1
|
Bang Y, Hwang H, Liermann HP, Kim DY, He Y, Jeon TY, Shin TJ, Zhang D, Popov D, Lee Y. A role for subducting clays in the water transportation into the Earth's lower mantle. Nat Commun 2024; 15:4428. [PMID: 38789448 PMCID: PMC11126710 DOI: 10.1038/s41467-024-48501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Subducting sedimentary layer typically contains water and hydrated clay minerals. The stability of clay minerals under such hydrous subduction environment would therefore constraint the lithology and physical properties of the subducting slab interface. Here we show that pyrophyllite (Al2Si4O10(OH)2), one of the representative clay minerals in the alumina-silica-water (Al2O3-SiO2-H2O, ASH) system, breakdowns to contain further hydrated minerals, gibbsite (Al(OH)3) and diaspore (AlO(OH)), when subducts along a water-saturated cold subduction geotherm. Such a hydration breakdown occurs at a depth of ~135 km to uptake water by ~1.8 wt%. Subsequently, dehydration breakdown occurs at ~185 km depth to release back the same amount of water, after which the net crystalline water content is preserved down to ~660 km depth, delivering a net amount of ~5.0 wt% H2O in a phase assemblage containing δ-AlOOH and phase Egg (AlSiO3(OH)). Our results thus demonstrate the importance of subducting clays to account the delivery of ~22% of water down to the lower mantle.
Collapse
Affiliation(s)
- Yoonah Bang
- Department of Earth System Sciences, Yonsei University, Seoul, 03722, Republic of Korea
- Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Republic of Korea
| | - Huijeong Hwang
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Hamburg, 22607, Germany
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hanns-Peter Liermann
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Hamburg, 22607, Germany
| | - Duck Young Kim
- Center for High Pressure Science & Technology Advanced Research, Shanghai, 201203, China
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Yu He
- Center for High Pressure Science & Technology Advanced Research, Shanghai, 201203, China
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Tae-Yeol Jeon
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
- GSECARS, University of Chicago, Chicago, IL, 60439, USA
| | - Dmitry Popov
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yongjae Lee
- Department of Earth System Sciences, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Chen M, Zhou H, Zhu R, Lu X, He H. Closest-Packing Water Monolayer Stably Intercalated in Phyllosilicate Minerals under High Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:618-627. [PMID: 31886678 DOI: 10.1021/acs.langmuir.9b03394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The directional hydrogen-bond (HB) network and nondirectional van der Waals (vdW) interactions make up the specificity of water. Directional HBs could construct an ice-like monolayer in hydrophobic confinement even in the ambient regime. Here, we report a water monolayer dominated by vdW interactions confined in a phyllosilicate interlayer under high pressure. Surprisingly, it was in a thermodynamically stable state coupled with bulk water at the same pressure (P) and temperature (T), as revealed by the thermodynamic integration approach on the basis of molecular dynamics (MD) simulations. Both classical and ab initio MD simulations showed water O atoms were stably trapped and exhibited an ordered hexagonal closest-packing arrangement, but OH bonds of water reoriented frequently and exhibited a specific two-stage reorientation relaxation. Strikingly, hydration in the interlayer under high pressure had no relevance with surface hydrophilicity rationalized by the HB forming ability, which, however, determines wetting in the ambient regime. Intercalated water molecules were trapped by vdW interactions, which shaped the closest-packing arrangement and made hydration energetically available. The high pressure-volume term largely drives hydration, as it compensates the entropy penalty which is restricted by a relatively lower temperature. This vdW water monolayer should be ubiquitous in the high pressure but low-temperature regime.
Collapse
Affiliation(s)
- Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science , Chinese Academy of Sciences (CAS) , Guangzhou 510640 , China
| | - Huijun Zhou
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science , Chinese Academy of Sciences (CAS) , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science , Chinese Academy of Sciences (CAS) , Guangzhou 510640 , China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210093 , China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science , Chinese Academy of Sciences (CAS) , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
4
|
Wang J, Kalinichev AG, Kirkpatrick RJ. Structure and Decompression Melting of a Novel, High-Pressure Nanoconfined 2-D Ice. J Phys Chem B 2005; 109:14308-13. [PMID: 16852798 DOI: 10.1021/jp045297s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) simulations of water confined in nanospaces between layers of talc (system composition Mg(3)Si(4)O(10)(OH)(2) + 2H(2)O) at 300 K and pressures of approximately 0.45 GPa show the presence of a novel 2-D ice structure, and the simulation results at lower pressures provide insight into the mechanisms of its decompression melting. Talc is hydrophobic at ambient pressure and temperature, but weak hydrogen bonding between the talc surface and the water molecules plays an important role in stabilizing the hydrated structure at high pressure. The simulation results suggest that experimentally accessible elevated pressures may cause formation of a wide range of previously unknown water structures in nanoconfinement. In the talc 2-D ice, each water molecule is coordinated by six O(b) atoms of one basal siloxane sheet and three water molecules. The water molecules are arranged in a buckled hexagonal array in the a-b crystallographic plane with two sublayers along [001]. Each H(2)O molecule has four H-bonds, accepting one from the talc OH group and one from another water molecule and donating one to an O(b) and one to another water molecule. In plan view, the molecules are arranged in six-member rings reflecting the substrate talc structure. Decompression melting occurs by migration of water molecules to interstitial sites in the centers of six-member rings and eventual formation of separate empty and water-filled regions.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
5
|
Stixrude L. Talc under tension and compression: Spinodal instability, elasticity, and structure. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jb001684] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lars Stixrude
- Department of Geological Sciences; University of Michigan; Ann Arbor Michigan USA
| |
Collapse
|