation has been implicated in the development of multiple types of cancer, and it has been associated with cell migration, invasion, and metastasis. Furthermore, our research group has previously shown that fibronectin induces transcriptional changes by modulating the expression of protein coding genes in LNCaP cells. However, potential changes at the post-transcriptional level are still not well understood. This study investigated the impact of exposure to fibronectin on the expression of a key class of regulatory RNAs, the microRNAs (miRNAs), in prostate cancer cell lines LNCaP and PC-3. Five mammalian miRNAs (miR-21, miR-29b, miR-125b, miR-221, and miR-222) were differentially expressed after fibronectin exposure in prostate cell lines. The expression profile of hundreds of mRNAs predicted to be targeted by these miRNAs was analyzed using publicly available RNA-Sequencing data (GSE64025, GSE68645, GSE29155). Also, protein-protein interaction networks and enrichment analysis were performed to gain insights into miRNA biological functions. Altogether, these functional analyzes revealed that fibronectin exposure impacts the expression of miRNAs potentially involved in PCa causing changes in critical signaling pathways such as PI3K-AKT, and response to cell division, death, proliferation, and migration. The relationship here demonstrated between fibronectin exposure and altered miRNA expression improves the comprehension of PCa in both men and other animals, such as dogs, which naturally develop prostate cancer.
Collapse
Affiliation(s)
- Bruno Martinucci
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Brenda Carvalho Minatel
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriel Henrique Caxali
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Mirian Carolini Esgoti Aal
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sergio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Flávia Karina Delella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: Flávia Karina Delella
| |
Collapse
|
13
|
Dai F, Guo M, Shao Y, Li C. Vibrio splendidus flagellin C binds tropomodulin to induce p38 MAPK-mediated p53-dependent coelomocyte apoptosis in Echinodermata. J Biol Chem 2022; 298:102091. [PMID: 35654141 PMCID: PMC9249833 DOI: 10.1016/j.jbc.2022.102091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022] Open
Abstract
As a typical pathogen-associated molecular pattern, bacterial flagellin can bind Toll-like receptor 5 and the intracellular NAIP5 receptor component of the NLRC4 inflammasome to induce immune responses in mammals. However, these flagellin receptors are generally poorly understood in lower animal species. In this study, we found that the isolated flagellum of Vibrio splendidus AJ01 destroyed the integrity of the tissue structure of coelomocytes and promoted apoptosis in the sea cucumber Apostichopus japonicus. To further investigate the molecular mechanism, the novel intracellular LRR domain-containing protein tropomodulin (AjTmod) was identified as a protein that interacts with flagellin C (FliC) with a dissociation constant (Kd) of 0.0086 ± 0.33 μM by microscale thermophoresis assay. We show that knockdown of AjTmod also depressed FliC-induced apoptosis of coelomocytes. Further functional analysis with different inhibitor treatments revealed that the interaction between AjTmod and FliC could specifically activate p38 MAPK, but not JNK or ERK MAP kinases. We demonstrate that the transcription factor p38 is then translocated into the nucleus, where it mediates the expression of p53 to induce coelomocyte apoptosis. Our findings provide the first evidence that intracellular AjTmod serves as a novel receptor of FliC and mediates p53-dependent coelomocyte apoptosis by activating the p38 MAPK signaling pathway in Echinodermata.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
14
|
Kim M, Vu NT, Wang X, Bulut GB, Wang MH, Uram-Tuculescu C, Pillappa R, Kim S, Chalfant CE. Caspase-9b drives cellular transformation, lung inflammation, and lung tumorigenesis. Mol Cancer Res 2022; 20:1284-1294. [PMID: 35412615 DOI: 10.1158/1541-7786.mcr-21-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Caspase 9 undergoes alternative splicing to produce two opposing isoforms: pro-apoptotic Caspase-9a (C9a) and pro-survival Caspase-9b (C9b). Previously, our laboratory reported that C9b is expressed in majority of non-small cell lung cancer tumors and directly activates the NF-κB pathway. In this study, the role of C9b in activation of the NF-κB pathway in vivo, lung inflammation and immune responses, and lung tumorigenesis were examined. Specifically, a transgenic mouse model expressing human C9b in the lung pneumocytes developed inflammatory lung lesions, which correlated with enhanced activation of the NF-κB pathway and increased influx of immunosuppressive MDSCs in contrast to wild-type mice. C9b mice presented with facial dermatitis, a thickened and disorganized dermis, enhanced collagen depth, and increased serum levels of IL-6. C9b mice also developed spontaneous lung tumors, and C9b cooperated with oncogenic KRAS in lung tumorigenesis. C9b expression also cooperated with oncogenic KRAS and p53 downregulation to drive the full cell transformation of human bronchial epithelial cells (e.g., tumor formation). Implications: Our findings show that C9b can directly activate NF-κB pathway in vivo to modulate lung inflammation, immune cell influx, and peripheral immune responses, which demonstrates that C9b is key factor in driving cell transformation and lung tumorigenesis.
Collapse
Affiliation(s)
- Minjung Kim
- University of South Florida, Tampa, FL, United States
| | - Ngoc T Vu
- University of South Florida, United States
| | - Xue Wang
- University of South Florida, Tampa, Virginia, United States
| | - Gamze B Bulut
- Virginia Commonwealth University-School of Medicine, Richmond, Virginia, United States
| | - Min-Hsuan Wang
- H. Lee Moffitt Cancer Center & Research, Tampa, Florida, United States
| | | | - Raghavendra Pillappa
- Virginia Commonwealth University-School of Medicine, Richmond, Virginia, United States
| | | | - Charles E Chalfant
- University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
15
|
Meng Z, Wang Z, Chen X, Song Y, Teng M, Fan T, Zheng Y, Cui J, Xu W. Bioaccumulation and toxicity effects of flubendiamide in zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26900-26909. [PMID: 34860341 DOI: 10.1007/s11356-021-17868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Flubendiamide is a widely used diamide insecticide with many adverse effects on environmental organisms. This study assessed its bioaccumulation and toxicity effects in zebrafish (Danio rerio) using LC-MS/MS. The concentrations of flubendiamide in the whole zebrafish increased in the early stages and achieved steady levels at 14 days. The bioconcentration factors (BCFs) of flubendiamide was 1.125-2.011. Although flubendiamide did not significantly affect the growth phenotypes of zebrafish, it significantly changed the hepatic somatic index (HSI) of zebrafish. Histopathological analysis showed that flubendiamide could cause structural damage to the liver tissue of zebrafish. Further physiological and biochemical analysis showed that flubendiamide significantly changed the activity of catalase (CAT) and the contents of malondialdehyde (MDA) and glutathione (GSH) in liver of zebrafish. Moreover, flubendiamide significantly changed the mRNA expression levels of cell apoptosis-related genes, including p53, puma, caspase-3, caspase-9, apaf-1, and bax in liver of zebrafish. In summary, these results indicate that flubendiamide can cause liver damage by inducing oxidative stress and apoptosis in the liver of zebrafish. This study provides a background for further safety evaluation of flubendiamide to aquatic organisms.
Collapse
Affiliation(s)
- Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China
| | - Zhichao Wang
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China.
| | - Yueyi Song
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tianle Fan
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China
| | - Yang Zheng
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China
| | - Jiajia Cui
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China
| | - Wangjin Xu
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu Yangzhou, 225009, China
| |
Collapse
|
16
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Malik MA, Raza MK, Mohammed A, Wani MY, Al-Bogami AS, Hashmi AA. Unravelling the anticancer potential of a square planar copper complex: toward non-platinum chemotherapy. RSC Adv 2021; 11:39349-39361. [PMID: 35492449 PMCID: PMC9044439 DOI: 10.1039/d1ra06227a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022] Open
Abstract
Coordination compounds from simple transition metals are robust substitutes for platinum-based complexes due to their remarkable anticancer properties. In a quest to find new metal complexes that could substitute or augment the platinum based chemotherapy we synthesized three transition metal complexes C1-C3 with Cu(ii), Ni(ii), and Co(ii) as the central metal ions, respectively, and evaluated them for their anticancer activity against the human keratinocyte (HaCaT) cell line and human cervical cancer (HeLa) cell lines. These complexes showed different activity profiles with the square planar copper complex C1 being the most active with IC50 values lower than those of the widely used anticancer drug cisplatin. Assessment of the morphological changes by DAPI staining and ROS generation by DCFH-DA assay exposed that the cell death occurred by caspase-3 mediated apoptosis. C1 displayed interesting interactions with Ct-DNA, evidenced by absorption spectroscopy and validated by docking studies. Together, our results suggest that binding of the ligand to the DNA-binding domain of the p53 tumor suppressor (p53DBD) protein and the induction of the apoptotic hallmark protein, caspase-3, upon treatment with the metal complex could be positively attributed to a higher level of ROS and the subsequent DNA damage (oxidation), generated by the complex C1, that could well explain the interesting anticancer activity observed for this complex.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
- Department of Chemistry, University of Kashmir Srinagar Jammu and Kashmir India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | | | - Athar Adil Hashmi
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
18
|
Kordbacheh F, Farah CS. Molecular Pathways and Druggable Targets in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3453. [PMID: 34298667 PMCID: PMC8307423 DOI: 10.3390/cancers13143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck cancers are a heterogeneous group of neoplasms, affecting an ever increasing global population. Despite advances in diagnostic technology and surgical approaches to manage these conditions, survival rates have only marginally improved and this has occurred mainly in developed countries. Some improvements in survival, however, have been a result of new management and treatment approaches made possible because of our ever-increasing understanding of the molecular pathways triggered in head and neck oncogenesis, and the growing understanding of the abundant heterogeneity of this group of cancers. Some important pathways are common to other solid tumours, but their impact on reducing the burden of head and neck disease has been less than impressive. Other less known and little-explored pathways may hold the key to the development of potential druggable targets. The extensive work carried out over the last decade, mostly utilising next generation sequencing has opened up the development of many novel approaches to head and neck cancer treatment. This paper explores our current understanding of the molecular pathways of this group of tumours and outlines associated druggable targets which are deployed as therapeutic approaches in head and neck oncology with the ultimate aim of improving patient outcomes and controlling the personal and economic burden of head and neck cancer.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Camile S. Farah
- The Australian Centre for Oral Oncology Research & Education, Perth, WA 6009, Australia
- Genomics for Life, Brisbane, QLD 4064, Australia
- Anatomical Pathology, Australian Clinical Labs, Subiaco, WA 6008, Australia
- Peter MacCallum Cancer Centre, Head and Neck Cancer Signalling Laboratory, Melbourne, VIC 3000, Australia
| |
Collapse
|
19
|
Lees A, Sessler T, McDade S. Dying to Survive-The p53 Paradox. Cancers (Basel) 2021; 13:3257. [PMID: 34209840 PMCID: PMC8268032 DOI: 10.3390/cancers13133257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The p53 tumour suppressor is best known for its canonical role as "guardian of the genome", activating cell cycle arrest and DNA repair in response to DNA damage which, if irreparable or sustained, triggers activation of cell death. However, despite an enormous amount of work identifying the breadth of the gene regulatory networks activated directly and indirectly in response to p53 activation, how p53 activation results in different cell fates in response to different stress signals in homeostasis and in response to p53 activating anti-cancer treatments remains relatively poorly understood. This is likely due to the complex interaction between cell death mechanisms in which p53 has been activated, their neighbouring stressed or unstressed cells and the local stromal and immune microenvironment in which they reside. In this review, we evaluate our understanding of the burgeoning number of cell death pathways affected by p53 activation and how these may paradoxically suppress cell death to ensure tissue integrity and organismal survival. We also discuss how these functions may be advantageous to tumours that maintain wild-type p53, the understanding of which may provide novel opportunity to enhance treatment efficacy.
Collapse
Affiliation(s)
- Andrea Lees
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| | | | - Simon McDade
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| |
Collapse
|
20
|
Upregulation of apoptotic protease activating factor-1 expression correlates with anti-tumor effect of taxane drug. Med Oncol 2021; 38:88. [PMID: 34181104 DOI: 10.1007/s12032-021-01532-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance is a multifactorial process involving a variety of mechanisms and genes. Taxane drug class like Docetaxel is not effective for all types' breast cancers and presents a huge clinical challenge. To improve cancer treatment outcome, it is important to distinguish which proteins can kill the cancer cells and whether the expression levels of these proteins affect treatment. Cancer cells are wildly known to be protected from apoptosis, due to low level of apoptotic protease activating factor-1 (Apaf-1) compared with normal cells. Apaf-1 is an essential protein that defines whether cytochrome c released form mitochondria remains stable or degrades. According to this hypothesis, increasing of Apaf-1 expression in MCF7 breast cancer cells was performed and Docetaxel efficacy examined. The immunoassay techniques were used to investigate Apaf-1 and cytochrome c levels, and different apoptosis assay methods applied to better understand the effect of Apaf-1 expression levels in cellular response to apoptotic stimuli by Docetaxel. Our results determined that cytoplasmic cytochrome c level elevated along with increasing Apaf-1 and MCF7 cells were sensitised to Docetaxel, suggesting that loss of Apaf-1 may cause Docetaxel-resistance in breast cancer cells through less apoptosome formation. ROS level increased in cells transfected with Apaf-1 and induced mitochondrial permeability for cytochrome c release, which subsequently promoted apoptosome formation, intrinsic apoptosis and ATP depletion.
Collapse
|
21
|
Common DNA methylation dynamics in endometriod adenocarcinoma and glioblastoma suggest universal epigenomic alterations in tumorigenesis. Commun Biol 2021; 4:607. [PMID: 34021236 PMCID: PMC8140130 DOI: 10.1038/s42003-021-02094-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/10/2021] [Indexed: 02/04/2023] Open
Abstract
Trends in altered DNA methylation have been defined across human cancers, revealing global loss of methylation (hypomethylation) and focal gain of methylation (hypermethylation) as frequent cancer hallmarks. Although many cancers share these trends, little is known about the specific differences in DNA methylation changes across cancer types, particularly outside of promoters. Here, we present a comprehensive comparison of DNA methylation changes between two distinct cancers, endometrioid adenocarcinoma (EAC) and glioblastoma multiforme (GBM), to elucidate common rules of methylation dysregulation and changes unique to cancers derived from specific cells. Both cancers exhibit significant changes in methylation over regulatory elements. Notably, hypermethylated enhancers within EAC samples contain several transcription factor binding site clusters with enriched disease ontology terms highlighting uterine function, while hypermethylated enhancers in GBM are found to overlap active enhancer marks in adult brain. These findings suggest that loss of original cellular identity may be a shared step in tumorigenesis.
Collapse
|
22
|
Valente LJ, Tarangelo A, Li AM, Naciri M, Raj N, Boutelle AM, Li Y, Mello SS, Bieging-Rolett K, DeBerardinis RJ, Ye J, Dixon SJ, Attardi LD. p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. J Cell Biol 2021; 219:152074. [PMID: 32886745 PMCID: PMC7594498 DOI: 10.1083/jcb.201908212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which TP53, the most frequently mutated gene in human cancer, suppresses tumorigenesis remain unclear. p53 modulates various cellular processes, such as apoptosis and proliferation, which has led to distinct cellular mechanisms being proposed for p53-mediated tumor suppression in different contexts. Here, we asked whether during tumor suppression p53 might instead regulate a wide range of cellular processes. Analysis of mouse and human oncogene-expressing wild-type and p53-deficient cells in physiological oxygen conditions revealed that p53 loss concurrently impacts numerous distinct cellular processes, including apoptosis, genome stabilization, DNA repair, metabolism, migration, and invasion. Notably, some phenotypes were uncovered only in physiological oxygen. Transcriptomic analysis in this setting highlighted underappreciated functions modulated by p53, including actin dynamics. Collectively, these results suggest that p53 simultaneously governs diverse cellular processes during transformation suppression, an aspect of p53 function that would provide a clear rationale for its frequent inactivation in human cancer.
Collapse
Affiliation(s)
- Liz J Valente
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Amy Tarangelo
- Department of Biology, Stanford University, Stanford, CA
| | - Albert Mao Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Marwan Naciri
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Anthony M Boutelle
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Yang Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Stephano Spano Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY
| | - Kathryn Bieging-Rolett
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiangbin Ye
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
23
|
Liu P, Zhang Z, Li Y. Relevance of the Pyroptosis-Related Inflammasome Pathway in the Pathogenesis of Diabetic Kidney Disease. Front Immunol 2021; 12:603416. [PMID: 33692782 PMCID: PMC7937695 DOI: 10.3389/fimmu.2021.603416] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD) in many developed and developing countries. Pyroptosis is a recently discovered form of programmed cell death (PCD). With progress in research on DKD, researchers have become increasingly interested in elucidating the role of pyroptosis in DKD pathogenesis. This review focuses on the three pathways of pyroptosis generation: the canonical inflammasome, non-canonical inflammasome, and caspase-3-mediated inflammasome pathways. The molecular and pathophysiological mechanisms of the pyroptosis-related inflammasome pathway in the development of DKD are summarized. Activation of the diabetes-mediated pyroptosis-related inflammasomes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), Toll-like receptor 4 (TLR4), caspase-1, interleukin (IL)-1β, and the IL-18 axis, plays an essential role in DKD lesions. By inhibiting activation of the TLR4 and NLRP3 inflammasomes, the production of caspase-1, IL-1β, and IL-18 is inhibited, thereby improving the pathological changes associated with DKD. Studies using high-glucose-induced cell models, high-fat diet/streptozotocin-induced DKD animal models, and human biopsies will help determine the spatial and temporal expression of DKD inflammatory components. Recent studies have confirmed the relationship between the pyroptosis-related inflammasome pathway and kidney disease. However, these studies are relatively superficial at present, and the mechanism needs further elucidation. Linking these findings with disease activity and prognosis would provide new ideas for DKD research.
Collapse
Affiliation(s)
- Pan Liu
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhengdong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yao Li
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
24
|
Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, Asemi Z. The Therapeutic Potential of Quercetin in Parkinson's Disease: Insights into its Molecular and Cellular Regulation. Curr Drug Targets 2021; 21:509-518. [PMID: 31721700 DOI: 10.2174/1389450120666191112155654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNc). PD is a multifactorial disorder, with several different factors being suggested to play a synergistic pathophysiological role, including oxidative stress, autophagy, underlying pro-inflammatory events and neurotransmitters abnormalities. Overall, PD can be viewed as the product of a complex interaction of environmental factors acting on a given genetic background. The importance of this subject has gained more attention to discover novel therapies to prevent as well as treat PD. According to previous research, drugs used to treat PD have indicated significant limitations. Therefore, the role of flavonoids has been extensively studied in PD treatment. Quercetin, a plant flavonol from the flavonoid group, has been considered as a supplemental therapy for PD. Quercetin has pharmacological functions in PD by controlling different molecular pathways. Although few studies intended to evaluate the basis for the use of quercetin in the context of PD have been conducted so far, at present, there is very little evidence available addressing the underlying mechanisms of action. Various principal aspects of these treatment procedures remain unknown. Here, currently existing knowledge supporting the use of quercetin for the clinical management of PD has been reviewed.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Tooba Hadinezhad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
Liu Y, Zhu C, Tang L, Chen Q, Guan N, Xu K, Guan X. MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int J Biol Sci 2021; 17:178-187. [PMID: 33390842 PMCID: PMC7757029 DOI: 10.7150/ijbs.51458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/12/2020] [Indexed: 12/28/2022] Open
Abstract
As a transcription factor and proto-oncogene, MYC is known to be deregulated in a variety of tumors, including breast cancer. However, no consistent conclusion on the role and mechanism of MYC deregulation during breast cancer carcinogenesis has been formed. Here, we used the UALCAN, bc-GenExMiner, TCGA, cBioportal, STRING and Kaplan-Meier Plotter databases to explore the mRNA expression, prognosis, transcriptional profile changes, signal pathway rewiring and interaction with the cancer stem cells of MYC in breast cancer. We found that the expression of MYC varies in different subtypes of breast cancer, with relatively high frequency in TNBC. As a transcription factor, MYC not only participates in the rewiring of cancer signaling pathways, such as estrogen, WNT, NOTCH and other pathways, but also interacts with cancer stem cells. MYC is significantly positively correlated with breast cancer stem cell markers such as CD44, CD24, and ALDH1. Collectively, our results highlight that MYC plays an important regulatory role in the occurrence of breast cancer, and its amplification can be used as a predictor of diagnosis and prognosis. The interaction between MYC and cancer stem cells may play a crucial role in regulating the initiation and metastasis of breast cancer.
Collapse
Affiliation(s)
- Yiqiu Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lin Tang
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qin Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Nan Guan
- College of Letters and Science, University of California, Los Angeles, 405 Hilgard Avenue, California, 90095, USA
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
26
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Guo J, Han J, Liu J, Wang S. MicroRNA-770-5p contributes to podocyte injury via targeting E2F3 in diabetic nephropathy. ACTA ACUST UNITED AC 2020; 53:e9360. [PMID: 32696822 PMCID: PMC7372943 DOI: 10.1590/1414-431x20209360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/06/2020] [Indexed: 11/21/2022]
Abstract
Diabetic nephropathy (DN) has been identified as the major cause of end-stage
renal disease (ESRD) in most developed countries. MicroRNA-770-5p depletion
could repress high glucose (HG)-triggered apoptosis in podocytes, and
downregulation of E2F transcription factor 3 (E2F3) could facilitate podocyte
injury. Nevertheless, whether E2F3 is involved in miR-770-5p knockdown-mediated
improvement of DN is still unclear. The expression levels of miR-770-5p and E2F3
were detected in HG-treated podocytes by RT-qPCR. The expression levels of E2F3,
apoptosis-related proteins Bcl-2 related X protein (Bax), B-cell lymphoma-2
(Bcl-2), Bad, apoptotic peptidase activating factor 1 (APAF1), C-caspase3,
C-caspase7, and C-caspase9 were detected by western blot assay. The effects of
miR-770-5p and E2F3 on HG-treated podocytes proliferation and apoptosis were
detected by CCK-8 and flow cytometry assays. The interaction between miR-770-5p
and E2F3 was predicted by Targetscan, and then verified by the dual-luciferase
reporter assay. MiR-770-5p was upregulated and E2F3 was downregulated in
HG-treated podocytes. MiR-770-5p inhibited proliferation and promoted apoptosis
and E2F3 promoted proliferation and suppressed apoptosis in HG-treated
podocytes. E2F3 is a target gene of miR-770-5p and it partially abolished the
effect of miR-770-5p in HG-triggered proliferation and apoptosis of podocytes.
MiR-770-5p deficiency blocked HG-induced APAF1/caspase9 pathway via targeting
E2F3 in podocytes. We firstly confirmed that E2F3 was a target of miR-770-5p in
podocytes. These findings suggested that miR-770-5p expedited podocyte injury by
targeting E2F3, and the miR-770-5p/E2F3 axis might represent a pathological
mechanism of DN progression.
Collapse
Affiliation(s)
- Juanjuan Guo
- Department of Geriatric Ward, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, China
| | - Jie Han
- Department of Physical Examination Center, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, China
| | - Jieying Liu
- Department of Geriatric Ward, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, China
| | - Shaoli Wang
- Department of Geriatric Ward, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, China
| |
Collapse
|
28
|
Shah K, Rawal RM. Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities. Curr Drug Metab 2020; 20:1114-1131. [PMID: 31902353 DOI: 10.2174/1389200221666200103111539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a complex disease that has the ability to develop resistance to traditional therapies. The current chemotherapeutic treatment has become increasingly sophisticated, yet it is not 100% effective against disseminated tumours. Anticancer drugs resistance is an intricate process that ascends from modifications in the drug targets suggesting the need for better targeted therapies in the therapeutic arsenal. Advances in the modern techniques such as DNA microarray, proteomics along with the development of newer targeted drug therapies might provide better strategies to overcome drug resistance. This drug resistance in tumours can be attributed to an individual's genetic differences, especially in tumoral somatic cells but acquired drug resistance is due to different mechanisms, such as cell death inhibition (apoptosis suppression) altered expression of drug transporters, alteration in drug metabolism epigenetic and drug targets, enhancing DNA repair and gene amplification. This review also focusses on the epigenetic modifications and microRNAs, which induce drug resistance and contributes to the formation of tumour progenitor cells that are not destroyed by conventional cancer therapies. Lastly, this review highlights different means to prevent the formation of drug resistant tumours and provides future directions for better treatment of these resistant tumours.
Collapse
Affiliation(s)
- Kanisha Shah
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
29
|
Pan J, Attia SA, Subhan MA, Filipczak N, Mendes LP, Li X, Kishan Yalamarty SS, Torchilin VP. Monoclonal Antibody 2C5-Modified Mixed Dendrimer Micelles for Tumor-Targeted Codelivery of Chemotherapeutics and siRNA. Mol Pharm 2020; 17:1638-1647. [PMID: 32233497 DOI: 10.1021/acs.molpharmaceut.0c00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Targeted delivery of chemotherapeutics to tumors has the potential to reach a high dose at the tumor while minimizing systemic exposure. Incorporation of antibody within a micellar platform represents a drug delivery system for tumor-targeted delivery of antitumor agents. Such modified immunomicelles can result in an increased accumulation of antitumor agents and enhanced cytotoxicity toward cancer cells. Here, mixed dendrimer micelles (MDM) composed of PEG2k-DOPE-conjugated generation 4 polyamidoamine dendrimer G4-PAMAM-PEG2k-DOPE and PEG5k-DOPE were coloaded with doxorubicin and siMDR-1. This formulation was further modified with monoclonal antibodies 2C5 with nucleosome-restricted specificity that effectively recognized cancer cells via the cell-surface-bound nucleosomes. Micelles with attached 2C5 antibodies significantly enhanced cellular association and tumor killing in both monolayer and spheroid tumor models as well as in vivo in experimental animals compared to the nontargeted formulations.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sara Aly Attia
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Md Abdus Subhan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Livia Palmerston Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi, China
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia 119146
| |
Collapse
|
30
|
Gu J, Chen Z, Chen X, Wang Z. Heterogeneous nuclear ribonucleoprotein (hnRNPL) in cancer. Clin Chim Acta 2020; 507:286-294. [PMID: 32376323 DOI: 10.1016/j.cca.2020.04.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a type of RNA binding protein that is mainly located in the nucleus. hnRNPL protein, encoded by the gene located at 19q13.2, is an important member of the hnRNP family. In recent years, studies have shown that hnRNPL is highly expressed in a variety of tumors and plays a vital role in tumor progression. hnRNPL promotes various biological processes of tumor cells, including proliferation, migration and invasion. In this review, we discuss the clinical significance of hnRNPL by reviewing the mechanism of hnRNPL in the tumorigenesis of various cancers.
Collapse
Affiliation(s)
- Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhenyao Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
31
|
Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci 2020; 65:202-213. [PMID: 32087570 DOI: 10.1016/j.advms.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/26/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Apelin is an endogenous peptide, which is expressed in a vast board of organs such as the brain, placenta, heart, lungs, kidneys, pancreas, testis, prostate and adipose tissues. The apelin receptor, called angiotensin-like-receptor 1 (APJ), is also expressed in the brain, spleen, placenta, heart, liver, intestine, prostate, thymus, testis, ovary, lungs, kidneys, stomach, and adipose tissue. The apelin/APJ axis is involved in a number of physiological and pathological processes. The apelin expression is increased in various kinds of cancer and the apelin/APJ axis plays a key role in the development of tumors through enhancing angiogenesis, metastasis, cell proliferation and also through the development of cancer stem cells and drug resistance. The apelin also stops the apoptosis of cancer cells. The apelin/APJ axis was considered in this review as an attractive therapeutic target for cancer treatment.
Collapse
|
32
|
Zhang Y, Shao Y, Lv Z, Li C. MYC regulates coelomocytes apoptosis by targeting Bax expression in sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 97:27-33. [PMID: 31843700 DOI: 10.1016/j.fsi.2019.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Myelocytomatosis viral oncogene (MYC), a multifunctional transcription factor, (TF) exerts various physiological and pathological effects on animals. AjMYC could induce coelomocyte apoptosis in Apostichopus japonicus, but the underlying molecular mechanism remains poorly understood. In this study, the promoter sequence of apoptosis regulator Bcl-2-associated X (Bax) was cloned by genomic walking. The AjBax promoter region spaning 1189 bp, containing several transcription factor binding sites, included four potential E-boxes (-1030 bp to -1019 bp, -785 bp to -774 bp, -570 bp to -559 bp, -100 bp to -89 bp), two P53 binding sites (-439 bp to -430 bp, -845 bp to -836 bp), and one NF-κB site (-191 bp to -182 bp). Transient transfection of EPC cells with 5'-deletion constructs linked to luciferase reporter revealed that the region -1189/+454 contributed importantly to the expression of the AjBax. In addition, the AjBax promoter was induced by LPS, PGN or MAN. The four potential MYC binding sites were cotransfected with AjMYC in EPC cell whether AjMYC could activate AjBax expression as a transcriptional factor. Only P1 (-1189/+454) fragment containing the first MYC binding site transfection increased the luciferase activity by 2.08-fold (p < 0.01) compared with the control. The first MYC binding site -1030/-1019 was essential to induce AjBax transcription. Further functional assay indicated that AjBax was significantly induced by 3.54-fold increase (p < 0.01) after AjMYC overexpression in sea cucumber coelomocytes. All our findings supported that AjMYC could regulate coelomocyte apoptosis by directly targeting AjBax expression in A. japonicus.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
33
|
Zhang Y, Shao Y, Lv Z, Zhang W, Zhao X, Guo M, Li C. Molecular cloning and functional characterization of MYC transcription factor in pathogen-challenged Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103487. [PMID: 31472172 DOI: 10.1016/j.dci.2019.103487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Myelocytomatosis viral oncogene (MYC), a transcription factor in the MYC family, plays vital roles in vertebrate innate immunity by regulating related immune gene expressions. In this study, we cloned and characterized an MYC gene from sea cucumber Apostichopus japonicus via RNA-seq and RACE approaches (designated as AjMYC). A 2074 bp fragment representing the full-length cDNA of AjMYC was obtained. This gene includes an open reading frame (ORF) of 1296 bp encoding a polypeptide of 432 amino acid residues with the molecular weight of 48.85 kDa and theoretical pI of 7.22. SMART analysis indicated that AjMYC shares an MYC common HLH motif (354-406 aa) at the C-terminal. Spatial expression analysis revealed that AjMYC is constitutively expressed in all detected tissues with peak expression in the tentacle. Vibrio splendidus-challenged sea cucumber could significantly boost the expression of AjMYC transcripts by a 5.58-fold increase in the first stage. Similarly, 2.75- and 3.23-fold increases were detected in LPS-exposed coelomocytes at 1 and 24 h, respectively. In this condition, coelomocyte apoptotic rate increased from 11.98% to 56.23% at 1 h and to 59.08% at 24 h. MYC inhibitor treatment could not only inhibit the expression of AjMYC and Ajcaspase3, but also depress the coelomocyte apoptosis. Furthermore, AjMYC overexpression in EPC cells for 24 h also promoted the cell apoptosis rate from 21.31% to 45.85%. Collectively, all these results suggested that AjMYC is an important immune factor in coelomocyte apoptosis toward pathogen-challenged sea cucumber.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
34
|
Nowak KL, Edelstein CL. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 2019; 68:109518. [PMID: 31881325 DOI: 10.1016/j.cellsig.2019.109518] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Apoptosis in the cystic epithelium is observed in most rodent models of polycystic kidney disease (PKD) and in human autosomal dominant PKD (ADPKD). Apoptosis inhibition decreases cyst growth, whereas induction of apoptosis in the kidney of Bcl-2 deficient mice increases proliferation of the tubular epithelium and subsequent cyst formation. However, alternative evidence indicates that both induction of apoptosis as well as increased overall rates of apoptosis are associated with decreased cyst growth. Autophagic flux is suppressed in cell, zebra fish and mouse models of PKD and suppressed autophagy is known to be associated with increased apoptosis. There may be a link between apoptosis and autophagy in PKD. The mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2) and caspase pathways that are known to be dysregulated in PKD, are also known to regulate both autophagy and apoptosis. Induction of autophagy in cell and zebrafish models of PKD results in suppression of apoptosis and reduced cyst growth supporting the hypothesis autophagy induction may have a therapeutic role in decreasing cyst growth, perhaps by decreasing apoptosis and proliferation in PKD. Future research is needed to evaluate the effects of direct autophagy inducers on apoptosis in rodent PKD models, as well as the cause and effect relationship between autophagy, apoptosis and cyst growth in PKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
35
|
Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M, Chandaria A, Tomás AR, Canas-Marques R, Henriques V, Galzerano A, Cabral-Teixeira J, Selvendiran K, Kuppusamy P, Carvalho C, Beltran A, Moreno E, Pati UK, Gogna R. HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Res 2019; 47:10212-10234. [PMID: 31538203 PMCID: PMC6821315 DOI: 10.1093/nar/gkz766] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hypoxia is associated with a variety of physiological conditions such as rheumatoid arthritis, ischemia/reperfusion injury, stroke, diabetic vasculopathy, epilepsy and cancer. At the molecular level, hypoxia manifests its effects via activation of HIF-dependent transcription. On the other hand, an important transcription factor p53, which controls a myriad of biological functions, is rendered transcriptionally inactive under hypoxic conditions. p53 and HIF-1α are known to share a mysterious relationship and play an ambiguous role in the regulation of hypoxia-induced cellular changes. Here we demonstrate a novel pathway where HIF-1α transcriptionally upregulates both WT and MT p53 by binding to five response elements in p53 promoter. In hypoxic cells, this HIF-1α-induced p53 is transcriptionally inefficient but is abundantly available for protein-protein interactions. Further, both WT and MT p53 proteins bind and chaperone HIF-1α to stabilize its binding at its downstream DNA response elements. This p53-induced chaperoning of HIF-1α increases synthesis of HIF-regulated genes and thus the efficiency of hypoxia-induced molecular changes. This basic biology finding has important implications not only in the design of anti-cancer strategies but also for other physiological conditions where hypoxia results in disease manifestation.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Taylor M Parker
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Antonio M Palma
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Maria L Peixoto
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Aliya Chandaria
- Biosciences unit, College of Life and Environmental Sciences, University of Exeter, Stocker Road Exeter EX4 4QD, UK
| | - Ana R Tomás
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | | | | | | | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Periannan Kuppusamy
- Department of Radiology and Medicine, 601 Rubin Building, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Carlos Carvalho
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Antonio Beltran
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Uttam K Pati
- Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
36
|
Çıkla-Süzgün P, Küçükgüzel ŞG. Recent Advances in Apoptosis: THE Role of Hydrazones. Mini Rev Med Chem 2019; 19:1427-1442. [PMID: 30968776 DOI: 10.2174/1389557519666190410125910] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/22/2023]
Abstract
The process of programmed cell death in higher eukaryotes (apoptosis), is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered as a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Apoptosis seems to play an important key role in the progression of several human diseases like Alzheimer's disease, Parkinson's disease and many types of cancer. Promotion of apoptosis may be a good approach for the prevention of cancer cell proliferation. In early studies, antitumor compounds have been found to induce the apoptotic process in tumor cells. On the other hand, several hydrazones were reported to have lower toxicity than hydrazides due to the blockage of -NH2 group. Therefore, the design of hydrazones that activate and promote apoptosis is an attractive strategy for the discovery and development of potential anticancer agents. The aim of this review is to provide a general overview of current knowledge and the connection between apoptosis and hydrazone. It is also the guide for the apoptotic activities of new hydrazone derivatives.
Collapse
Affiliation(s)
- Pelin Çıkla-Süzgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydapaşa, 34668, İstanbul, Turkey
| | - Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydapaşa, 34668, İstanbul, Turkey
| |
Collapse
|
37
|
Sun HR, Wang S, Yan SC, Zhang Y, Nelson PJ, Jia HL, Qin LX, Dong QZ. Therapeutic Strategies Targeting Cancer Stem Cells and Their Microenvironment. Front Oncol 2019; 9:1104. [PMID: 31709180 PMCID: PMC6821685 DOI: 10.3389/fonc.2019.01104] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been demonstrated in a variety of tumors and are thought to act as a clonogenic core for the genesis of new tumor growth. This small subpopulation of cancer cells has been proposed to help drive tumorigenesis, metastasis, recurrence and conventional therapy resistance. CSCs show self-renewal and flexible clonogenic properties and help define specific tumor microenvironments (TME). The interaction between CSCs and TME is thought to function as a dynamic support system that fosters the generation and maintenance of CSCs. Investigation of the interaction between CSCs and the TME is shedding light on the biologic mechanisms underlying the process of tumor malignancy, metastasis, and therapy resistance. We summarize recent advances in CSC biology and their environment, and discuss the challenges and future strategies for targeting this biology as a new therapeutic approach.
Collapse
Affiliation(s)
- Hao-Ran Sun
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Can Yan
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Hu-Liang Jia
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43:582-592. [PMID: 30958602 DOI: 10.1002/cbin.11137] [Citation(s) in RCA: 1289] [Impact Index Per Article: 257.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/11/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022]
Abstract
Cell death was once believed to be the result of one of two distinct processes, apoptosis (also known as programmed cell death) or necrosis (uncontrolled cell death); in recent years, however, several other forms of cell death have been discovered highlighting that a cell can die via a number of differing pathways. Apoptosis is characterised by a number of characteristic morphological changes in the structure of the cell, together with a number of enzyme-dependent biochemical processes. The result being the clearance of cells from the body, with minimal damage to surrounding tissues. Necrosis, however, is generally characterised to be the uncontrolled death of the cell, usually following a severe insult, resulting in spillage of the contents of the cell into surrounding tissues and subsequent damage thereof. Failure of apoptosis and the resultant accumulation of damaged cells in the body can result in various forms of cancer. An understanding of the pathways is therefore important in developing efficient chemotherapeutics. It has recently become clear that there exists a number of subtypes of apoptosis and that there is an overlap between apoptosis, necrosis and autophagy. The goal of this review is to provide a general overview of the current knowledge relating to the various forms of cell death, including apoptosis, necrosis, oncosis, pyroptosis and autophagy. This will provide researchers with a summary of the major forms of cell death and allow them to compare and contrast between them.
Collapse
Affiliation(s)
- Mark S D'Arcy
- Hertfordshire International College (HIC), Collage Lane, Hatfield, AL10 9AB, UK
| |
Collapse
|
39
|
CoCl 2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res 2019; 52:12. [PMID: 30876462 PMCID: PMC6419504 DOI: 10.1186/s40659-019-0221-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Hypoxia microenvironment plays a crucial role during tumor progression and it tends to exhibit poor prognosis and make resistant to various conventional therapies. HIF-1α acts as an important transcriptional regulator directly or indirectly associated with genes involved in cell proliferation, angiogenesis, apoptosis and energy metabolism during tumor progression in hypoxic microenvironment. This study was aimed to investigate the expression pattern of the hypoxia associated genes and their association during breast cancer progression under hypoxic microenvironment in breast cancer cells. METHODS Cell proliferation in MCF-7 and MDA-MB-231 cell lines treated with different concentration of CoCl2 was analyzed by MTT assay. Flow cytometry was performed to check cell cycle distribution, whereas cell morphology was examined by phase contrast microscopy in both the cells during hypoxia induction. Expression of hypoxia associated genes HIF-1α, VEGF, p53 and BAX were determined by semiquantitative RT-PCR and real-time PCR. Western blotting was performed to detect the expression at protein level. RESULTS Our study revealed that cell proliferation in CoCl2 treated breast cancer cells were concentration dependent and varies with different cell types, further increase in CoCl2 concentration leads to apoptotic cell death. Further, accumulation of p53 protein in response to hypoxia as compare to normoxia showed that induction of p53 in breast cancer cells is HIF-1α dependent. HIF-1α dependent BAX expression during hypoxia revealed that after certain extent of hypoxia induction, over expression of BAX conquers the effect of anti-apoptotic proteins and ultimately leads to apoptosis in breast cancer cells. CONCLUSION In conclusion our results clearly indicate that CoCl2 simulated hypoxia induce the accumulation of HIF-1α protein and alter the expression of hypoxia associated genes involved in angiogenesis and apoptosis.
Collapse
|
40
|
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 2019; 76:837-863. [PMID: 30430198 PMCID: PMC11105419 DOI: 10.1007/s00018-018-2963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.
| | | | - Maira Smaniotto Cucielo
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| |
Collapse
|
41
|
Cartwright JA, Lucas CD, Rossi AG. Inflammation Resolution and the Induction of Granulocyte Apoptosis by Cyclin-Dependent Kinase Inhibitor Drugs. Front Pharmacol 2019; 10:55. [PMID: 30886578 PMCID: PMC6389705 DOI: 10.3389/fphar.2019.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a necessary dynamic tissue response to injury or infection and it's resolution is essential to return tissue homeostasis and function. Defective or dysregulated inflammation resolution contributes significantly to the pathogenesis of many, often common and challenging to treat human conditions. The transition of inflammation to resolution is an active process, involving the clearance of inflammatory cells (granulocytes), a change of mediators and their receptors, and prevention of further inflammatory cell infiltration. This review focuses on the use of cyclin dependent kinase inhibitor drugs to pharmacologically target this inflammatory resolution switch, specifically through inducing granulocyte apoptosis and phagocytic clearance of apoptotic cells (efferocytosis). The key processes and pathways required for granulocyte apoptosis, recruitment of phagocytes and mechanisms of engulfment are discussed along with the cumulating evidence for cyclin dependent kinase inhibitor drugs as pro-resolution therapeutics.
Collapse
Affiliation(s)
- Jennifer A. Cartwright
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Christopher D. Lucas
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Adriano G. Rossi
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Barakat A, Islam MS, Ghawas HM, Al-Majid AM, El-Senduny FF, Badria FA, Elshaier YAMM, Ghabbour HA. Design and synthesis of new substituted spirooxindoles as potential inhibitors of the MDM2-p53 interaction. Bioorg Chem 2019; 86:598-608. [PMID: 30802707 DOI: 10.1016/j.bioorg.2019.01.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/26/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
Abstract
The designed compounds, 4a-p, were synthesized using a simple and smooth method with an asymmetric 1,3-dipolar reaction as the key step. The chemical structures for all synthesized compounds were elucidated and confirmed by spectral analysis. The molecular complexity and the absolute stereochemistry of 4b and 4e designed analogs were determined by X-ray crystallographic analysis. The anticancer activities of the synthesized compounds were tested against colon (HCT-116), prostate (PC-3), and hepatocellular (HepG-2) cancer cell lines. Molecular modeling revealed that the compound 4d binds through hydrophobic-hydrophobic interactions with the essential amino acids (LEU: 57, GLY: 58, ILE: 61, and HIS: 96) in the p53-binding cleft, as a standard p53-MDM2 inhibitor (6SJ). The mechanism underlying the anticancer activity of compound 4d was further evaluated, and the study showed that compound 4d inhibited colony formation, cell migration, arrested cancer cell growth at G2/M, and induced apoptosis through intrinsic and extrinsic pathways. Transactivation of p53 was confirmed by flow cytometry, where compound 4d increased the level of activated p53 and induced mRNA levels of cell cycle inhibitor, p21.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt.
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hussien Mansur Ghawas
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32958, Egypt
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| |
Collapse
|
43
|
Çelik S, Baysal B, Şen S. Resveratrol Attenuates Benzo(a)pyrene-Induced Dysfunctions, Oxidative Stress and Apoptosis in Pancreatic Beta-Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/abb.2019.1011029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Iwai N, Yasui K, Tomie A, Gen Y, Terasaki K, Kitaichi T, Soda T, Yamada N, Dohi O, Seko Y, Umemura A, Nishikawa T, Yamaguchi K, Moriguchi M, Konishi H, Naito Y, Itoh Y. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol 2018; 53:237-245. [PMID: 29658604 DOI: 10.3892/ijo.2018.4369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
The aberrant expression or alteration of microRNAs (miRNAs/miRs) contributes to the development and progression of cancer. In the present study, the functions of miR-96-5p in hepatocellular carcinoma (HCC) were investigated. It was identified that miR-96-5p expression was significantly upregulated in primary HCC tumors compared with their non-tumorous counterparts. A copy number gain was frequently observed at chromosomal region 7q32.2 in which the MIR96 locus is located, suggesting that gene amplification may be one of the mechanisms by which miR-96-5p expression is increased in HCC. Transfection of miR-96-5p mimic into HCC cells decreased the expression of CASP9, which encodes caspase-9, the essential initiator caspase in the mitochondrial apoptotic pathway, at the mRNA and protein levels. A putative binding site for miR-96-5p was identified in the CASP9 3'-untranslated region, and the results of a luciferase assay indicated that CASP9 is a potential direct target of miR-96-5p. The miR-96-5p mimic increased resistance to doxorubicin- and ultraviolet-induced apoptosis through the decrease in caspase-9 expression in HCC cells. Transfection of miR-96-5p inhibitor enhanced the cytotoxic effect of doxorubicin by increasing caspase-9 expression in the HCC cells, suggesting a synergistic effect between the miR-96-5p inhibitor and doxorubicin. In conclusion, the results of the present study suggest that miR-96-5p, which is frequently upregulated in HCC, inhibits apoptosis by targeting CASP9. Therefore, miR-96-5p may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Tomie
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kei Terasaki
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Soda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Nobuhisa Yamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
45
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
46
|
Phenylpropanoids isolated from Piper sarmentosum Roxb. induce apoptosis in breast cancer cells through reactive oxygen species and mitochondrial-dependent pathways. Chem Biol Interact 2018; 279:210-218. [DOI: 10.1016/j.cbi.2017.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022]
|
47
|
Ronellenfitsch MW, Oh J, Satomi K, Sumi K, Harter PN, Steinbach JP, Felsberg J, Capper D, Voegele C, Durand G, McKay J, Le Calvez‐Kelm F, Schittenhelm J, Klink B, Mittelbronn M, Ohgaki H. CASP9 germline mutation in a family with multiple brain tumors. Brain Pathol 2018; 28:94-102. [PMID: 27935156 PMCID: PMC8028618 DOI: 10.1111/bpa.12471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/26/2016] [Indexed: 11/30/2022] Open
Abstract
We report a novel CASP9 germline mutation that may increase susceptibility to the development of brain tumors. We identified this mutation in a family in which three brain tumors had developed within three generations, including two anaplastic astrocytomas occurring in cousins. The cousins were diagnosed at similar ages (29 and 31 years), and their tumors showed similar histological features. Genetic analysis revealed somatic IDH1 and TP53 mutations in both tumors. However, no germline TP53 mutations were detected, despite the fact that this family fulfills the criteria of Li-Fraumeni-like syndrome. Whole exome sequencing revealed a germline stop-gain mutation (R65X) in the CASP9 gene, which encodes caspase-9, a key molecule for the p53-dependent mitochondrial death pathway. This mutation was also detected in DNA extracted from blood samples from the two siblings who were each a parent of one of the affected cousins. Caspase-9 immunohistochemistry showed the absence of caspase-9 immunoreactivity in the anaplastic astrocytomas and normal brain tissues of the cousins. These observations suggest that CASP9 germline mutations may have played a role at least in part to the susceptibility of development of gliomas in this Li-Fraumeni-like family lacking a TP53 germline mutation.
Collapse
Affiliation(s)
- Michael W. Ronellenfitsch
- Senckenberg Institute of Neurooncology, University Hospital FrankfurtFrankfurt am Main, Germany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ji‐Eun Oh
- International Agency for Research on Cancer (IARC)LyonFrance
| | - Kaishi Satomi
- International Agency for Research on Cancer (IARC)LyonFrance
| | - Koichiro Sumi
- International Agency for Research on Cancer (IARC)LyonFrance
| | - Patrick N. Harter
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Neurology (Edinger Institute), Goethe UniversityFrankfurt am MainGermany
| | - Joachim P. Steinbach
- Senckenberg Institute of Neurooncology, University Hospital FrankfurtFrankfurt am Main, Germany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jörg Felsberg
- Department of NeuropathologyUniversity of DüsseldorfDüsseldorf, Germany
| | - David Capper
- Department of NeuropathologyUniversity of HeidelbergHeidelberg, Germany
- Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Geoffroy Durand
- International Agency for Research on Cancer (IARC)LyonFrance
| | - James McKay
- International Agency for Research on Cancer (IARC)LyonFrance
| | | | - Jens Schittenhelm
- Institute of Pathology and Neuropathology, Eberhard‐Karls University of TuebingenTuebingen, Germany
| | - Barbara Klink
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of Medicine Carl Gustav Carus, TU DresdenInstitute for Clinical Genetics, DresdenGermany
- German Cancer Consortium (DKTK)DresdenGermany
- National Center for Tumor Diseases (NCT)DresdenGermany
| | - Michel Mittelbronn
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Neurology (Edinger Institute), Goethe UniversityFrankfurt am MainGermany
| | - Hiroko Ohgaki
- International Agency for Research on Cancer (IARC)LyonFrance
| |
Collapse
|
48
|
Hauck L, Stanley-Hasnain S, Fung A, Grothe D, Rao V, Mak TW, Billia F. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death. PLoS One 2017; 12:e0189861. [PMID: 29267372 PMCID: PMC5739440 DOI: 10.1371/journal.pone.0189861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, Toronto, Ontario, Canada
| | | | - Amelia Fung
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, UHN, Toronto, Ontario, Canada
| | - Tak W. Mak
- Campbell Family Cancer Research Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Research Institute, Toronto, Ontario, Canada
- Division of Cardiology, University Health Network (UHN), Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- * E-mail:
| |
Collapse
|
49
|
Li C, Jeong Y, Kim M. Mammea longifolia Planch. and Triana Fruit Extract Induces Cell Death in the Human Colon Cancer Cell Line, SW480, via Mitochondria-Related Apoptosis and Activation of p53. J Med Food 2017; 20:485-490. [PMID: 28504908 DOI: 10.1089/jmf.2016.3865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The methanol extract of Mammea longifolia Planch. and Triana (M. longifolia) fruit was studied for anticancer and apoptotic effects in the SW480 colon cancer cell line. The apoptotic and necrotic effects of M. longifolia were detected by 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H tetrazolium bromide (MTT) and lactate dehydrogenase assays, respectively. One hundred μg/mL of the extract killed ∼82.4% of the cells; however, 2% of the death was related to necrosis. The morphological changes in M. longifolia-stimulated SW480 cells were observed directly by light microscopy. DNA fragmentation assay was employed to analyze the apoptosis induction. M. longifolia-treated SW480 cells promoted the expression of Bax, Bad, cleaved-poly-ADP-ribose polymerase (PARP), and p53 proteins and decreased the protein expression of pro-caspases Bcl-2 and Bcl-XL. The ratios of Bax/Bcl-2 and cleaved-PARP/PARP, predictive markers of apoptotic stimuli in cancer, increased and may play an important role in regulating the progression of apoptosis. The results suggested that M. longifolia induces cell death via mitochondrial-related apoptosis in SW480 cells.
Collapse
Affiliation(s)
- Chunmei Li
- 1 College of Tourism and Culinary Science, Yangzhou University , Yangzhou, China
| | - Yoonhwa Jeong
- 2 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea.,3 Department of Food Science and Nutrition, Dankook University , Cheonan, Korea
| | - Misook Kim
- 2 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea.,3 Department of Food Science and Nutrition, Dankook University , Cheonan, Korea
| |
Collapse
|
50
|
Sun Q, Wang J, Li Y, Zhuang J, Zhang Q, Sun X, Sun D. Synthesis and evaluation of cytotoxic activities of artemisinin derivatives. Chem Biol Drug Des 2017; 90:1019-1028. [DOI: 10.1111/cbdd.13016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/15/2017] [Accepted: 04/23/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Sun
- Marine College; Shandong University at Weihai; Weihai China
| | - Jin Wang
- Marine College; Shandong University at Weihai; Weihai China
| | - Yao Li
- Marine College; Shandong University at Weihai; Weihai China
| | | | - Qian Zhang
- Marine College; Shandong University at Weihai; Weihai China
| | - Xiao Sun
- Marine College; Shandong University at Weihai; Weihai China
| | - Dequn Sun
- Marine College; Shandong University at Weihai; Weihai China
| |
Collapse
|