1
|
Niu Y, Ma X, Lu G, Zhao D, Ma Z. Efficient Toluene Decontamination and Resource Utilization through Ni/Al 2O 3 Catalytic Cracking. Molecules 2024; 29:4868. [PMID: 39459234 PMCID: PMC11510176 DOI: 10.3390/molecules29204868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Volatile organic compounds (VOCs), particularly aromatic hydrocarbons, pose significant environmental risks due to their toxicity and role in the formation of secondary pollutants. This study explores the potential of catalytic pyrolysis as an innovative strategy for the effective remediation and conversion of aromatic hydrocarbon pollutants. The research investigates the high-efficiency removal and resource recovery of the VOC toluene using a Ni/Al2O3 catalyst. The Ni/Al2O3 catalyst was synthesized using the impregnation method and thoroughly characterized. Various analytical techniques, including scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption isotherms, were employed to characterize the Al2O3 support, NiO/Al2O3 precursor, Ni/Al2O3 catalyst, and the resulting solid carbon. Results indicate that Ni predominantly occupies the pores of γ-Al2O3, forming nano/microparticles and creating interstitial pores through aggregation. The catalyst demonstrated high activity in the thermochemical decomposition of toluene into solid carbon materials and COx-Free hydrogen, effectively addressing toluene pollution while recovering valuable resources. Optimal conditions were identified, revealing that a moderate temperature of 700 °C is most favorable for the catalytic process. Under optimized conditions, the Ni/Al2O3 catalyst removed 1328 mg/g of toluene, generated 915 mg/g of carbon material, and produced 1234 mL/g of hydrogen. The prepared carbon material, characterized by its mesoporous structure and high specific surface area graphite nanofibers, holds potential application value in adsorption, catalysis, and energy storage. This study offers a promising approach for the purification and resource recovery of aromatic volatile organic compounds, contributing to the goals of a circular economy and green chemistry.
Collapse
Affiliation(s)
- Yifei Niu
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.N.); (G.L.); (D.Z.)
| | - Xiaolong Ma
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guangyi Lu
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.N.); (G.L.); (D.Z.)
| | - Dandan Zhao
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.N.); (G.L.); (D.Z.)
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.N.); (G.L.); (D.Z.)
| |
Collapse
|
2
|
Keshri S, Sudha S, Saxena AKS. State-of-the-art review on hydrogen's production, storage, and potential as a future transportation fuel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34098-9. [PMID: 38951393 DOI: 10.1007/s11356-024-34098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Global energy consumption is expected to reach 911 BTU by the end of 2050 as a result of rapid urbanization and industrialization. Hydrogen is increasingly recognized as a clean and reliable energy vector for decarbonization and defossilization across various sectors. Projections indicate a significant rise in global demand for hydrogen, underscoring the need for sustainable production, efficient storage, and utilization. In this state-of-the-art review, we explore hydrogen production methods, compare their environmental impacts through life cycle analysis, delve into geological storage options, and discuss hydrogen's potential as a future transportation fuel. Combining electrolysis to make hydrogen and storing it in porous underground materials like salt caverns and geological reservoirs looks like a good way to balance out the variable supply of renewable energy and meet the demand at peak times. Hydrogen is a key component of our sustainable economy, and this article gives a broad overview of the process from production to consumption, touching on technical, economic, and environmental concerns along the way. We have made an attempt in this paper to compile different methods for the production of hydrogen and its storage, the challenges faced by current methods in the manufacturing of hydrogen gas, and the role of hydrogen in the future. This review paper will serve as a very good reference for hydrogen system engineering applications. The paper concludes with some suggestions for future research to help improve the technological efficiency of certain production methods, all with the goal of scaling up the hydrogen economy.
Collapse
Affiliation(s)
- Sonanki Keshri
- Department of Chemistry, Jyoti Nivas College Autonomous, Bengaluru, Karnataka, 560095, India.
| | - Suriyanarayanan Sudha
- Department of Chemistry, Jyoti Nivas College Autonomous, Bengaluru, Karnataka, 560095, India
| | | |
Collapse
|
3
|
Dehghani MR, Ghazi SF, Kazemzadeh Y. Interfacial tension and wettability alteration during hydrogen and carbon dioxide storage in depleted gas reservoirs. Sci Rep 2024; 14:11594. [PMID: 38773209 PMCID: PMC11109265 DOI: 10.1038/s41598-024-62458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
The storage of CO2 and hydrogen within depleted gas and oil reservoirs holds immense potential for mitigating greenhouse gas emissions and advancing renewable energy initiatives. However, achieving effective storage necessitates a thorough comprehension of the dynamic interplay between interfacial tension and wettability alteration under varying conditions. This comprehensive review investigates the multifaceted influence of several critical parameters on the alterations of IFT and wettability during the injection and storage of CO2 and hydrogen. Through a meticulous analysis of pressure, temperature, treatment duration, pH levels, the presence of nanoparticles, organic acids, anionic surfactants, and rock characteristics, this review elucidates the intricate mechanisms governing the changes in IFT and wettability within reservoir environments. By synthesizing recent experimental and theoretical advancements, this review aims to provide a holistic understanding of the processes underlying IFT and wettability alteration, thereby facilitating the optimization of storage efficiency and the long-term viability of depleted reservoirs as carbon capture and storage or hydrogen storage solutions. The insights gleaned from this analysis offer invaluable guidance for researchers, engineers, and policymakers engaged in harnessing the potential of depleted reservoirs for sustainable energy solutions and environmental conservation. This synthesis of knowledge serves as a foundational resource for future research endeavors aimed at enhancing the efficacy and reliability of CO2 and hydrogen storage in depleted reservoirs.
Collapse
Affiliation(s)
- Mohammad Rasool Dehghani
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Seyede Fatemeh Ghazi
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Yousef Kazemzadeh
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
| |
Collapse
|
4
|
Liu S, Tang X, He C, Wang T, Shang L, Wang M, Yang S, Tang Z, Ju L. Sc-Modified C 3N 4 Nanotubes for High-Capacity Hydrogen Storage: A Theoretical Prediction. Molecules 2024; 29:1966. [PMID: 38731458 PMCID: PMC11085168 DOI: 10.3390/molecules29091966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Utilizing hydrogen as a viable substitute for fossil fuels requires the exploration of hydrogen storage materials with high capacity, high quality, and effective reversibility at room temperature. In this study, the stability and capacity for hydrogen storage in the Sc-modified C3N4 nanotube are thoroughly examined through the application of density functional theory (DFT). Our finding indicates that a strong coupling between the Sc-3d orbitals and N-2p orbitals stabilizes the Sc-modified C3N4 nanotube at a high temperature (500 K), and the high migration barrier (5.10 eV) between adjacent Sc atoms prevents the creation of metal clusters. Particularly, it has been found that each Sc-modified C3N4 nanotube is capable of adsorbing up to nine H2 molecules, and the gravimetric hydrogen storage density is calculated to be 7.29 wt%. It reveals an average adsorption energy of -0.20 eV, with an estimated average desorption temperature of 258 K. This shows that a Sc-modified C3N4 nanotube can store hydrogen at low temperatures and harness it at room temperature, which will reduce energy consumption and protect the system from high desorption temperatures. Moreover, charge donation and reverse transfer from the Sc-3d orbital to the H-1s orbital suggest the presence of the Kubas effect between the Sc-modified C3N4 nanotube and H2 molecules. We draw the conclusion that a Sc-modified C3N4 nanotube exhibits exceptional potential as a stable and efficient hydrogen storage substrate.
Collapse
Affiliation(s)
- Shuli Liu
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (S.L.); (C.H.); (T.W.); (L.S.); (M.W.); (Z.T.)
| | - Xiao Tang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China;
| | - Chang He
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (S.L.); (C.H.); (T.W.); (L.S.); (M.W.); (Z.T.)
| | - Tingting Wang
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (S.L.); (C.H.); (T.W.); (L.S.); (M.W.); (Z.T.)
| | - Liying Shang
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (S.L.); (C.H.); (T.W.); (L.S.); (M.W.); (Z.T.)
| | - Mengyuan Wang
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (S.L.); (C.H.); (T.W.); (L.S.); (M.W.); (Z.T.)
| | - Shenbo Yang
- Hongzhiwei Technology (Shanghai) Co., Ltd., 1599 Xinjinqiao Road, Pudong, Shanghai 201206, China;
| | - Zhenjie Tang
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (S.L.); (C.H.); (T.W.); (L.S.); (M.W.); (Z.T.)
| | - Lin Ju
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (S.L.); (C.H.); (T.W.); (L.S.); (M.W.); (Z.T.)
| |
Collapse
|
5
|
Narayan J, Bezborah K. Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC Adv 2024; 14:13413-13444. [PMID: 38660531 PMCID: PMC11041312 DOI: 10.1039/d3ra07072g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Recently, graphene and graphene-based nanomaterials have emerged as advanced carbon functional materials with specialized unique electronic, optical, mechanical, and chemical properties. These properties have made graphene an exceptional material for a wide range of promising applications in biological and non-biological fields. The present review illustrates the structural modifications of pristine graphene resulting in a wide variety of derivatives. The significance of substitutional doping with alkali-metals, alkaline earth metals, and III-VII group elements apart from the transition metals of the periodic table is discussed. The paper reviews various chemical and physical preparation routes of graphene, its derivatives and graphene-based nanocomposites at room and elevated temperatures in various solvents. The difficulty in dispersing it in water and organic solvents make it essential to functionalize graphene and its derivatives. Recent trends and advances are discussed at length. Controlled reduction reactions in the presence of various dopants leading to nanocomposites along with suitable surfactants essential to enhance its potential applications in the semiconductor industry and biological fields are discussed in detail.
Collapse
Affiliation(s)
- Jyoti Narayan
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| | - Kangkana Bezborah
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| |
Collapse
|
6
|
Zou F, Gu Z, Perez-Aguilar JM, Luo Y. Molecular dynamics simulations suggest the potential toxicity of fluorinated graphene to HP35 protein via unfolding the α-helix structure. Sci Rep 2024; 14:9168. [PMID: 38649777 PMCID: PMC11035638 DOI: 10.1038/s41598-024-59780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Fluorinated graphene, a two-dimensional nanomaterial composed of three atomic layers, a central carbon layer sandwiched between two layers of fluorine atoms, has attracted considerable attention across various fields, particularly for its potential use in biomedical applications. Nonetheless, scant effort has been devoted to assessing the potential toxicological implications of this nanomaterial. In this study, we scrutinize the potential impact of fluorinated graphene on a protein model, HP35 by utilizing extensive molecular dynamics (MD) simulation methods. Our MD results elucidate that upon adsorption to the nanomaterial, HP35 undergoes a denaturation process initiated by the unraveling of the second helix of the protein and the loss of the proteins hydrophobic core. In detail, substantial alterations in various structural features of HP35 ensue, including alterations in hydrogen bonding, Q value, and RMSD. Subsequent analyses underscore that hydrophobic and van der Waals interactions (predominant), alongside electrostatic energy (subordinate), exert influence over the adsorption of HP35 on the fluorinated graphene surface. Mechanistic scrutiny attests that the unrestrained lateral mobility of HP35 on the fluorinated graphene nanomaterial primarily causes the exposure of HP35's hydrophobic core, resulting in the eventual structural denaturation of HP35. A trend in the features of 2D nanostructures is proposed that may facilitate the denaturation process. Our findings not only substantiate the potential toxicity of fluorinated graphene but also unveil the underlying molecular mechanism, which thereby holds significance for the prospective utilization of such nanomaterials in the field of biomedicine.
Collapse
Affiliation(s)
- Fangrong Zou
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), 72570, University City, Puebla, Mexico
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
7
|
Luo Y, Gu Z, Chen H, Huang Y. Potential toxicity of graphene (oxide) quantum dots via directly covering the active site of anterior gradient homolog 2 protein. Sci Rep 2024; 14:7091. [PMID: 38528032 PMCID: PMC10963778 DOI: 10.1038/s41598-024-57677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Graphene quantum dots (GQDs) have attracted significant attention in biomedicine, while extensive investigations have revealed a reverse regarding the potential biotoxicity of GQDs. In order to supplementing the understanding of the toxicity profile of GQDs, this study employs a molecular dynamics (MD) simulation approach to systematically investigate the potential toxicity of both GQDs and Graphene Oxide Quantum Dots (GOQDs) on the Anterior Gradient Homolog 2 (AGR2) protein, a key protein capable of protecting the intestine. We construct two typical simulation systems, in which an AGR2 protein is encircled by either GQDs or GOQDs. The MD results demonstrate that both GQDs and GOQDs can directly make contact with and even cover the active site (specifically, the Cys81 amino acid) of the AGR2 protein. This suggests that GQDs and GOQDs have the capability to inhibit or interfere with the normal biological interaction of the AGR2 active site with its target protein. Thus, GQDs and GOQDs exhibit potential detrimental effects on the AGR2 protein. Detailed analyses reveal that GQDs adhere to the Cys81 residue due to van der Waals (vdW) interaction forces, whereas GOQDs attach to the Cys81 residue through a combination of vdW (primary) and Coulomb (secondary) interactions. Furthermore, GQDs aggregation typically adsorb onto the AGR2 active site, while GOQDs adsorb to the active site of AGR2 one by one. Consequently, these findings shed new light on the potential adverse impact of GQDs and GOQDs on the AGR2 protein via directly covering the active site of AGR2, providing valuable molecular insights for the toxicity profile of GQD nanomaterials.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China.
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Hailiang Chen
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China
| | - Yaoxing Huang
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China.
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
8
|
Luo Y, Li J, Gu Z, Huang Y. Graphene quantum dots blocking the channel egresses of cytochrome P450 enzyme (CYP3A4) reveals potential toxicity. Sci Rep 2023; 13:21091. [PMID: 38036640 PMCID: PMC10689800 DOI: 10.1038/s41598-023-48618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Graphene quantum dots (GQDs) have garnered significant attention, particularly in the biomedical domain. However, extensive research reveals a dichotomy concerning the potential toxicity of GQDs, presenting contrasting outcomes. Therefore, a comprehensive understanding of GQD biosafety necessitates a detailed supplementation of their toxicity profile. In this study, employing a molecular dynamics (MD) simulation approach, we systematically investigate the potential toxicity of GQDs on the CYP3A4 enzyme. We construct two distinct simulation systems, wherein a CYP3A4 protein is enveloped by either GQDs or GOQDs (graphene oxide quantum dots). Our results elucidate that GQDs come into direct contact with the bottleneck residues of Channels 2a and 2b of CYP3A4. Furthermore, GQDs entirely cover the exits of Channels 2a and 2b, implying a significant hindrance posed by GQDs to these channels and consequently leading to toxicity towards CYP3A4. In-depth analysis reveals that the adsorption of GQDs to the exits of Channels 2a and 2b is driven by a synergistic interplay of hydrophobic and van der Waals (vdW) interactions. In contrast, GOQDs only partially obstruct Channel 1 of CYP3A4, indicating a weaker influence on CYP3A4 compared to GQDs. Our findings underscore the potential deleterious impact of GQDs on the CYP3A4 enzyme, providing crucial molecular insights into GQD toxicology.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| | - Jinjun Li
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Yaoxing Huang
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong Province, China.
| |
Collapse
|
9
|
Alosime EM. A review on surface functionalization of carbon nanotubes: methods and applications. NANOSCALE RESEARCH LETTERS 2023; 18:12. [PMID: 36779998 DOI: 10.1186/s11671-023-03789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/26/2022] [Indexed: 05/24/2023]
Abstract
In this review, the radiolytic and physical methods that can be used for the functionalization of carbon nanotubes (CNTs) and their applications as a support for fuel cell electrodes are described. Alloy nanoparticles have also been examined. For example, Pt-Ru nanoparticles were deposited onto a functionalized multiwalled carbon nanotube (MWNT) composite by reducing metal ions (e.g., Pt4+ and Ru3+) here using γ-irradiation and, hence, creating Pt-Ru/MWNT catalysts. The morphology, size, and composition of these Pt-Ru/MWNT catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis, respectively. The efficiency of the Pt-Ru/MWNT catalyst was examined for use in the oxidation of carbon monoxide (CO) and methanol. The results of stripping voltammetry for the adsorbed CO on the Pt-Ru/MWNT catalyst electrodes indicated that CO oxidation was energetically favorable at these electrodes. Thus, Pt-Ru/MWNT catalysts were found to be suitable for electrode assembly in direct methanol fuel cells.
Collapse
Affiliation(s)
- Eid M Alosime
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia.
| |
Collapse
|
10
|
Pham TKN, Li S, Brown JJ. Interaction energy and isosteric heat of adsorption between hydrogen and magnesium diboride. Phys Chem Chem Phys 2023; 25:4255-4265. [PMID: 36683432 DOI: 10.1039/d2cp04730f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen storage materials form a crucial research topic for future energy utilization employing hydrogen and among those of interest magnesium diboride (MgB2) has shown its prevalence. In this study, a first-principles analytical adsorption model of one hydrogen molecule in the vicinity of various magnesium diboride crystal surfaces was developed in order to obtain surface thermodynamic properties as a function of molecular and lattice properties. Henry's law constant (KH) and isosteric heat of adsorption (ΔHads) indicators of the affinity between a gaseous molecule and a solid surface are thus calculated. The results in this paper not only address questions pertaining to the first stage of hydrogen storage processes but also advance the understanding of physisorption thermodynamics of a neutral molecule (H2) coming in contact with a layered metallic-like surface (MgB2). Although the model is built from a framework of classical calculations, quantum effects are incorporated as the fractional charge of the ions on the free surfaces, which is essential for the calculation of analytic thermodynamic values that approximate calculations from other methods. To benchmark our theoretical models, periodic density functional calculations were performed to determine the interactions between H2 and different MgB2 surfaces from first-principles. By considering both the top and sublayers of MgB2 in calculating interaction energy, we have analytically and computationally calculated the interaction energies of H2 molecules and MgB2's terminated planes, and witnessed the strong dependence of interaction energies on surface charges. We have also observed a dipole flipping phenomenon which explains the discontinuity seen in the interaction energy graph of Mg(0001). Both analytical and computational results showed heat of adsorption at zero coverage varying at a very low range (<7 kJ mol-1).
Collapse
Affiliation(s)
- Thi Kieu Ngan Pham
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Hawai'i 96822, USA.
| | - Sichi Li
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Joseph J Brown
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Hawai'i 96822, USA.
| |
Collapse
|
11
|
Sharifian M, Kern W, Riess G. A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers (Basel) 2022; 14:4512. [PMID: 36365506 PMCID: PMC9654451 DOI: 10.3390/polym14214512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 10/29/2023] Open
Abstract
Globally, reducing CO2 emissions is an urgent priority. The hydrogen economy is a system that offers long-term solutions for a secure energy future and the CO2 crisis. From hydrogen production to consumption, storing systems are the foundation of a viable hydrogen economy. Each step has been the topic of intense research for decades; however, the development of a viable, safe, and efficient strategy for the storage of hydrogen remains the most challenging one. Storing hydrogen in polymer-based carriers can realize a more compact and much safer approach that does not require high pressure and cryogenic temperature, with the potential to reach the targets determined by the United States Department of Energy. This review highlights an outline of the major polymeric material groups that are capable of storing and releasing hydrogen reversibly. According to the hydrogen storage results, there is no optimal hydrogen storage system for all stationary and automotive applications so far. Additionally, a comparison is made between different polymeric carriers and relevant solid-state hydrogen carriers to better understand the amount of hydrogen that can be stored and released realistically.
Collapse
Affiliation(s)
- Mohammadhossein Sharifian
- Montanuniversität Leoben, Chair in Chemistry of Polymeric Materials, Otto-Glöckel-Strasse 2, A-8700 Leoben, Austria
| | | | | |
Collapse
|
12
|
Carbon nanotubes for production and storage of hydrogen: challenges and development. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhang W, Li HY, Xu CG, Huang ZY, Li XS. Research progress on the effects of nanoparticles on gas hydrate formation. RSC Adv 2022; 12:20227-20238. [PMID: 35919611 PMCID: PMC9277519 DOI: 10.1039/d2ra03376c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Gas hydrate has great application potential in gas separation, energy storage, seawater desalination, etc. However, the intensity of mass and heat transfer is not enough to meet the needs of efficient hydrate synthesis. Nanoparticles, different from other liquid chemical additives, are considered as effective additives to promote hydrate formation due to their rich specific surface area and excellent thermal conductivity. This work summarizes the effect of the nanoparticles on the thermodynamics and kinetics of hydrate formation. And also, this work probes into the mechanism of the effect of the nanoparticles on the formation of hydrate as well as provides some suggestions for future research. It is found that it's difficult for nanoparticles to effectively promote the formation of the gas hydrate without the use of surfactants, because the adhesion characteristics of the nanoparticles make them easily agglomerate or even agglomerate in solution. In addition, at present, the research on the influence of nanoparticles on the formation and decomposition of natural gas hydrate is still very fragmented, and the micro mechanism of the influence is not clear, which requires more systematic and specific research in the future. At the same time, the development of nanoparticles that can promote the formation of natural gas hydrate should also become the focus of future research. The use of nanoparticles and their effects on thermodynamics and kinetics during the hydrate formation process is summarized. For their application in drilling fluid and cement slurry, it is found nanoparticles must be used in conjunction with surfactants to be effective.![]()
Collapse
Affiliation(s)
- Wei Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230023, Anhui Province, China
| | - Hao-Yang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Gang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong Province, China
| | - Zhuo-Yi Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230023, Anhui Province, China
| | - Xiao-Sen Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong Province, China
| |
Collapse
|
14
|
Ma H, Sun Z, Xue Z, Zhang C, Chen Z. A systemic review of hydrogen supply chain in energy transition. FRONTIERS IN ENERGY 2022; 17:102-122. [PMCID: PMC9999347 DOI: 10.1007/s11708-023-0861-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 12/13/2024]
Abstract
Targeting the net-zero emission (NZE) by 2050, the hydrogen industry is drastically developing in recent years. However, the technologies of hydrogen upstream production, midstream transportation and storage, and downstream utilization are facing obstacles. In this paper, the development of hydrogen industry from the production, transportation and storage, and sustainable economic development perspectives were reviewed. The current challenges and future outlooks were summarized consequently. In the upstream, blue hydrogen is dominating the current hydrogen supply, and an implementation of carbon capture and sequestration (CCS) can raise its cost by 30%. To achieve an economic feasibility, green hydrogen needs to reduce its cost by 75% to approximately 2 $/kg at the large scale. The research progress in the midterm sector is still in a preliminary stage, where experimental and theoretical investigations need to be conducted in addressing the impact of embrittlement, contamination, and flammability so that they could provide a solid support for material selection and large-scale feasibility studies. In the downstream utilization, blue hydrogen will be used in producing value-added chemicals in the short-term. Over the long-term, green hydrogen will dominate the market owing to its high energy intensity and zero carbon intensity which provides a promising option for energy storage. Technologies in the hydrogen industry require a comprehensive understanding of their economic and environmental benefits over the whole life cycle in supporting operators and policymakers.
Collapse
Affiliation(s)
- Haoming Ma
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Zhe Sun
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Zhenqian Xue
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Chi Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
15
|
Wu D, Li J, Yao L, Xie R, Peng Z. An Electrochemical Ethylamine/Acetonitrile Redox Method for Ambient Hydrogen Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55292-55298. [PMID: 34780157 DOI: 10.1021/acsami.1c20498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen storage presents a major difficulty in the development of hydrogen economy. Herein, we report a new electrochemical ethylamine/acetonitrile redox method for hydrogen storage with an 8.9 wt % theoretical storage capacity under ambient conditions. This method exhibits low onset overpotentials of 0.19 V in CH3CH2NH2 dehydrogenation to CH3CN and 0.09 V in CH3CN hydrogenation to CH3CH2NH2 using commercial Pt black catalyst. By assembling a full cell that couples CH3CH2NH2/CH3CN redox reactions with hydrogen evolution and oxidation reactions, we demonstrate a complete hydrogen storage cycle at fast rates, with only 52.5 kJ/mol energy consumption for H2 uptake and release at a rate of 1 L/m2·h. This method provides a viable hydrogen storage strategy that meets the 2025 Department of Energy onboard hydrogen storage target.
Collapse
Affiliation(s)
- Dezhen Wu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, 44325, United States
| | - Jialu Li
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, 44325, United States
| | - Libo Yao
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, 44325, United States
| | - Rongxuan Xie
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, 44325, United States
| | - Zhenmeng Peng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, 44325, United States
| |
Collapse
|
16
|
Schiller A, Meyer M, Martini P, Zappa F, Krasnokutski SA, Calvo F, Scheier P. Adsorption of Helium on Small Cationic PAHs: Influence of Hydrocarbon Structure on the Microsolvation Pattern. J Phys Chem A 2021; 125:7813-7824. [PMID: 34436885 PMCID: PMC8450901 DOI: 10.1021/acs.jpca.1c05150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/11/2021] [Indexed: 11/29/2022]
Abstract
The adsorption of up to ∼100 helium atoms on cations of the planar polycyclic aromatic hydrocarbons (PAHs) anthracene, phenanthrene, fluoranthene, and pyrene was studied by combining helium nanodroplet mass spectrometry with classical and quantum computational methods. Recorded time-of-flight mass spectra reveal a unique set of structural features in the ion abundance as a function of the number of attached helium atoms for each of the investigated PAHs. Path-integral molecular dynamics simulations were used with a polarizable potential to determine the underlying adsorption patterns of helium around the studied PAH cations and in good general agreement with the experimental data. The calculated structures of the helium-PAH complexes indicate that the arrangement of adsorbed helium atoms is highly sensitive toward the structure of the solvated PAH cation. Closures of the first solvation shell around the studied PAH cations are suggested to lie between 29 and 37 adsorbed helium atoms depending on the specific PAH cation. Helium atoms are found to preferentially adsorb on these PAHs following the 3 × 3 commensurate pattern common for graphitic surfaces, in contrast to larger carbonaceous molecules like corannulene, coronene, and fullerenes that exhibit a 1 × 1 commensurate phase.
Collapse
Affiliation(s)
- Arne Schiller
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Miriam Meyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Martini
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Fabio Zappa
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Serge A. Krasnokutski
- Laboratory
Astrophysics Group of the MPI for Astronomy at the University of Jena, Helmholtzweg 3, D-07743 Jena, Germany
| | - Florent Calvo
- CNRS,
LiPhy, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
17
|
Firlej L, Kuchta B, Walczak K, Journet C. Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons-Numerical and Experimental Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11092173. [PMID: 34578489 PMCID: PMC8472433 DOI: 10.3390/nano11092173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022]
Abstract
Nanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world’s energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons, then we discuss possible ways to improve their storage performance. We focus on two fundamental parameters determining the storage (the surface accessible for adsorption and hydrogen adsorption energy). We define numerically the values nanoporous carbons have to show to satisfy mobile application requirements at pressures lower than 120 bar. Possible necessary modifications of the topology and chemical compositions of carbon nanostructures are proposed and discussed. We indicate that pore wall fragmentation (nano-size graphene scaffolds) is a partial solution only, and chemical modifications of the carbon pore walls are required. The positive effects (and their limits) of the carbon substitutions by B and Be atoms are described. The experimental ‘proof of concept’ of the proposed strategies is also presented. We show that boron substituted nanoporous carbons prepared by a simple arc-discharge technique show a hydrogen adsorption energy twice as high as their pure carbon analogs. These preliminary results justify the continuation of the joint experimental and numerical research effort in this field.
Collapse
Affiliation(s)
- Lucyna Firlej
- Laboratoire Charles Coulomb, University of Montpellier-CNRS, 34095 Montpellier, France;
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Laboratoire Madirel, University Aix Marseille-CNRS, 13396 Marseille, France;
- Correspondence:
| | - Bogdan Kuchta
- Laboratoire Madirel, University Aix Marseille-CNRS, 13396 Marseille, France;
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50370 Wroclaw, Poland
| | - Katarzyna Walczak
- Laboratoire Charles Coulomb, University of Montpellier-CNRS, 34095 Montpellier, France;
| | - Catherine Journet
- Laboratoire des Multimatériaux et Interfaces, University Claude Bernard-CNRS, 69622 Lyon, France;
| |
Collapse
|
18
|
Chen X, Xue Z, Niu K, Liu X, Wei Lv, Zhang B, Li Z, Zeng H, Ren Y, Wu Y, Zhang Y. Li-fluorine codoped electrospun carbon nanofibers for enhanced hydrogen storage. RSC Adv 2021; 11:4053-4061. [PMID: 35424329 PMCID: PMC8694184 DOI: 10.1039/d0ra06500e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022] Open
Abstract
Carbon materials have attracted increasing attention for hydrogen storage due to their great specific surface areas, low weights, and excellent mechanical properties. However, the performance of carbon materials for hydrogen absorption is hindered by weak physisorption. To improve the hydrogen absorption performance of carbon materials, nanoporous structures, doped heteroatoms, and decorated metal nanoparticles, among other strategies, are adopted to increase the specific surface area, number of hydrogen storage sites, and metal catalytic activity. Herein, Li–fluorine codoped porous carbon nanofibers (Li–F–PCNFs) were synthesized to enhance hydrogen storage performance. Especially, perfluorinated sulfonic acid (PFSA) polymers not only served as a fluorine precursor, but also inhibited the agglomeration of lithium nanoparticles during the carbonization process. Li–F–PCNFs showed an excellent hydrogen storage capacity, up to 2.4 wt% at 0 °C and 10 MPa, which is almost 24 times higher than that of the pure porous carbon nanofibers. It is noted that the high electronegativity gap between fluorine and lithium facilitates the electrons of the hydrogen molecules being attracted to the PCNFs, which enhanced the hydrogen adsorption capacity. In addition, Li–F–PCNFs may have huge potential for application in fuel cells. We developed a facile, yet general, approach for preparing Li–fluorine codoped porous carbon nanofiber (Li–F–PCNF) composites, which showed excellent hydrogen storage performance.![]()
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Kai Niu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Wei Lv
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Bao Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Zhongyu Li
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Hong Zeng
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Yu Ren
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Ying Wu
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| |
Collapse
|
19
|
Zheng J, Wang CG, Zhou H, Ye E, Xu J, Li Z, Loh XJ. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. RESEARCH (WASHINGTON, D.C.) 2021; 2021:3750689. [PMID: 33623916 PMCID: PMC7877397 DOI: 10.34133/2021/3750689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022]
Abstract
Hydrogen energy, with environment amicable, renewable, efficiency, and cost-effective advantages, is the future mainstream substitution of fossil-based fuel. However, the extremely low volumetric density gives rise to the main challenge in hydrogen storage, and therefore, exploring effective storage techniques is key hurdles that need to be crossed to accomplish the sustainable hydrogen economy. Hydrogen physically or chemically stored into nanomaterials in the solid-state is a desirable prospect for effective large-scale hydrogen storage, which has exhibited great potentials for applications in both reversible onboard storage and regenerable off-board storage applications. Its attractive points include safe, compact, light, reversibility, and efficiently produce sufficient pure hydrogen fuel under the mild condition. This review comprehensively gathers the state-of-art solid-state hydrogen storage technologies using nanostructured materials, involving nanoporous carbon materials, metal-organic frameworks, covalent organic frameworks, porous aromatic frameworks, nanoporous organic polymers, and nanoscale hydrides. It describes significant advances achieved so far, and main barriers need to be surmounted to approach practical applications, as well as offers a perspective for sustainable energy research.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Chen-Gang Wang
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Hui Zhou
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Jianwei Xu
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| |
Collapse
|
20
|
Shanmugam S, Nachimuthu S, Subramaniam V. Computational study of metal ions adsorption on pristine and heteroatom doped peritetracene. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Gu Z, Perez-Aguilar JM, Meng L, Zhou R. Partial Denaturation of Villin Headpiece upon Binding to a Carbon Nitride Polyaniline (C3N) Nanosheet. J Phys Chem B 2020; 124:7557-7563. [DOI: 10.1021/acs.jpcb.0c05850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zonglin Gu
- Institute of Quantitative Biology, Department of Physics, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Lijun Meng
- Institute of Quantitative Biology, Department of Physics, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Department of Physics, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Columbia University, New York, New York 10027, Unites States
| |
Collapse
|
22
|
Khan D, Li H, Bayram F, Gajula D, Koley G. Photoacoustic Detection of H 2 and NH 3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. MICROMACHINES 2020; 11:mi11070680. [PMID: 32668600 PMCID: PMC7407488 DOI: 10.3390/mi11070680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic (PA) detection of H2 and NH3 using plasmonic excitation in Pt- and Pd-decorated GaN piezotransistive microcantilevers were investigated using pulsed 520-nm laser illumination. The sensing performances of 1-nm Pt and Pd nanoparticle (NP) deposited cantilever devices were compared, of which the Pd-coated sensor devices exhibited consistently better sensing performance, with lower limit of detection and superior signal-to-noise ratio (SNR) values, compared to the Pt-coated devices. Among the two functionalization layers, Pd-coated devices were found to respond only to H2 exposure and not to NH3, while Pt-coated devices exhibited repeatable response to both H2 and NH3 exposures, highlighting the potential of the former in performing selective detection between these reducing gases. Optimization of the device-biasing conditions were found to enhance the detection sensitivity of the sensors.
Collapse
Affiliation(s)
- Digangana Khan
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| | - Hongmei Li
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| | - Ferhat Bayram
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| | - Durga Gajula
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Goutam Koley
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| |
Collapse
|
23
|
Characterization of Carbon Materials for Hydrogen Storage and Compression. C — JOURNAL OF CARBON RESEARCH 2020. [DOI: 10.3390/c6030046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon materials have proven to be a suitable choice for hydrogen storage and, recently, for hydrogen compression. Their developed textural properties, such as large surface area and high microporosity, are essential features for hydrogen adsorption. In this work, we first review recent advances in the physisorption characterization of nanoporous carbon materials. Among them, approaches based on the density functional theory are considered now standard methods for obtaining a reliable assessment of the pore size distribution (PSD) over the whole range from narrow micropores to mesopores. Both a high surface area and ultramicropores (pore width < 0.7 nm) are needed to achieve significant hydrogen adsorption at pressures below 1 MPa and 77 K. However, due to the wide PSD typical of activated carbons, it follows from an extensive literature review that pressures above 3 MP are needed to reach maximum excess uptakes in the range of ca. 7 wt.%. Finally, we present the adsorption–desorption compression technology, allowing hydrogen to be compressed at 70 MPa by cooling/heating cycles between 77 and 298 K, and being an alternative to mechanical compressors. The cyclic, thermally driven hydrogen compression might open a new scenario within the vast field of hydrogen applications.
Collapse
|
24
|
Abstract
In the field of energy storage, recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several, carbonaceous nanovariants like carbon nanotubes (CNTs), fullerenes, and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K, due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-organic framework (MOF) show room temperature uptake of hydrogen. Metal or complex hydrides either in the nanocomposite form and its subset, nanocatalyst dispersed alloy phases illustrate the concept of nanoengineering and nanoconfinement of particles with tailor-made properties for reversible hydrogen storage. Another class of materials comprising polymeric nanostructures such as conducting polyaniline and their functionalized nanocomposites are versatile hydrogen storage materials because of their unique size, high specific surface-area, pore-volume, and bulk properties. The salient features of nanocomposite materials for reversible hydrogen storage are reviewed and discussed.
Collapse
|
25
|
Matsumoto N, Kinoshita H, Shimanaka Y, Ohmae N. Room temperature hydrogen storage in modified vertically-aligned carbon nanotubes forest measured in vacuum by a langasite microbalance. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Singh R, Altaee A, Gautam S. Nanomaterials in the advancement of hydrogen energy storage. Heliyon 2020; 6:e04487. [PMID: 32743097 PMCID: PMC7385460 DOI: 10.1016/j.heliyon.2020.e04487] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/03/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
The hydrogen economy is the key solution to secure a long-term energy future. Hydrogen production, storage, transportation, and its usage completes the unit of an economic system. These areas have been the topics of discussion for the past few decades. However, its storage methods have conflicted for on-board hydrogen applications. In this review, the promising systems based on solid-state hydrogen storage are discussed. It works generally on the principles of chemisorption and physisorption. The usage of hydrogen packing material in the system enhances volumetric and gravimetric densities of the system and helps in improving ambient conditions and system kinetics. Numerous aspects like pore size, surface area ligand functionalization and pore volume of the materials are intensively discussed. This review also examines the newly developed research based on MOF (Metal-Organic Frameworks). These hybrid clusters are employed for nano-confinement of hydrogen at elevated temperatures. A combination of the various methodologies may give another course to a wide scope in the area of energy storage materials later in the future.
Collapse
Affiliation(s)
- Rasmeet Singh
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh - 160 014, India
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Sanjeev Gautam
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh - 160 014, India
| |
Collapse
|
27
|
Konni M, Kumar Karnena M, Babu Mukkamala S. Enhanced Room‐Temperature Synthesis of Li@f‐MWCNTs for Hydrogen Storage Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202000489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Madhavi Konni
- Department of Nano Science and Nano TechnologyInstitute of Science, GITAM (Deemed University) Visakhapatnam, Andhra Pradesh India
| | - Manoj Kumar Karnena
- Department of Environmental Science, Institute of ScienceGITAM (Deemed University), Visakhapatnam Andhra Pradesh India
| | - Saratchandra Babu Mukkamala
- Department of Nano Science and Nano TechnologyInstitute of Science, GITAM (Deemed University) Visakhapatnam, Andhra Pradesh India
| |
Collapse
|
28
|
Liu Z, Wang P, Yan Z, Chen S, Yu D, Zhao X, Mu T. Rhodium-catalyzed reductive carbonylation of aryl iodides to arylaldehydes with syngas. Beilstein J Org Chem 2020; 16:645-656. [PMID: 32318121 PMCID: PMC7155901 DOI: 10.3762/bjoc.16.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022] Open
Abstract
The reductive carbonylation of aryl iodides to aryl aldehydes possesses broad application prospects. We present an efficient and facile Rh-based catalytic system composed of the commercially available Rh salt RhCl3·3H2O, PPh3 as phosphine ligand, and Et3N as the base, for the synthesis of arylaldehydes via the reductive carbonylation of aryl iodides with CO and H2 under relatively mild conditions with a broad substrate range affording the products in good to excellent yields. Systematic investigations were carried out to study the experimental parameters. We explored the optimal ratio of Rh salt and PPh3 ligand, substrate scope, carbonyl source and hydrogen source, and the reaction mechanism. Particularly, a scaled-up experiment indicated that the catalytic method could find valuable applications in industrial productions. The low gas pressure, cheap ligand and low metal dosage could significantly improve the practicability in both chemical researches and industrial applications.
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhenzhong Yan
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Suqing Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xinhui Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
29
|
Wang J, Liu TT, Li CL, Liu Y. A New Class of Scandium Carbide Nanosheet. Sci Rep 2019; 9:16624. [PMID: 31719553 PMCID: PMC6851380 DOI: 10.1038/s41598-019-52882-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/22/2019] [Indexed: 11/08/2022] Open
Abstract
A new class of two-dimensional scandium carbide nanosheet has been identified by using first-principles density functional theory. It has a primitive cell of Sc3C10, in which there are two pentagonal carbon rings surrounded by one scandium octagon. Being as the precussor of Volleyballene Sc20C60 and ScC nanotubes, the Sc3C10 nanosheet is exceptionally stable. By rolling up this Sc3C10 sheet, a series of stable ScC nanotubes have been obtained. All the nanotubes studied have been found to be metallic. Furthermore, the hydrogen storage capacity of the ScC nanotubes has been explored. The calculated results show that one unit of the (0,3) ScC nanotube can adsorb a maximum of 51 hydrogen molecules, reaching up to a 6.25 wt% hydrogen gravimetric density with an average binding energy of 0.23 eV/H2.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Tian-Tian Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Chen-Ling Li
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ying Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
- National Key Laboratory for Materials Simulation and Design, Beijing, 100083, China.
| |
Collapse
|
30
|
Bartolomei M, González-Lezana T, Campos-Martínez J, Hernández MI, Pirani F. Complexes of Alkali Metal Cations and Molecular Hydrogen: Potential Energy Surfaces and Bound States. J Phys Chem A 2019; 123:8397-8405. [PMID: 31490073 DOI: 10.1021/acs.jpca.9b05937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complexes between metal cations and molecular hydrogen are systems quite amenable for precise spectroscopic and theoretical studies, and at the same time, they are relevant for applications in hydrogen storage and astrochemistry. In this work, we report new intermolecular potential energy surfaces and rovibrational states calculations for complexes involving molecular hydrogen and alkaline metal cations, M+-H2 (M+ = Na+, K+, Rb+, Cs+). The intermolecular potentials, formulated in an internally consistent way to emphasize differences in the properties of the systems, are represented by simple analytical expressions whose parameters have been optimized from comparison with accurate ab initio calculations. Properties of the low-lying bound states-binding energies, frequencies, and rotational constants-are compared with previous measurements or computations and an overall good agreement is achieved, supporting the reliability of the present formulation. Variations of these properties as a function of the cation size and isotopic substitution, with a proper sequence of ortho and para rotational levels, are also discussed.
Collapse
Affiliation(s)
- Massimiliano Bartolomei
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - Tomás González-Lezana
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - José Campos-Martínez
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - Marta I Hernández
- Instituto de Física Fundamental , Consejo Superior de Investigaciones Científicas (IFF-CSIC) , Serrano 123 , 28006 Madrid , Spain
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie , Universitá di Perugia , 06123 Perugia , Italy
| |
Collapse
|
31
|
Ortiz de Zárate J, Bartolomei M, González-Lezana T, Campos-Martínez J, Hernández MI, Pérez de Tudela R, Hernández-Rojas J, Bretón J, Pirani F, Kranabetter L, Martini P, Kuhn M, Laimer F, Scheier P. Snowball formation for Cs + solvation in molecular hydrogen and deuterium. Phys Chem Chem Phys 2019; 21:15662-15668. [PMID: 31271179 DOI: 10.1039/c9cp02017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interactions of atomic cations with molecular hydrogen are of interest for a wide range of applications in hydrogen technologies. These interactions are fairly strong despite being non-covalent, hence one can ask whether hydrogen molecules would form dense, solid-like, solvation shells around the ion (snowballs) or rather a more weakly bound compound. In this work, the interactions between Cs+ and H2 are studied both experimentally and computationally. Isotopic substitution of H2 by D2 is also investigated. On the one hand, helium nanodroplets doped with cesium and hydrogen or deuterium are ionized by electron impact and the (H2/D2)nCs+ (up to n = 30) clusters formed are identified via mass spectrometry. On the other hand, a new analytical potential energy surface, based on ab initio calculations, is developed and used to study cluster energies and structures by means of classical and quantum-mechanical Monte Carlo methods. The most salient features of the measured ion abundances are remarkably mimicked by the computed evaporation energies, particularly for the clusters composed of deuterium. This result supports the reliability of the present potential energy surface and allows us to recommend its use in related systems. Clusters with either twelve H2 or D2 molecules stand out for their stability and quasi-rigid icosahedral structures. However, the first solvation shell involves thirteen or fourteen molecules for hydrogenated or deuterated clusters, respectively. This shell retains its internal structure when extra molecules are added to the second shell and is nearly solid-like, especially for the deuterated clusters. The role played by three-body induction interactions as well as the rotational degrees of freedom is analyzed and they are found to be significant (up to 15% and 18%, respectively) for the molecules belonging to the first solvation shell.
Collapse
Affiliation(s)
- Josu Ortiz de Zárate
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Marta I Hernández
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | | | - Javier Hernández-Rojas
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - José Bretón
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lorenz Kranabetter
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Martini
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin Kuhn
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Felix Laimer
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Scheier
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
32
|
Zeng Y, Li K, Zhu Q, Wang J, Cao Y, Lu S. Capture of CO2 in carbon nanotube bundles supported with room-temperature ionic liquids: A molecular simulation study. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
The effect of curvature of Li-doped polycyclic hydrocarbon on its interaction energy with H2 and H2O: DF-SAPT (DFT) calculation. Struct Chem 2018. [DOI: 10.1007/s11224-018-1158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Borzooeian Z, Taslim ME, Rezvani S, Borzooeian G. A high precision length-based carbon nanotube ladder. RSC Adv 2018; 8:36049-36055. [PMID: 35558502 PMCID: PMC9088388 DOI: 10.1039/c8ra05482g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/03/2018] [Indexed: 11/21/2022] Open
Abstract
Today, carbon nanotubes manufacturers as well as users such as molecular electronics, nanomedicine, nano-biotechnology and similar industries are facing a major challenge: lack of length uniformity of carbon nanotubes in mass production. An effective solution to this major issue is the use of a length-based ladder. We are, for the first time, presenting such a valuable tool to determine the length purity. Our length-based carbon nanotubes ladder, containing a series of carbon nanotubes markers with different lengths, is made based on three combined techniques - bio-conjugation, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and silver staining. Creating an indicator using conjugation of a biomolecule with carbon nanotubes to make a carbon nanotubes ladder is a novel idea and a significant step forward for length-based carbon nanotubes separation. The very sensitive silver staining technique allows a precise visualization and quantification of the gel. This ladder with a pending patent by Northeastern University is an effective quality control tool when bulk quantities of nanotubes with a desirable length are manufactured.
Collapse
Affiliation(s)
- Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern UniversityBostonMAUSA
| | - Mohammad E. Taslim
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern UniversityBostonMAUSA
| | - Saina Rezvani
- Department of Computer Science, Worcester Polytechnic InstituteWorcesterMAUSA
| | | |
Collapse
|
35
|
Clancy AJ, Bayazit MK, Hodge SA, Skipper NT, Howard CA, Shaffer MSP. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem Rev 2018; 118:7363-7408. [DOI: 10.1021/acs.chemrev.8b00128] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam J. Clancy
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
- Institute for Materials Discovery, University College London, London WC1E 7JE, U.K
| | - Mustafa K. Bayazit
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Stephen A. Hodge
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
- Cambridge Graphene Centre, Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Neal T. Skipper
- Department of Physics & Astronomy, University College London, London WC1E 6BT, U.K
| | | | | |
Collapse
|
36
|
Borzooeian Z, Taslim ME, Ghasemi O, Rezvani S, Borzooeian G, Nourbakhsh A. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining. PLoS One 2018; 13:e0197972. [PMID: 29939999 PMCID: PMC6016930 DOI: 10.1371/journal.pone.0197972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/13/2018] [Indexed: 11/20/2022] Open
Abstract
Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.
Collapse
Affiliation(s)
- Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Mohammad E. Taslim
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Omid Ghasemi
- Merrimack Pharmaceuticals Inc, Cambridge, MA, United States of America
| | - Saina Rezvani
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Giti Borzooeian
- Department of Biology, Payamnoor, University of Esfahan, Esfahan, Iran
| | - Amirhasan Nourbakhsh
- Department of Electrical Engineering Computer Science, Massachusetts Institute of Technology, Boston, MA, United States of America
| |
Collapse
|
37
|
Lei S, Yu ZY, Shen HY, Sun XL, Wan N, Yu H. CO Adsorption on Metal-Decorated Phosphorene. ACS OMEGA 2018; 3:3957-3965. [PMID: 31458633 PMCID: PMC6641591 DOI: 10.1021/acsomega.8b00133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/23/2018] [Indexed: 06/09/2023]
Abstract
Using first principle calculations, we have investigated the adsorption of CO gas on various metal-decorated phosphorene. Almost all of the metals were considered to decorate phosphorene. By comparing binding energy (E b) and cohesive energy (E c), only 10 metals (Li, Na, K, Rb, Cs, Ca, Sr, Ba, Pd, and La) can stably decorate phosphorene and avoid clustering. CO adsorptions on these metal-decorated systems were calculated, and the mechanism of interaction between CO and metal atoms was analyzed in detail. E a shows a significant improvement after metal decoration, excerpt for Rb and Cs. The results imply that Li-, Na-, K-, Ca-, Sr-, Ba-, and La-decorated phosphorene could be used as CO elimination or reversible CO storage.
Collapse
|
38
|
Gonzalez ME, Eckert J, Aquino AJA, Poirier B. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H) 2(H 2)(PEtPh 2) 3 coordination complex. J Chem Phys 2018; 148:154303. [PMID: 29679974 DOI: 10.1063/1.5026637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1-in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.
Collapse
Affiliation(s)
- Megan E Gonzalez
- Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061, USA
| | - Juergen Eckert
- Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061, USA
| | - Adelia J A Aquino
- Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061, USA
| | - Bill Poirier
- Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061, USA
| |
Collapse
|
39
|
Rajaura RS, Srivastava S, Sharma PK, Mathur S, Shrivastava R, Sharma S, Vijay Y. Structural and surface modification of carbon nanotubes for enhanced hydrogen storage density. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Bamdad M, Farrokhpour H, Najafi B, Ashrafizaadeh M. Energy decomposition analysis of the intermolecular interaction energy between different gas molecules (H2, O2, H2O, N2, CO2, H2S, and CO) and selected Li+-doped graphitic molecules: DF-SAPT (DFT) calculations. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2224-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Liu Y, Meng Z, Guo X, Xu G, Rao D, Wang Y, Deng K, Lu R. Ca-Embedded C 2N: an efficient adsorbent for CO 2 capture. Phys Chem Chem Phys 2018; 19:28323-28329. [PMID: 29034383 DOI: 10.1039/c7cp05325h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide as a greenhouse gas causes severe impacts on the environment, whereas it is also a necessary chemical feedstock that can be converted into carbon-based fuels via electrochemical reduction. To efficiently and reversibly capture CO2, it is important to find novel materials for a good balance between adsorption and desorption. In this study, we performed first-principles calculations and grand canonical Monte Carlo (GCMC) simulations, to systematically study metal-embedded carbon nitride (C2N) nanosheets for CO2 capture. Our first-principles results indicated that Ca atoms can be uniformly trapped in the cavity center of C2N structure, while the transition metals (Sc, Ti, V, Cr, Mn, Fe, Co) are favorably embedded in the sites off the center of the cavity. The determined maximum number of CO2 molecules with strong physisorption showed that Ca-embedded C2N monolayer is the most promising CO2 adsorbent among all considered metal-embedded materials. Moreover, GCMC simulations revealed that at room temperature the gravimetric density for CO2 adsorbed on Ca-embedded C2N reached 50 wt% at 30 bar and 23 wt% at 1 bar, higher than other layered materials, thus providing a satisfactory system for the CO2 capture and utilization.
Collapse
Affiliation(s)
- Yuzhen Liu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ayillath Kutteri D, Wang IW, Samanta A, Li L, Hu J. Methane decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono- and bimetallic 3d transition metal catalysts. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01927k] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic shale gas decomposition for tunable tip/base grown CNTs and CO2-free H2.
Collapse
Affiliation(s)
| | - I-Wen Wang
- Chemical & Biomedical Engineering Department
- West Virginia University
- Morgantown
- USA
| | - Anupam Samanta
- Chemical & Biomedical Engineering Department
- West Virginia University
- Morgantown
- USA
| | - Lili Li
- School of Life Science and Agriculture
- Zhouko Normal University
- China
| | - Jianli Hu
- Chemical & Biomedical Engineering Department
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
43
|
Kumar D, Govindaraja T, Krishnamurty S, Kaliaperumal S, Pal S. Dissociative chemisorption of hydrogen molecules on defective graphene-supported aluminium clusters: a computational study. Phys Chem Chem Phys 2018; 20:26506-26512. [DOI: 10.1039/c8cp05711g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using periodic density functional theory-based calculations, in the present study, we address the chemical bonding between aluminium clusters (Aln, n = 4–8 and 13) and monovacant defective graphene.
Collapse
Affiliation(s)
- Deepak Kumar
- Physical Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | - Thillai Govindaraja
- Nano and Computational Material Lab
- Catalysis Division
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | | | - Selvaraj Kaliaperumal
- Nano and Computational Material Lab
- Catalysis Division
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | | |
Collapse
|
44
|
Salimian A, Ketabi S, Aghabozorg HR. Hydrogen adsorption capacity of vanadium oxide nanotube from pure and mixture gas environment through molecular simulation. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1379538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- A. Salimian
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S. Ketabi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - H. R. Aghabozorg
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
45
|
Babu DJ, Schneider JJ. Gas Adsorption Studies of CO2in Carbon Nanomaterials: A Case Study of Vertically Aligned Carbon Nanotubes. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Deepu J. Babu
- Technische Universität Darmstadt; Fachbereich Chemie; Eduard-Zintl-Institut für Anorganische und Physikalische Chemie; Alarich-Weiss-Straße 12 64287 Darmstadt Germany
| | - Jörg J. Schneider
- Technische Universität Darmstadt; Fachbereich Chemie; Eduard-Zintl-Institut für Anorganische und Physikalische Chemie; Alarich-Weiss-Straße 12 64287 Darmstadt Germany
| |
Collapse
|
46
|
Iyikanat F, Kandemir A, Bacaksiz C, Sahin H. Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1742-1748. [PMID: 28904835 PMCID: PMC5588453 DOI: 10.3762/bjnano.8.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Using first-principles density functional theory calculations, we investigate adsorption properties and the diffusion mechanism of a Li atom on hydrogenated single-layer α- and β-silicene on a Ag(111) surface. It is found that a Li atom binds strongly on the surfaces of both α- and β-silicene, and it forms an ionic bond through the transfer of charge from the adsorbed atom to the surface. The binding energies of a Li atom on these surfaces are very similar. However, the diffusion barrier of a Li atom on H-α-Si is much higher than that on H-β-Si. The energy surface calculations show that a Li atom does not prefer to bind in the vicinity of the hydrogenated upper-Si atoms. Strong interaction between Li atoms and hydrogenated silicene phases and low diffusion barriers show that α- and β-silicene are promising platforms for Li-storage applications.
Collapse
Affiliation(s)
- Fadil Iyikanat
- Department of Physics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Ali Kandemir
- Department of Materials Science and Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Cihan Bacaksiz
- Department of Physics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Hasan Sahin
- Department of Photonics, Izmir Institute of Technology, 35430, Izmir, Turkey
- ICTP-ECAR Eurasian Center for Advanced Research, Izmir Institute of Technology, 35430, Izmir, Turkey
| |
Collapse
|
47
|
Seenithurai S, Chai JD. Effect of Li Termination on the Electronic and Hydrogen Storage Properties of Linear Carbon Chains: A TAO-DFT Study. Sci Rep 2017; 7:4966. [PMID: 28694445 PMCID: PMC5504039 DOI: 10.1038/s41598-017-05202-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/30/2017] [Indexed: 11/24/2022] Open
Abstract
Accurate prediction of the electronic and hydrogen storage properties of linear carbon chains (C n ) and Li-terminated linear carbon chains (Li2C n ), with n carbon atoms (n = 5-10), has been very challenging for traditional electronic structure methods, due to the presence of strong static correlation effects. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient electronic structure method for the study of large systems with strong static correlation effects. Owing to the alteration of the reactivity of C n and Li2C n with n, odd-even oscillations in their electronic properties are found. In contrast to C n , the binding energies of H2 molecules on Li2C n are in (or close to) the ideal binding energy range (about 20 to 40 kJ/mol per H2). In addition, the H2 gravimetric storage capacities of Li2C n are in the range of 10.7 to 17.9 wt%, satisfying the United States Department of Energy (USDOE) ultimate target of 7.5 wt%. On the basis of our results, Li2C n can be high-capacity hydrogen storage materials that can uptake and release hydrogen at temperatures well above the easily achieved temperature of liquid nitrogen.
Collapse
Affiliation(s)
- Sonai Seenithurai
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Jeng-Da Chai
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
- Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
48
|
Tang C, Zhang X, Zhou X. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field. Phys Chem Chem Phys 2017; 19:5570-5578. [DOI: 10.1039/c6cp07433b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field.
Collapse
Affiliation(s)
- Chunmei Tang
- College of Science
- Hohai University
- Nanjing
- P. R. China
| | - Xue Zhang
- College of Science
- Hohai University
- Nanjing
- P. R. China
| | - Xiaofeng Zhou
- College of Science
- Hohai University
- Nanjing
- P. R. China
| |
Collapse
|
49
|
Ramos-Castillo CM, Reveles JU, Cifuentes-Quintal ME, Zope RR, de Coss R. Hydrogen storage in bimetallic Ti–Al sub-nanoclusters supported on graphene. Phys Chem Chem Phys 2017; 19:21174-21184. [DOI: 10.1039/c7cp03347h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Variations in the hydrogen gravimetric content of Ti and TiAln clusters supported on graphene layers.
Collapse
Affiliation(s)
| | - J. U. Reveles
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
- Department of Physics
| | | | - R. R. Zope
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
| | - R. de Coss
- Department of Applied Physics
- Cinvestav-Mérida
- Mérida
- Mexico
| |
Collapse
|
50
|
Della TD, Suresh CH. Massive dihydrogen uptake by anionic carbon chains. Phys Chem Chem Phys 2017; 19:5830-5838. [DOI: 10.1039/c6cp07722f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remarkable capacity of anionic and dianionic carbon chains to bind dihydrogen compared to their neutral moieties has been established theoretically and these one dimensional anions could be utilized in developing novel H2 storage materials.
Collapse
Affiliation(s)
- Therese Davis Della
- Chemical Sciences and Technology Division
- Academy of Scientific & Innovative Research
- CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division
- Academy of Scientific & Innovative Research
- CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| |
Collapse
|