1
|
Lewis JMT, Bower DM, Pavlov AA, Li X, Wahl SZ, Eigenbrode JL, McAdam AC. Organic Products of Fatty Acid and Magnesium Sulfate Mixtures after Gamma Radiolysis: Implications for Missions to Europa. ASTROBIOLOGY 2024; 24:1166-1186. [PMID: 39587956 DOI: 10.1089/ast.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
If ocean-derived materials are present at Europa's surface, they would represent accessible records of ocean chemistry and habitability, but such materials would be further processed by Europa's harsh radiation environment. In this study, saturated fatty acids were precipitated onto a Europa-relevant hydrated magnesium sulfate and exposed to gamma radiation doses up to 2 MGy at -196°C. Alkane chains, with carbon numbers one less than those of the starting fatty acids, were the most abundant radiolysis products in solvent and thermal extracts analyzed by gas chromatography mass spectrometry. Detections of monounsaturated fatty acids and combined radiolysis products were attributed to the experiment's Europa-like parameters. Additionally, elevated concentrations of shorter-chain saturated fatty acids suggest that gamma radiation induced charge remote fragmentation of the alkyl chains of some starting fatty acids under these experimental conditions. Quantitation of fatty acid concentrations in the irradiated samples enabled the calculation of a radiolysis constant that indicated exposure to a 5 MGy dose of gamma radiation would have resulted in a ∼90% loss of the initial fatty acid population. The samples were further studied by Raman spectroscopy and laser desorption and ionization mass spectrometry, which characterized the distribution of fatty acids and their radiolysis products on sulfate surfaces. The substantial loss of starting fatty acids typically seen with increasing radiation dose, along with the remarkable diversity of radiolysis products identified, suggests that the detection of fatty acids in irradiated sulfate deposits on Europa will be challenged by rapid destruction of any initial fatty acid populations and scrambling of their residual signals by a myriad of organic radiolysis products. If missions to Europa encounter sulfate deposits, targeting minimally irradiated units may still enable the detection of surviving fatty acid signatures that could inform about Europa's subsurface chemistry and habitability.
Collapse
Affiliation(s)
- James M T Lewis
- Department of Physics and Astronomy, Howard University, Washington, District of Columbia, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
| | - Dina M Bower
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
| | | | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Sarinah Z Wahl
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Southeastern Universities Research Association, Washington, District of Columbia, USA
| | | | - Amy C McAdam
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
2
|
Witze A. Is there life on Jupiter's moon Europa? NASA launches mission to find hints. Nature 2024; 634:760-761. [PMID: 39402297 DOI: 10.1038/d41586-024-03225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2024]
|
3
|
Tosi F, Roatsch T, Galli A, Hauber E, Lucchetti A, Molyneux P, Stephan K, Achilleos N, Bovolo F, Carter J, Cavalié T, Cimò G, D’Aversa E, Gwinner K, Hartogh P, Huybrighs H, Langevin Y, Lellouch E, Migliorini A, Palumbo P, Piccioni G, Plaut JJ, Postberg F, Poulet F, Retherford K, Rezac L, Roth L, Solomonidou A, Tobie G, Tortora P, Tubiana C, Wagner R, Wirström E, Wurz P, Zambon F, Zannoni M, Barabash S, Bruzzone L, Dougherty M, Gladstone R, Gurvits LI, Hussmann H, Iess L, Wahlund JE, Witasse O, Vallat C, Lorente R. Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE. SPACE SCIENCE REVIEWS 2024; 220:59. [PMID: 39132056 PMCID: PMC11310297 DOI: 10.1007/s11214-024-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/01/2024] [Indexed: 08/13/2024]
Abstract
We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): "Surfaces and Near-surface Exospheres of the Satellites, dust and rings".
Collapse
Affiliation(s)
- Federico Tosi
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Thomas Roatsch
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - André Galli
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Ernst Hauber
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Alice Lucchetti
- Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Padova (INAF-OAPd), Padua, Italy
| | | | - Katrin Stephan
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Nicholas Achilleos
- Department of Physics & Astronomy, University College London, London, UK
| | - Francesca Bovolo
- Center for Digital Society, Fondazione Bruno Kessler (FBK), Trento, Italy
| | - John Carter
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | - Thibault Cavalié
- Laboratoire d’Astrophysique de Bordeaux, Université de Bordeaux, CNRS, Pessac, France
- LESIA, Observatoire de Paris, Meudon, France
| | - Giuseppe Cimò
- Joint Institute for VLBI ERIC, Dwingeloo, The Netherlands
| | - Emiliano D’Aversa
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Klaus Gwinner
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Paul Hartogh
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Hans Huybrighs
- Space and Planetary Science Center, Khalifa University, Abu Dhabi, UAE
- School of Cosmic Physics, Dunsink Observatory, Dublin Institute for Advanced Studies (DIAS), Dublin, Ireland
| | - Yves Langevin
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | | | - Alessandra Migliorini
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Pasquale Palumbo
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Giuseppe Piccioni
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | | | - Frank Postberg
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - François Poulet
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | | | - Ladislav Rezac
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Lorenz Roth
- Division of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Gabriel Tobie
- Laboratoire de Planétologie et Géosciences, Nantes Université, Nantes, France
| | - Paolo Tortora
- Department of Industrial Engineering (DIN), Università di Bologna, Forlì, Italy
| | - Cecilia Tubiana
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Roland Wagner
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Eva Wirström
- Chalmers University of Technology, Onsala, Sweden
| | - Peter Wurz
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Francesca Zambon
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Marco Zannoni
- Department of Industrial Engineering (DIN), Università di Bologna, Forlì, Italy
| | | | - Lorenzo Bruzzone
- Dipartimento di Ingegneria e Scienza dell’Informazione, Università degli Studi di Trento, Trento, Italy
| | | | | | - Leonid I. Gurvits
- Joint Institute for VLBI ERIC, Dwingeloo, The Netherlands
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Hauke Hussmann
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Luciano Iess
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMA), Università degli Studi di Roma “La Sapienza”, Rome, Italy
| | | | - Olivier Witasse
- European Space Agency – European Space Research and Technology Centre (ESA-ESTEC), Noordwijk, The Netherlands
| | - Claire Vallat
- European Space Agency – European Space Astronomy Centre (ESA-ESAC), Madrid, Spain
| | - Rosario Lorente
- European Space Agency – European Space Astronomy Centre (ESA-ESAC), Madrid, Spain
| |
Collapse
|
4
|
Blankenship DD, Moussessian A, Chapin E, Young DA, Wesley Patterson G, Plaut JJ, Freedman AP, Schroeder DM, Grima C, Steinbrügge G, Soderlund KM, Ray T, Richter TG, Jones-Wilson L, Wolfenbarger NS, Scanlan KM, Gerekos C, Chan K, Seker I, Haynes MS, Barr Mlinar AC, Bruzzone L, Campbell BA, Carter LM, Elachi C, Gim Y, Hérique A, Hussmann H, Kofman W, Kurth WS, Mastrogiuseppe M, McKinnon WB, Moore JM, Nimmo F, Paty C, Plettemeier D, Schmidt BE, Zolotov MY, Schenk PM, Collins S, Figueroa H, Fischman M, Tardiff E, Berkun A, Paller M, Hoffman JP, Kurum A, Sadowy GA, Wheeler KB, Decrossas E, Hussein Y, Jin C, Boldissar F, Chamberlain N, Hernandez B, Maghsoudi E, Mihaly J, Worel S, Singh V, Pak K, Tanabe J, Johnson R, Ashtijou M, Alemu T, Burke M, Custodero B, Tope MC, Hawkins D, Aaron K, Delory GT, Turin PS, Kirchner DL, Srinivasan K, Xie J, Ortloff B, Tan I, Noh T, Clark D, Duong V, Joshi S, Lee J, Merida E, Akbar R, Duan X, Fenni I, Sanchez-Barbetty M, Parashare C, Howard DC, Newman J, Cruz MG, Barabas NJ, Amirahmadi A, Palmer B, Gawande RS, Milroy G, Roberti R, Leader FE, West RD, Martin J, Venkatesh V, Adumitroaie V, Rains C, Quach C, Turner JE, O’Shea CM, Kempf SD, Ng G, Buhl DP, Urban TJ. Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON). SPACE SCIENCE REVIEWS 2024; 220:51. [PMID: 38948073 PMCID: PMC11211191 DOI: 10.1007/s11214-024-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/29/2024] [Indexed: 07/02/2024]
Abstract
The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency ice-penetrating radar (9 and 60 MHz) onboard the Europa Clipper mission. REASON is designed to probe Europa from exosphere to subsurface ocean, contributing the third dimension to observations of this enigmatic world. The hypotheses REASON will test are that (1) the ice shell of Europa hosts liquid water, (2) the ice shell overlies an ocean and is subject to tidal flexing, and (3) the exosphere, near-surface, ice shell, and ocean participate in material exchange essential to the habitability of this moon. REASON will investigate processes governing this material exchange by characterizing the distribution of putative non-ice material (e.g., brines, salts) in the subsurface, searching for an ice-ocean interface, characterizing the ice shell's global structure, and constraining the amplitude of Europa's radial tidal deformations. REASON will accomplish these science objectives using a combination of radar measurement techniques including altimetry, reflectometry, sounding, interferometry, plasma characterization, and ranging. Building on a rich heritage from Earth, the moon, and Mars, REASON will be the first ice-penetrating radar to explore the outer solar system. Because these radars are untested for the icy worlds in the outer solar system, a novel approach to measurement quality assessment was developed to represent uncertainties in key properties of Europa that affect REASON performance and ensure robustness across a range of plausible parameters suggested for the icy moon. REASON will shed light on a never-before-seen dimension of Europa and - in concert with other instruments on Europa Clipper - help to investigate whether Europa is a habitable world.
Collapse
Affiliation(s)
| | - Alina Moussessian
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Elaine Chapin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Duncan A. Young
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | | | - Jeffrey J. Plaut
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Adam P. Freedman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Dustin M. Schroeder
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
- Department of Geophysics, Stanford University, Stanford, CA 94305 USA
| | - Cyril Grima
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Krista M. Soderlund
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Trina Ray
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Thomas G. Richter
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Laura Jones-Wilson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | - Kirk M. Scanlan
- Geodesy & Earth Observation Division, DTU Space, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher Gerekos
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Kristian Chan
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712 USA
| | - Ilgin Seker
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mark S. Haynes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | | | - Bruce A. Campbell
- Smithsonian Institution, Center for Earth & Planetary Studies, MRC 315, Washington, DC 20013-7012 USA
| | - Lynn M. Carter
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 USA
| | - Charles Elachi
- California Institute of Technology, Pasadena, CA 91125 USA
| | - Yonggyu Gim
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Alain Hérique
- University Grenoble Alpes, CNRS, CNES, IPAG, 38000 Grenoble, France
| | - Hauke Hussmann
- Institute of Planetary Research, German Aerospace Center, Berlin, Germany
| | - Wlodek Kofman
- University Grenoble Alpes, CNRS, CNES, IPAG, 38000 Grenoble, France
- Centrum Badan Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
| | - William S. Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 USA
| | | | | | | | - Francis Nimmo
- Dept. Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 USA
| | - Carol Paty
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403 USA
| | | | - Britney E. Schmidt
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY USA
- Department of Astronomy, Cornell University, Ithaca, NY USA
| | - Mikhail Y. Zolotov
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 USA
| | | | - Simon Collins
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Harry Figueroa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mark Fischman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Eric Tardiff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Andy Berkun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mimi Paller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | | | - Gregory A. Sadowy
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Kevin B. Wheeler
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Emmanuel Decrossas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Yasser Hussein
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Curtis Jin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Frank Boldissar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Neil Chamberlain
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brenda Hernandez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Elham Maghsoudi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jonathan Mihaly
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 USA
| | - Shana Worel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Vik Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Kyung Pak
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jordan Tanabe
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Robert Johnson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mohammad Ashtijou
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Tafesse Alemu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Michael Burke
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brian Custodero
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Michael C. Tope
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - David Hawkins
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Kim Aaron
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | | | - Donald L. Kirchner
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 USA
| | - Karthik Srinivasan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Julie Xie
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brad Ortloff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Ian Tan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Tim Noh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Duane Clark
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Vu Duong
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Shivani Joshi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jeng Lee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Elvis Merida
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Ruzbeh Akbar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Xueyang Duan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Ines Fenni
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | - Chaitali Parashare
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Duane C. Howard
- Center for Quantum Computing, Amazon Web Services, Pasadena, CA 91125 USA
| | | | - Marvin G. Cruz
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | - Ahmadreza Amirahmadi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brendon Palmer
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Rohit S. Gawande
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Grace Milroy
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Rick Roberti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Frank E. Leader
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Richard D. West
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jan Martin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Vijay Venkatesh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Virgil Adumitroaie
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Christine Rains
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Cuong Quach
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jordi E. Turner
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 USA
| | - Colleen M. O’Shea
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 USA
| | - Scott D. Kempf
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Gregory Ng
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Dillon P. Buhl
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Timothy J. Urban
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| |
Collapse
|
5
|
Psarakis CA, Fidelis TT, Chin KB, Journaux B, Kavner A, Sarker P, Styczinski MJ, Vance SD, Wei T. Electrical Conductivity of Subsurface Ocean Analogue Solutions from Molecular Dynamics Simulations. ACS EARTH & SPACE CHEMISTRY 2024; 8:1146-1153. [PMID: 38919853 PMCID: PMC11194852 DOI: 10.1021/acsearthspacechem.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
Investigating the habitability of ocean worlds is a priority of current and future NASA missions. The Europa Clipper mission will conduct approximately 50 flybys of Jupiter's moon Europa, returning a detailed portrait of its interior from the synthesis of data from its instrument suite. The magnetometer on board has the capability of decoupling Europa's induced magnetic field to high precision, and when these data are inverted, the electrical conductivity profile from the electrically conducting subsurface salty ocean may be constrained. To optimize the interpretation of magnetic induction data near ocean worlds and constrain salinity from electrical conductivity, accurate laboratory electrical conductivity data are needed under the conditions expected in their subsurface oceans. At the high-pressure, low-temperature (HPLT) conditions of icy worlds, comprehensive conductivity data sets are sparse or absent from either laboratory data or simulations. We conducted molecular dynamics simulations of candidate ocean compositions of aqueous NaCl under HPLT conditions at multiple concentrations. Our results predict electrical conductivity as a function of temperature, pressure, and composition, showing a decrease in conductivity as the pressure increases deeper into the interior of an icy moon. These data can guide laboratory experiments at conditions relevant to icy moons and can be used in tandem to forward-model the magnetic induction signals at ocean worlds and compare with future spacecraft data. We discuss implications for the Europa Clipper mission.
Collapse
Affiliation(s)
- Catherine A. Psarakis
- University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91011, United States
| | | | - Keith B. Chin
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91011, United States
| | - Baptiste Journaux
- University
of Washington, Seattle, Seattle, Washington 98195, United States
| | - Abby Kavner
- University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Pranab Sarker
- University
of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Steven D. Vance
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91011, United States
| | - Tao Wei
- University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
Aguzzi J, Cuadros J, Dartnell L, Costa C, Violino S, Canfora L, Danovaro R, Robinson NJ, Giovannelli D, Flögel S, Stefanni S, Chatzievangelou D, Marini S, Picardi G, Foing B. Marine Science Can Contribute to the Search for Extra-Terrestrial Life. Life (Basel) 2024; 14:676. [PMID: 38929660 PMCID: PMC11205085 DOI: 10.3390/life14060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Life on our planet likely evolved in the ocean, and thus exo-oceans are key habitats to search for extraterrestrial life. We conducted a data-driven bibliographic survey on the astrobiology literature to identify emerging research trends with marine science for future synergies in the exploration for extraterrestrial life in exo-oceans. Based on search queries, we identified 2592 published items since 1963. The current literature falls into three major groups of terms focusing on (1) the search for life on Mars, (2) astrobiology within our Solar System with reference to icy moons and their exo-oceans, and (3) astronomical and biological parameters for planetary habitability. We also identified that the most prominent research keywords form three key-groups focusing on (1) using terrestrial environments as proxies for Martian environments, centred on extremophiles and biosignatures, (2) habitable zones outside of "Goldilocks" orbital ranges, centred on ice planets, and (3) the atmosphere, magnetic field, and geology in relation to planets' habitable conditions, centred on water-based oceans.
Collapse
Affiliation(s)
- Jacopo Aguzzi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | - Javier Cuadros
- Natural History Museum, Cromwell Road, London SW7 5D, UK;
| | - Lewis Dartnell
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London W1W 6UW, UK;
| | - Corrado Costa
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Simona Violino
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Loredana Canfora
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’economia Agraria—Centro di Ricerca Agricoltura e Ambiente, 00182 Roma, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marcs (UNIVPM), 60131 Ancona, Italy;
| | - Nathan Jack Robinson
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy;
- National Research Council—Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), 60125 Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry, Geochemistry Department—Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Sascha Flögel
- GEOMAR Helmholtz Centre for Ocean Research, 24106 Kiel, Germany;
| | - Sergio Stefanni
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | | | - Simone Marini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
- Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), 19032 La Spezia, Italy
| | - Giacomo Picardi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Bernard Foing
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
7
|
Gault S, Fonseca F, Cockell CS. Preservation of Bacillus subtilis' cellular liquid state at deep sub-zero temperatures in perchlorate brines. Commun Biol 2024; 7:588. [PMID: 38755264 PMCID: PMC11099114 DOI: 10.1038/s42003-024-06277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Although a low temperature limit for life has not been established, it is thought that there exists a physical limit imposed by the onset of intracellular vitrification, typically occurring at ~-20 °C for unicellular organisms. Here, we show, through differential scanning calorimetry, that molar concentrations of magnesium perchlorate can depress the intracellular vitrification point of Bacillus subtilis cells to temperatures much lower than those previously reported. At 2.5 M Mg(ClO4)2, the peak vitrification temperature was lowered to -83 °C. Our results show that inorganic eutectic salts can in principle maintain liquid water in cells at much lower temperatures than those previously claimed as a lower limit to life, raising the prospects of active biochemical processes in low temperature natural settings. Our results may have implications for the habitability of Mars, where perchlorate salts are pervasive and potentially other terrestrial and extraterrestrial, cryosphere environments.
Collapse
Affiliation(s)
- Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Fernanda Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120, Palaiseau, France
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
8
|
Gibb BC. The search for Europan life. Nat Chem 2024; 16:671-673. [PMID: 38671300 DOI: 10.1038/s41557-024-01517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Affiliation(s)
- Bruce C Gibb
- Department of Chemistry at Tulane University, New Orleans, LA, USA.
| |
Collapse
|
9
|
Wakita S, Johnson BC, Silber EA, Singer KN. Multiring basin formation constrains Europa's ice shell thickness. SCIENCE ADVANCES 2024; 10:eadj8455. [PMID: 38507497 PMCID: PMC10954210 DOI: 10.1126/sciadv.adj8455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Jupiter's moon Europa hosts a subsurface ocean under an ice shell of uncertain thickness. Europa has two multiring basins that exhibit several concentric rings. The formation of these multiring basins is thought to be sensitive to the thickness and thermal structure of the ice shell. Here, we simulate multiring basin forming impacts on Europa finding that a total ice shell greater than 20 kilometers thick is required to reproduce observed ring structures. Thin ice shells (<15 kilometers thick) result in compressional tectonics inconsistent with observed ring structures. Our simulations are also sensitive to the thermal structure of the ice shell and indicate that Europa's at least 20-kilometer ice shell is composed of a 6- to 8-kilometer-thick conductive lid overlying warm convecting ice. The constraints on Europa's ice shell structure resulting from this work are directly relevant to our understanding of the potential habitability of Europa.
Collapse
Affiliation(s)
- Shigeru Wakita
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Brandon C. Johnson
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Elizabeth A. Silber
- Department of Earth Sciences, Western University, London, ON, Canada
- Institute for Earth and Space Exploration, Western University, London, ON, Canada
| | | |
Collapse
|
10
|
Styczinski MJ, Cooper ZS, Glaser DM, Lehmer O, Mierzejewski V, Tarnas J. Chapter 7: Assessing Habitability Beyond Earth. ASTROBIOLOGY 2024; 24:S143-S163. [PMID: 38498826 DOI: 10.1089/ast.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.
Collapse
Affiliation(s)
- M J Styczinski
- University of Washington, Seattle, Washington, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Z S Cooper
- University of Washington, Seattle, Washington, USA
| | - D M Glaser
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - O Lehmer
- NASA Ames Research Center, Moffett Field, California, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | - J Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
11
|
Soderlund KM, Rovira-Navarro M, Le Bars M, Schmidt BE, Gerkema T. The Physical Oceanography of Ice-Covered Moons. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:25-53. [PMID: 37669566 DOI: 10.1146/annurev-marine-040323-101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In the outer solar system, a growing number of giant planet satellites are now known to be abodes for global oceans hidden below an outer layer of ice. These planetary oceans are a natural laboratory for studying physical oceanographic processes in settings that challenge traditional assumptions made for Earth's oceans. While some driving mechanisms are common to both systems, such as buoyancy-driven flows and tides, others, such as libration, precession, and electromagnetic pumping, are likely more significant for moons in orbit around a host planet. Here, we review these mechanisms and how they may operate across the solar system, including their implications for ice-ocean interactions. Future studies should continue to advance our understanding of each of these processes as well as how they may act together in concert. This interplay also has strong implications for habitability as well as testing oceanic hypotheses with future missions.
Collapse
Affiliation(s)
- Krista M Soderlund
- Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA;
| | - Marc Rovira-Navarro
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA;
| | - Michael Le Bars
- CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille, France;
| | - Britney E Schmidt
- Departments of Astronomy and of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA;
| | - Theo Gerkema
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands;
| |
Collapse
|
12
|
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, Elder CM. Investigating Europa's Habitability with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:81. [PMID: 38046182 PMCID: PMC10687213 DOI: 10.1007/s11214-023-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).
Collapse
Affiliation(s)
- Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kathleen L. Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Everett Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Britney E. Schmidt
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan Lunine
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - William B. McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO USA
| | - Elizabeth M. Spiers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Honeybee Robotics, Altadena, CA USA
| | - Natalie Wolfenbarger
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Erin J. Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Divya M. Persaud
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mikhail Y. Zolotov
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | | | | | | | - Samuel M. Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Andrew J. Dombard
- Dept. of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, USA
| | | | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA USA
| | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Murthy S. Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Insoo Jun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
| | - Krista M. Soderlund
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Catherine M. Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
13
|
Witze A. How would we know whether there is life on Earth? This bold experiment found out. Nature 2023; 622:451-452. [PMID: 37845527 DOI: 10.1038/d41586-023-03230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
|
14
|
Carr CE, Ramírez-Colón JL, Duzdevich D, Lee S, Taniguchi M, Ohshiro T, Komoto Y, Soderblom JM, Zuber MT. Solid-State Single-Molecule Sensing with the Electronic Life-Detection Instrument for Enceladus/Europa (ELIE). ASTROBIOLOGY 2023; 23:1056-1070. [PMID: 37782210 DOI: 10.1089/ast.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 μM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.
Collapse
Affiliation(s)
- Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - José L Ramírez-Colón
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel Duzdevich
- Massachusetts General Hospital, Department of Molecular Biology, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
- Current address: Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | - Sam Lee
- MIT Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, USA
| | - Masateru Taniguchi
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Takahito Ohshiro
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Yuki Komoto
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Jason M Soderblom
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - M T Zuber
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Trumbo SK, Brown ME. The distribution of CO 2 on Europa indicates an internal source of carbon. Science 2023; 381:1308-1311. [PMID: 37733851 DOI: 10.1126/science.adg4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Jupiter's moon Europa has a subsurface ocean, the chemistry of which is largely unknown. Carbon dioxide (CO2) has previously been detected on the surface of Europa, but it was not possible to determine whether it originated from subsurface ocean chemistry, was delivered by impacts, or was produced on the surface by radiation processing of impact-delivered material. We mapped the distribution of CO2 on Europa using observations obtained with the James Webb Space Telescope (JWST). We found a concentration of CO2 within Tara Regio, a recently resurfaced terrain. This indicates that the CO2 is derived from an internal carbon source. We propose that the CO2 formed in the internal ocean, although we cannot rule out formation on the surface through radiolytic conversion of ocean-derived organics or carbonates.
Collapse
Affiliation(s)
- Samantha K Trumbo
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael E Brown
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Villanueva GL, Hammel HB, Milam SN, Faggi S, Kofman V, Roth L, Hand KP, Paganini L, Stansberry J, Spencer J, Protopapa S, Strazzulla G, Cruz-Mermy G, Glein CR, Cartwright R, Liuzzi G. Endogenous CO 2 ice mixture on the surface of Europa and no detection of plume activity. Science 2023; 381:1305-1308. [PMID: 37733858 DOI: 10.1126/science.adg4270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Jupiter's moon Europa has a subsurface ocean beneath an icy crust. Conditions within the ocean are unknown, and it is unclear whether it is connected to the surface. We observed Europa with the James Webb Space Telescope (JWST) to search for active release of material by probing its surface and atmosphere. A search for plumes yielded no detection of water, carbon monoxide, methanol, ethane, or methane fluorescence emissions. Four spectral features of carbon dioxide (CO2) ice were detected; their spectral shapes and distribution across Europa's surface indicate that the CO2 is mixed with other compounds and concentrated in Tara Regio. The 13CO2 absorption is consistent with an isotopic ratio of 12C/13C = 83 ± 19. We interpret these observations as indicating that carbon is sourced from within Europa.
Collapse
Affiliation(s)
- G L Villanueva
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - H B Hammel
- Association of Universities for Research in Astronomy, Washington, DC 20004, USA
| | - S N Milam
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - S Faggi
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- American University, Washington, DC 20016, USA
| | - V Kofman
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- American University, Washington, DC 20016, USA
| | - L Roth
- Royal Institute of Technology, Stockholm 104 50, Sweden
| | - K P Hand
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - L Paganini
- NASA Headquarters, Washington, DC 20546, USA
| | - J Stansberry
- Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - J Spencer
- Southwest Research Institute, Boulder, CO 80302, USA
| | - S Protopapa
- Southwest Research Institute, Boulder, CO 80302, USA
| | - G Strazzulla
- Osservatorio Astrofisico di Catania, Istituto Nazionale di Astrofisica, 95123 Catania, Italy
| | - G Cruz-Mermy
- Universite Paris-Sarclay, 91190 Gif-sur-Yvette, France
| | - C R Glein
- Southwest Research Institute, San Antonio, TX 78238, USA
| | - R Cartwright
- Carl Sagan Center for Research, Search for Extraterrestrial Intelligence Institute, Mountain View, CA 94043, USA
| | - G Liuzzi
- Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
17
|
Roberts JH, McKinnon WB, Elder CM, Tobie G, Biersteker JB, Young D, Park RS, Steinbrügge G, Nimmo F, Howell SM, Castillo-Rogez JC, Cable ML, Abrahams JN, Bland MT, Chivers C, Cochrane CJ, Dombard AJ, Ernst C, Genova A, Gerekos C, Glein C, Harris CD, Hay HCFC, Hayne PO, Hedman M, Hussmann H, Jia X, Khurana K, Kiefer WS, Kirk R, Kivelson M, Lawrence J, Leonard EJ, Lunine JI, Mazarico E, McCord TB, McEwen A, Paty C, Quick LC, Raymond CA, Retherford KD, Roth L, Rymer A, Saur J, Scanlan K, Schroeder DM, Senske DA, Shao W, Soderlund K, Spiers E, Styczinski MJ, Tortora P, Vance SD, Villarreal MN, Weiss BP, Westlake JH, Withers P, Wolfenbarger N, Buratti B, Korth H, Pappalardo RT. Exploring the Interior of Europa with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:46. [PMID: 37636325 PMCID: PMC10457249 DOI: 10.1007/s11214-023-00990-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.
Collapse
Affiliation(s)
| | | | - Catherine M Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Ryan S Park
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Francis Nimmo
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Samuel M Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Corey J Cochrane
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Carolyn Ernst
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | | | - Hamish C F C Hay
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Paul O Hayne
- University of Colorado Boulder, Boulder, CO, USA
| | | | - Hauke Hussmann
- German Aerospace Center Institute of Planetary Research, Berlin, Germany
| | | | | | - Walter S Kiefer
- Lunar and Planetary Institute, University Space Research Association, Houston, TX, USA
| | | | | | | | - Erin J Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Retherford
- Sapienza University of Rome, Rome, Italy
- University of Texas at San Antonio, San Antonio, TX, USA
| | - Lorenz Roth
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Abigail Rymer
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | - David A Senske
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Wencheng Shao
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Marshall J Styczinski
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- University of Washington, Seattle, WA, USA
| | - Paolo Tortora
- Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Steven D Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | - Bonnie Buratti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Haje Korth
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Robert T Pappalardo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Trinh KT, Bierson CJ, O'Rourke JG. Slow evolution of Europa's interior: metamorphic ocean origin, delayed metallic core formation, and limited seafloor volcanism. SCIENCE ADVANCES 2023; 9:eadf3955. [PMID: 37327336 DOI: 10.1126/sciadv.adf3955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Europa's ocean lies atop an interior made of metal and silicates. On the basis of gravity data from the Galileo mission, many argued that Europa's interior, like Earth, is differentiated into a metallic core and a mantle composed of anhydrous silicates. Some studies further assumed that Europa differentiated while (or soon after) it accreted, also like Earth. However, Europa probably formed at much colder temperatures, meaning that Europa plausibly ended accretion as a mixture containing water-ice and/or hydrated silicates. Here, we use numerical models to describe the thermal evolution of Europa's interior assuming low initial temperatures (~200 to 300 kelvin). We find that silicate dehydration can produce Europa's current ocean and icy shell. Rocks below the seafloor may remain cool and hydrated today. Europa's metallic core, if it exists, may have formed billions of years after accretion. Ultimately, we expect the chemistry of Europa's ocean to reflect protracted heating of the interior.
Collapse
Affiliation(s)
- Kevin T Trinh
- School of Earth and Space Exploration, Arizona State University, AZ 85287, USA
| | - Carver J Bierson
- School of Earth and Space Exploration, Arizona State University, AZ 85287, USA
| | - Joseph G O'Rourke
- School of Earth and Space Exploration, Arizona State University, AZ 85287, USA
| |
Collapse
|
19
|
Vannier P, Farrant GK, Klonowski A, Gaidos E, Thorsteinsson T, Marteinsson VÞ. Metagenomic analyses of a microbial assemblage in a subglacial lake beneath the Vatnajökull ice cap, Iceland. Front Microbiol 2023; 14:1122184. [PMID: 37065146 PMCID: PMC10098204 DOI: 10.3389/fmicb.2023.1122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
Skaftárkatlar are two subglacial lakes located beneath the Vatnajökull ice cap in Iceland associated with geothermal and volcanic activity. Previous studies of these lakes with ribosomal gene (16S rDNA) tag sequencing revealed a limited diversity of bacteria adapted to cold, dark, and nutrient-poor waters. In this study, we present analyses of metagenomes from the lake which give new insights into its microbial ecology. Analyses of the 16S rDNA genes in the metagenomes confirmed the existence of a low-diversity core microbial assemblage in the lake and insights into the potential metabolisms of the dominant members. Seven taxonomic genera, Sulfuricurvum, Sulfurospirillum, Acetobacterium, Pelobacter/Geobacter, Saccharibacteria, Caldisericum, and an unclassified member of Prolixibacteraceae, comprised more than 98% of the rDNA reads in the library. Functional characterisation of the lake metagenomes revealed complete metabolic pathways for sulphur cycling, nitrogen metabolism, carbon fixation via the reverse Krebs cycle, and acetogenesis. These results show that chemolithoautotrophy constitutes the main metabolism in this subglacial ecosystem. This assemblage and its metabolisms are not reflected in enrichment cultures, demonstrating the importance of in situ investigations of this environment.
Collapse
Affiliation(s)
- Pauline Vannier
- MATIS, Department of Research and Innovation, Reykjavík, Iceland
- *Correspondence: Pauline Vannier,
| | | | | | - Eric Gaidos
- Department of Earth Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | | | - Viggó þór Marteinsson
- MATIS, Department of Research and Innovation, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
- Viggó þór Marteinsson,
| |
Collapse
|
20
|
Martínez-Jiménez M, Benavides AL. The liquidus temperature curve of aqueous methanol mixtures: a numerical simulation study. J Chem Phys 2022; 157:104502. [DOI: 10.1063/5.0099751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The liquidus temperature curve that characterizes the boundary between the liquid methanol/water mixture and its coexistence with ice Ih is determined using the direct-coexistence method. Several methanol concentrations and pressures of 0.1 MPa, 50 MPa, and 100 MPa are considered. In this study, we used the TIP4P/Ice model for water and two different models for methanol: OPLS and OPLS/2016, using the geometric rule for the Lennard-Jones cross interactions. We compared our simulation results with available experimental data and found that this combination of models reproduces reasonably well the liquidus curve for methanol mole fractions up to xm=0.3 at p=0.1 MPa. The freezing point depression of these mixtures is calculated and compared to experimental results. We also analyzed the effect of pressure on the liquidus curve, and we found that both models also reproduce qualitatively well the experimental decreasing of the liquidus temperatures as the pressure increases.
Collapse
Affiliation(s)
| | - Ana Laura Benavides
- Ingeniería Física, Universidad de Guanajuato División de Ciencias e Ingenierías Campus León, Mexico
| |
Collapse
|
21
|
Contamination analysis of Arctic ice samples as planetary field analogs and implications for future life-detection missions to Europa and Enceladus. Sci Rep 2022; 12:12379. [PMID: 35896693 PMCID: PMC9329357 DOI: 10.1038/s41598-022-16370-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Missions to detect extraterrestrial life are being designed to visit Europa and Enceladus in the next decades. The contact between the mission payload and the habitable subsurface of these satellites involves significant risk of forward contamination. The standardization of protocols to decontaminate ice cores from planetary field analogs of icy moons, and monitor the contamination in downstream analysis, has a direct application for developing clean approaches crucial to life detection missions in these satellites. Here we developed a comprehensive protocol that can be used to monitor and minimize the contamination of Arctic ice cores in processing and downstream analysis. We physically removed the exterior layers of ice cores to minimize bioburden from sampling. To monitor contamination, we constructed artificial controls and applied culture-dependent and culture-independent techniques such as 16S rRNA amplicon sequencing. We identified 13 bacterial contaminants, including a radioresistant species. This protocol decreases the contamination risk, provides quantitative and qualitative information about contamination agents, and allows validation of the results obtained. This study highlights the importance of decreasing and evaluating prokaryotic contamination in the processing of polar ice cores, including in their use as analogs of Europa and Enceladus.
Collapse
|
22
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry Throughout This Solar System. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:197-219. [PMID: 35300527 DOI: 10.1146/annurev-anchem-061020-125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the greatest and most long-lived scientific pursuits of humankind has been to discover and study the planetary objects comprising our solar system. Information gained from solar system observations, via both remote sensing and in situ measurements, is inherently constrained by the analytical (often chemical) techniques we employ in these endeavors. The past 50 years of planetary science missions have resulted in immense discoveries within and beyond our solar system, enabled by state-of-the-art analytical chemical instrument suites on board these missions. In this review, we highlight and discuss some of the most impactful analytical chemical instruments flown on planetary science missions within the last 20 years, including analytical techniques ranging from remote spectroscopy to in situ chemical separations. We first highlight mission-based remote and in situ spectroscopic techniques, followed by in situ separation and mass spectrometry analyses. The results of these investigations are discussed, and their implications examined, from worlds as close as Venus and familiar as Mars to as far away and exotic as Titan. Instruments currently in development for planetary science missions in the near future are also discussed, as are the promises their capabilities bring. Analytical chemistry is critical to understanding what lies beyond Earth in our solar system, and this review seeks to highlight how questions, analytical tools, and answers have intersected over the past 20 years and their implications for the near future.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
23
|
The 3D Direct Simulation Monte Carlo Study of Europa’s Gas Plume. UNIVERSE 2022. [DOI: 10.3390/universe8050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Europa has been spotted as having water outgassing activities by space- and ground-based telescopes as well as reanalysis of the Galileo data. We adopt a 3D Direct Simulation Monte Carlo (DSMC) model to investigate the observed plume characteristics of Europa assuming that supersonic expansion originated from the subsurface vent. With a parametric study of the total gas production rate and initial gas bulk velocity, the gas number density, temperature and velocity information of the outgassing plumes from various case studies were derived. Our results show that the plume gases experience acceleration through mutual collisions and adiabatic cooling when exiting from the surface. The central part of the plume with relatively large gas production rates (1029 and 1030 H2O s−1) was found to sustain thermal equilibrium and near continuum condition. Column density maps integrated along two different viewing angles are presented to demonstrate the importance of the projection effect on remote sensing diagnostics. Finally, the density profiles at different altitudes are provided to prepare for observations of Europa’s plumes including upcoming spacecraft missions such as JUICE and Europa Clipper.
Collapse
|
24
|
Modeling Virus and Bacteria Populations in Europa’s Subsurface Ocean. Life (Basel) 2022; 12:life12050620. [PMID: 35629289 PMCID: PMC9147769 DOI: 10.3390/life12050620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
The search for life in the universe is often informed by the study of “extreme” environments on Earth, which provide analogs for habitable locations in the Solar System, and whose microbial inhabitants may therefore also serve as analogs for potential life forms in extraterrestrial milieus. Recent work has highlighted the ubiquity and importance of viral entities in terrestrial ecosystems, which calls for a greater understanding of the roles that viruses might play in hypothetical extraterrestrial biomes. While some studies have modeled the dynamics of viral and bacterial populations in icy ocean environments on Earth, previous work has yet to apply these findings to icy ocean worlds such as Jupiter’s moon Europa. It is commonly theorized that hydrothermal vents on Europa could produce the necessary reductants for chemosynthesis to take place on the ocean bottom. In the case that Europa’s ocean is a reductant-limited environment, how might reductants and organic matter reach the sub-ice region to power a more easily accessible ecosystem? Here, we propose a ‘viral elevator,’ a mechanism that functions similarly to the ‘viral shunt’ in Earth’s oceans, which could create and shuttle dissolved organic matter (DOM) to a hypothetical sub-ice biosphere through viral carriers. Current models of Europa’s ocean currents and stratification support the movement of DOM to the sub-ice biosphere. We adapt an existing model for bacterial and viral population dynamics in Earth’s Arctic sea ice to Europa and use parameters from various Arctic-based studies as proxies for Europa’s environment. We find that viral burst size has the most significant effect on the virus-to-bacteria ratio (VBR) and system longevity in closed systems (such as brine pockets within Europa’s icy crust), with higher burst sizes clearly increasing both. When applying our model to an open system with an influx of DOM from the viral elevator, we found that a steady-state system is attainable, with resulting sub-ice biofilms on the order of 0.1 mm thick (global equivalent layer). This has implications for future searches for life on Europa, given that life directly under the ice will be easier to detect and observe than life near the ocean bottom.
Collapse
|
25
|
Culberg R, Schroeder DM, Steinbrügge G. Double ridge formation over shallow water sills on Jupiter's moon Europa. Nat Commun 2022; 13:2007. [PMID: 35440535 PMCID: PMC9018861 DOI: 10.1038/s41467-022-29458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Jupiter's moon Europa is a prime candidate for extraterrestrial habitability in our solar system. The surface landforms of its ice shell express the subsurface structure, dynamics, and exchange governing this potential. Double ridges are the most common surface feature on Europa and occur across every sector of the moon, but their formation is poorly understood, with current hypotheses providing competing and incomplete mechanisms for the development of their distinct morphology. Here we present the discovery and analysis of a double ridge in Northwest Greenland with the same gravity-scaled geometry as those found on Europa. Using surface elevation and radar sounding data, we show that this double ridge was formed by successive refreezing, pressurization, and fracture of a shallow water sill within the ice sheet. If the same process is responsible for Europa's double ridges, our results suggest that shallow liquid water is spatially and temporally ubiquitous across Europa's ice shell.
Collapse
Affiliation(s)
- Riley Culberg
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Dustin M Schroeder
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,Department of Geophysics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
26
|
Styczinski MJ, Vance SD, Harnett EM, Cochrane CJ. A perturbation method for evaluating the magnetic field induced from an arbitrary, asymmetric ocean world analytically. ICARUS 2022; 376:114840. [PMID: 35140451 PMCID: PMC8819682 DOI: 10.1016/j.icarus.2021.114840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Magnetic investigations of icy moons have provided some of the most compelling evidence available confirming the presence of subsurface, liquid water oceans. In the exploration of ocean moons, especially Europa, there is a need for mathematical models capable of predicting the magnetic fields induced under a variety of conditions, including in the case of asymmetric oceans. Existing models are limited to either spherical symmetry or assume an ocean with infinite conductivity. In this work, we use a perturbation method to derive a semi-analytic result capable of determining the induced magnetic moments for an arbitrary layered body, provided each layer is nearly spherical. Crucially, we find that degree-2 tidal deformation results in changes to the induced dipole moments. We demonstrate application of our results to models of plausible asymmetry from the literature within the oceans of Europa and Miranda and the ionospheres of Callisto and Triton. For the models we consider, we find that in the asymmetric case, the induced magnetic field differs by more than 2 nT near the surface of Europa, 0.25-0.5 nT at 1 R above Miranda and Triton, and is essentially unchanged for Callisto. For Miranda and Triton, this difference is as much as 20%-30% of the induced field magnitude. If measurements near the moons can be made precisely to better than a few tenths of a nT, these values may be used by future spacecraft investigations to characterize asymmetry within the interior of icy moons.
Collapse
Affiliation(s)
- Marshall J. Styczinski
- Department of Physics, University of Washington, Box 351560, 3910 15th Ave NE, Seattle, WA 98195-1560, USA
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| | - Erika M. Harnett
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
- Department of Earth and Space Sciences, University of Washington, Box 351310, 4000 15th Ave NE, Seattle, WA 98195-1310, USA
| | - Corey J. Cochrane
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| |
Collapse
|
27
|
Salter TL, Magee BA, Waite JH, Sephton MA. Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons. ASTROBIOLOGY 2022; 22:143-157. [PMID: 35021862 DOI: 10.1089/ast.2020.2394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The icy moons of the outer Solar System display evidence of subsurface liquid water and, therefore, potential habitability for life. Flybys of Saturn's moon Enceladus by the Cassini spacecraft have provided measurements of material from plumes that suggest hydrothermal activity and the presence of organic matter. Jupiter's moon Europa may have similar plumes and is the target for the forthcoming Europa Clipper mission that carries a high mass resolution and high sensitivity mass spectrometer, called the MAss Spectrometer for Planetary EXploration (MASPEX), with the capability for providing detailed characterization of any organic materials encountered. We have performed a series of experiments using pyrolysis-gas chromatography-mass spectrometry to characterize the mass spectrometric fingerprints of microbial life. A range of extremophile Archaea and Bacteria have been analyzed and the laboratory data converted to MASPEX-type signals. Molecular characteristics of protein, carbohydrate, and lipid structures were detected, and the characteristic fragmentation patterns corresponding to these different biological structures were identified. Protein pyrolysis fragments included phenols, nitrogen heterocycles, and cyclic dipeptides. Oxygen heterocycles, such as furans, were detected from carbohydrates. Our data reveal how mass spectrometry on Europa Clipper can aid in the identification of the presence of life, by looking for characteristic bacterial fingerprints that are similar to those from simple Earthly organisms.
Collapse
Affiliation(s)
- Tara L Salter
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Brian A Magee
- Space Science and Engineering Division, Southwest Research Institute, Boulder, Colorado, USA
| | - J Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Cochrane CJ, Vance SD, Nordheim TA, Styczinski MJ, Masters A, Regoli LH. In Search of Subsurface Oceans Within the Uranian Moons. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021. [PMID: 35859709 DOI: 10.1029/2020je006418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Galileo mission to Jupiter discovered magnetic signatures associated with hidden subsurface oceans at the moons Europa and Callisto using the phenomenon of magnetic induction. These induced magnetic fields originate from electrically conductive layers within the moons and are driven by Jupiter's strong time-varying magnetic field. The ice giants and their moons are also ideal laboratories for magnetic induction studies. Both Uranus and Neptune have a strongly tilted magnetic axis with respect to their spin axis, creating a dynamic and strongly variable magnetic field environment at the orbits of their major moons. Although Voyager 2 visited the ice giants in the 1980s, it did not pass close enough to any of the moons to detect magnetic induction signatures. However, Voyager 2 revealed that some of these moons exhibit surface features that hint at recent geologically activity, possibly associated with subsurface oceans. Future missions to the ice giants may therefore be capable of discovering subsurface oceans, thereby adding to the family of known "ocean worlds" in our Solar System. Here, we assess magnetic induction as a technique for investigating subsurface oceans within the major moons of Uranus. Furthermore, we establish the ability to distinguish induction responses created by different interior characteristics that tie into the induction response: ocean thickness, conductivity and depth, and ionospheric conductance. The results reported here demonstrate the possibility of single-pass ocean detection and constrained characterization within the moons of Miranda, Ariel, and Umbriel, and provide guidance for magnetometer selection and trajectory design for future missions to Uranus.
Collapse
Affiliation(s)
- C J Cochrane
- Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
| | - S D Vance
- Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
| | - T A Nordheim
- Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
| | | | | | - L H Regoli
- Applied Physics Laboratory John Hopkins University Baltimore MD USA
| |
Collapse
|
29
|
Ashkenazy Y, Tziperman E. Dynamic Europa ocean shows transient Taylor columns and convection driven by ice melting and salinity. Nat Commun 2021; 12:6376. [PMID: 34737306 PMCID: PMC8569204 DOI: 10.1038/s41467-021-26710-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
The deep (~100 km) ocean of Europa, Jupiter's moon, covered by a thick icy shell, is one of the most probable places in the solar system to find extraterrestrial life. Yet, its ocean dynamics and its interaction with the ice cover have received little attention. Previous studies suggested that Europa's ocean is turbulent using a global model and taking into account non-hydrostatic effects and the full Coriolis force. Here we add critical elements, including consistent top and bottom heating boundary conditions and the effects of icy shell melting and freezing on ocean salinity. We find weak stratification that is dominated by salinity variations. The ocean exhibits strong transient convection, eddies, and zonal jets. Transient motions organize in Taylor columns parallel to Europa's axis of rotation, are static inside of the tangent cylinder and propagate equatorward outside the cylinder. The meridional oceanic heat transport is intense enough to result in a nearly uniform ice thickness, that is expected to be observable in future missions.
Collapse
Affiliation(s)
- Yosef Ashkenazy
- Department of Solar Energy and Environmental Physics, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Negev, 84990, Israel.
| | - Eli Tziperman
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, 20 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
30
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry in Astrobiology. Anal Chem 2021; 93:5981-5997. [PMID: 33835785 DOI: 10.1021/acs.analchem.0c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Amanda Michelle Stockton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Jaramillo-Botero A, Cable ML, Hofmann AE, Malaska M, Hodyss R, Lunine J. Understanding Hypervelocity Sampling of Biosignatures in Space Missions. ASTROBIOLOGY 2021; 21:421-442. [PMID: 33749334 PMCID: PMC7994429 DOI: 10.1089/ast.2020.2301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/09/2020] [Indexed: 05/08/2023]
Abstract
The atomic-scale fragmentation processes involved in molecules undergoing hypervelocity impacts (HVIs; defined as >3 km/s) are challenging to investigate via experiments and still not well understood. This is particularly relevant for the consistency of biosignals from small-molecular-weight neutral organic molecules obtained during solar system robotic missions sampling atmospheres and plumes at hypervelocities. Experimental measurements to replicate HVI effects on neutral molecules are challenging, both in terms of accelerating uncharged species and isolating the multiple transition states over very rapid timescales (<1 ps). Nonequilibrium first-principles-based simulations extend the range of what is possible with experiments. We report on high-fidelity simulations of the fragmentation of small organic biosignature molecules over the range v = 1-12 km/s, and demonstrate that the fragmentation fraction is a sensitive function of velocity, impact angle, molecular structure, impact surface material, and the presence of surrounding ice shells. Furthermore, we generate interpretable fragmentation pathways and spectra for velocity values above the fragmentation thresholds and reveal how organic molecules encased in ice grains, as would likely be the case for those in "ocean worlds," are preserved at even higher velocities than bare molecules. Our results place ideal spacecraft encounter velocities between 3 and 5 km/s for bare amino and fatty acids and within 4-6 km/s for the same species encased in ice grains and predict the onset of organic fragmentation in ice grains at >5 km/s, both consistent with recent experiments exploring HVI effects using impact-induced ionization and analysis via mass spectrometry and from the analysis of Enceladus organics in Cassini Data. From nanometer-sized ice Ih clusters, we establish that HVI energy is dissipated by ice casings through thermal resistance to the impact shock wave and that an upper fragmentation velocity limit exists at which ultimately any organic contents will be cleaved by the surrounding ice-this provides a fundamental path to characterize micrometer-sized ice grains. Altogether, these results provide quantifiable insights to bracket future instrument design and mission parameters.
Collapse
Affiliation(s)
- Andres Jaramillo-Botero
- Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, California, USA
| | - Morgan L. Cable
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Amy E. Hofmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael Malaska
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Robert Hodyss
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jonathan Lunine
- Department of Astronomy and Carl Sagan Institute, Cornell University, Ithaca, New York, USA
| |
Collapse
|
32
|
Fisher LA, Pontefract A, Som S, Carr CE, Klempay B, Schmidt B, Bowman J, Bartlett DH. Current state of athalassohaline deep‐sea hypersaline anoxic basin research—recommendations for future work and relevance to astrobiology. Environ Microbiol 2021; 23:3360-3369. [DOI: 10.1111/1462-2920.15414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Luke A. Fisher
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego La Jolla CA 92093‐0202 USA
| | | | - Sanjoy Som
- Blue Marble Space Institute of Science Seattle WA 98104 USA
| | - Christopher E. Carr
- Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA 30332 USA
| | - Benjamin Klempay
- Integrative Oceanography Division, Scripps Institution of Oceanography University of California San Diego La Jolla CA 92093‐0218 USA
| | - Britney Schmidt
- Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jeff Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography University of California San Diego La Jolla CA 92093‐0218 USA
- Center for Microbiome Innovation University of California San Diego La Jolla CA 92093‐0218 USA
| | - Douglas H. Bartlett
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego La Jolla CA 92093‐0202 USA
| |
Collapse
|
33
|
Abstract
The five largest planets all have strong intrinsic magnetic fields that interact with their satellites, many of which contain electrically conducting materials on global scales. Conducting bodies exposed to time-varying magnetic fields induce secondary magnetic fields from movement of eddy currents. In the case of spherically symmetric conducting bodies, matching magnetic solutions at the boundary results in relatively simple relations between the excitation field and the induced field. In this work, we determine the more complicated induced magnetic field from a near-spherical conductor, where the outer boundary is expanded in spherical harmonics. Under the approximations that the excitation field is uniform at a single frequency, the product of wavenumber and radius for the body is large, and the average radius of the body is large compared to the perturbation from spherical symmetry, we find that each spherical harmonic in the shape expansion induces discrete magnetic moments that are independent from the other harmonics in the expansion. That is, simple superposition applies to the magnetic moments induced by each perturbation harmonic. We present a table of the magnetic moments induced by each spherical harmonic up to degree 2 in the perturbed shape. We also present a simple formula by which the induced magnetic field may be evaluated for any arbitrary shape described by expanding the radius of the conducting body in spherical harmonics. Unlike the Earth, many moons in the Solar System are tidally locked to their parent bodies, and many also contain saline, subsurface oceans. Conductive material in these moons is therefore expected to be non-spherical. Accounting for the boundary shape of Europa's ocean will be critical for interpretation of Europa Clipper magnetic measurements near the moon, where the effects of quadrupole-and-higher magnetic moments will be most apparent. The results of this work permit magnetic studies considering non-spherical oceans of satellites for the first time.
Collapse
Affiliation(s)
- Marshall J. Styczinski
- Department of Physics, University of Washington, Box 351560, 3910 15th Ave NE, Seattle, WA 98195-1560, USA
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
- Corresponding author. (M.J. Styczinski)
| | - Erika M. Harnett
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
- Department of Earth and Space Sciences, University of Washington, Box 351310, 4000 15th Ave NE, Seattle, WA 98195-1310, USA
| |
Collapse
|
34
|
Howell SM, Pappalardo RT. NASA's Europa Clipper-a mission to a potentially habitable ocean world. Nat Commun 2020; 11:1311. [PMID: 32161262 PMCID: PMC7066167 DOI: 10.1038/s41467-020-15160-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/02/2022] Open
Abstract
Jupiter’s satellite Europa almost certainly hides a global saltwater ocean beneath its icy surface. Chemistry at the ice surface and ocean-rock interface might provide the building blocks for life, and NASA’s Europa Clipper mission will assess Europa’s habitability.
Collapse
Affiliation(s)
- Samuel M Howell
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Robert T Pappalardo
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
35
|
Taubner RS, Olsson-Francis K, Vance SD, Ramkissoon NK, Postberg F, de Vera JP, Antunes A, Camprubi Casas E, Sekine Y, Noack L, Barge L, Goodman J, Jebbar M, Journaux B, Karatekin Ö, Klenner F, Rabbow E, Rettberg P, Rückriemen-Bez T, Saur J, Shibuya T, Soderlund KM. Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. SPACE SCIENCE REVIEWS 2020; 216:9. [PMID: 32025060 PMCID: PMC6977147 DOI: 10.1007/s11214-020-0635-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 05/05/2023]
Abstract
The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus' plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Biology and Ecogenomics Division, University of Vienna, Vienna, Austria
| | | | | | | | | | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau SAR, China
| | | | | | - Lena Noack
- Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | - Elke Rabbow
- German Aerospace Center (DLR), Cologne, Germany
| | | | | | | | - Takazo Shibuya
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | |
Collapse
|
36
|
Sayag R. Rifting of Extensional Flows on a Sphere. PHYSICAL REVIEW LETTERS 2019; 123:214502. [PMID: 31809186 DOI: 10.1103/physrevlett.123.214502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 06/10/2023]
Abstract
The front of a fluid that displaces a less viscous fluid in shear-dominated flows is known to be stable. We show that in predominantly extensional flows on a sphere, a similar front of a strain-rate-softening fluid can become unstable and evolve fingerlike patterns comprised of rifts and tongues. The number of rifts and tongues declines with time and is selected by competition between interfacial hoop stress, geometric stretching, momentum dissipation, and spatial curvature. Our results elucidate fracture dynamics in complex fluids under extension and are applicable to a wide range of systems, including planetary-scale ice shelves as in snowball epochs and icy moons.
Collapse
Affiliation(s)
- Roiy Sayag
- Department of Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
37
|
Nayar H, Kim J, Chamberlain-Simon B, Carpenter K, Hans M, Boettcher A, Meirion-Griffith G, Wilcox B, Bittner B. Design optimization of a lightweight rocker–bogie rover for ocean worlds applications. INT J ADV ROBOT SYST 2019. [DOI: 10.1177/1729881419885696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Relatively recent discoveries have shown that large quantities of water can be found on moons of some of the planets among the gas giants in our solar system. Robotic mobility systems can study the varied geology and origins of these bodies if they are able to navigate the complex terrains of ocean worlds. The topographical features of ocean worlds present a unique combination of challenges for mobility. These include cryogenic ice, penitentes, salt evaporites, chaotic regions, and regolith with uncertain shear and sinkage properties. Uncertainty in both terrain properties and geometry motivates design of a platform that is mobile within a large range of obstacle geometries and terrain properties. This article reports on a research effort to study the requirements and numerically optimize the kinematic parameters of the rover to satisfy these goals. The platforms selected in the process were further verified via simulation. A simulation and analysis of grousers generated suitable designs for interaction with similar ledges and rough terrain. From this analysis, a prototype was developed and tested to meet the wide range of topography and terramechanics conditions expected on these bodies.
Collapse
Affiliation(s)
- Hari Nayar
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Junggon Kim
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Brendan Chamberlain-Simon
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Kalind Carpenter
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Michael Hans
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Anna Boettcher
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Gareth Meirion-Griffith
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Brian Wilcox
- Robotics and Mobility Systems, California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, USA
| | - Brian Bittner
- Robotics Institute, University of Michigan, Ann Arbor, USA
| |
Collapse
|
38
|
Extremophiles: a special or general case in the search for extra-terrestrial life? Extremophiles 2019; 24:167-175. [DOI: 10.1007/s00792-019-01144-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
|
39
|
|
40
|
Rettberg P, Antunes A, Brucato J, Cabezas P, Collins G, Haddaji A, Kminek G, Leuko S, McKenna-Lawlor S, Moissl-Eichinger C, Fellous JL, Olsson-Francis K, Pearce D, Rabbow E, Royle S, Saunders M, Sephton M, Spry A, Walter N, Wimmer Schweingruber R, Treuet JC. Biological Contamination Prevention for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know? ASTROBIOLOGY 2019; 19:951-974. [PMID: 30762429 PMCID: PMC6767865 DOI: 10.1089/ast.2018.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To ensure that scientific investments in space exploration are not compromised by terrestrial contamination of celestial bodies, special care needs to be taken to preserve planetary conditions for future astrobiological exploration. Significant effort has been made and is being taken to address planetary protection in the context of inner Solar System exploration. In particular for missions to Mars, detailed internationally accepted guidelines have been established. For missions to the icy moons in the outer Solar System, Europa and Enceladus, the planetary protection requirements are so far based on a probabilistic approach and a conservative estimate of poorly known parameters. One objective of the European Commission-funded project, Planetary Protection of Outer Solar System, was to assess the existing planetary protection approach, to identify inherent knowledge gaps, and to recommend scientific investigations necessary to update the requirements for missions to the icy moons.
Collapse
Affiliation(s)
- Petra Rettberg
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
- Address correspondence to: Petra Rettberg, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, 51147 Köln, Germany
| | - André Antunes
- GEMM—Group for Extreme and Marine Microbiology, Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - John Brucato
- Department of Physics and Astronomy, Astrophysical Observatory of Arcetri, National Institute for Astrophysics (INAF), Florence, Italy
| | - Patricia Cabezas
- Science Connect–European Science Foundation (ESF), Strasbourg, France
| | - Geoffrey Collins
- Department of Physics and Astronomy, Wheaton College, Massachusetts, Norton, Massachusetts
| | - Alissa Haddaji
- Committee on Space Research (COSPAR), Montpellier, France
| | - Gerhard Kminek
- Committee on Space Research (COSPAR), Montpellier, France
| | - Stefan Leuko
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | | | | | - Jean-Louis Fellous
- Department of Physics and Astronomy, Wheaton College, Massachusetts, Norton, Massachusetts
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering & Mathematics, School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | - David Pearce
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
| | - Elke Rabbow
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Samuel Royle
- Faculty of Engineering, Department of Earth Science & Engineering, Imperial College, London, United Kingdom
| | - Mark Saunders
- Independent Consultant for the US National Academies of Sciences (NAS), Washington, District of Columbia
| | - Mark Sephton
- Faculty of Engineering, Department of Earth Science & Engineering, Imperial College, London, United Kingdom
| | - Andy Spry
- Carl Sagan Center, SETI, Mountain View, California
| | - Nicolas Walter
- Science Connect–European Science Foundation (ESF), Strasbourg, France
| | - Robert Wimmer Schweingruber
- Institut für Experimentelle und Angewandte Physik, Abteilung Extraterrestrische Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | |
Collapse
|
41
|
Ashkenazy Y. The surface temperature of Europa. Heliyon 2019; 5:e01908. [PMID: 31294099 PMCID: PMC6595243 DOI: 10.1016/j.heliyon.2019.e01908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/10/2019] [Accepted: 06/03/2019] [Indexed: 11/01/2022] Open
Abstract
Previous estimates of the annual mean surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the emissivity and heat capacity of Europa's ice, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), the effect of Jupiter's radiation, and the effect of Europa's internal heating. Other studies concentrated on the diurnal cycle but neglected some of the above factors. In addition, to our knowledge, the seasonal cycle of the surface temperature of Europa was not estimated. Here we systematically estimate the diurnal, seasonal and annual mean surface temperature of Europa, when Europa's obliquity, emissivity, heat capacity, and eclipse, as well as Jupiter's radiation, internal heating, and eccentricity, are all taken into account. For a typical internal heating rate of 0.05 W m - 2 , the equator, pole, and the global and mean annual mean surface temperatures are 96 K, 46 K, and 90 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating, especially during the winter solstice, suggesting that measurements of high latitude surface temperatures can be used to constrain the internal heating. We also estimate the incoming solar radiation to Enceladus, the moon of Saturn.
Collapse
Affiliation(s)
- Yosef Ashkenazy
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University, Midreshet Ben-Gurion, Israel
| |
Collapse
|
42
|
Ward LM, Stamenković V, Hand K, Fischer WW. Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life. ASTROBIOLOGY 2019; 19:811-824. [PMID: 31188035 DOI: 10.1089/ast.2017.1779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerobic respiration-the reduction of molecular oxygen (O2) coupled to the oxidation of reduced compounds such as organic carbon, ferrous iron, reduced sulfur compounds, or molecular hydrogen while conserving energy to drive cellular processes-is the most widespread and bioenergetically favorable metabolism on Earth today. Aerobic respiration is essential for the development of complex multicellular life; thus the presence of abundant O2 is an important metric for planetary habitability. O2 on Earth is supplied by oxygenic photosynthesis, but it is becoming more widely understood that abiotic processes may supply meaningful amounts of O2 on other worlds. The modern atmosphere and rock record of Mars suggest a history of relatively high O2 as a result of photochemical processes, potentially overlapping with the range of O2 concentrations used by biology. Europa may have accumulated high O2 concentrations in its subsurface ocean due to the radiolysis of water ice at its surface. Recent modeling efforts suggest that coexisting water and O2 may be common on exoplanets, with confirmation from measurements of exoplanet atmospheres potentially coming soon. In all these cases, O2 accumulates through abiotic processes-independent of water-oxidizing photosynthesis. We hypothesize that abiogenic O2 may enhance the habitability of some planetary environments, allowing highly energetic aerobic respiration and potentially even the development of complex multicellular life which depends on it, without the need to first evolve oxygenic photosynthesis. This hypothesis is testable with further exploration and life-detection efforts on O2-rich worlds such as Mars and Europa, and comparison to O2-poor worlds such as Enceladus. This hypothesis further suggests a new dimension to planetary habitability: "Follow the Oxygen," in which environments with opportunities for energy-rich metabolisms such as aerobic respiration are preferentially targeted for investigation and life detection.
Collapse
Affiliation(s)
- Lewis M Ward
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Vlada Stamenković
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Kevin Hand
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Woodward W Fischer
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
43
|
Trumbo SK, Brown ME, Hand KP. Sodium chloride on the surface of Europa. SCIENCE ADVANCES 2019; 5:eaaw7123. [PMID: 31206026 PMCID: PMC6561749 DOI: 10.1126/sciadv.aaw7123] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 06/01/2023]
Abstract
The potential habitability of Europa's subsurface ocean depends on its chemical composition, which may be reflected in that of Europa's geologically young surface. Investigations using Galileo Near-Infrared Mapping Spectrometer data led to the prevailing view that Europa's endogenous units are rich in sulfate salts. However, recent ground-based infrared observations have suggested that, while regions experiencing sulfur radiolysis may contain sulfate salts, Europa's more pristine endogenous material may reflect a chloride-dominated composition. Chlorides have no identifying spectral features at infrared wavelengths, but develop distinct visible-wavelength absorptions under irradiation, like that experienced on the surface of Europa. Using spectra obtained with the Hubble Space Telescope, we present the detection of a 450-nm absorption indicative of irradiated sodium chloride on the surface. The feature correlates with geologically disrupted chaos terrain, suggesting an interior source. The presence of endogenous sodium chloride on the surface of Europa has important implications for our understanding of its subsurface chemistry.
Collapse
Affiliation(s)
- Samantha K Trumbo
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael E Brown
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
44
|
Hendrix AR, Hurford TA, Barge LM, Bland MT, Bowman JS, Brinckerhoff W, Buratti BJ, Cable ML, Castillo-Rogez J, Collins GC, Diniega S, German CR, Hayes AG, Hoehler T, Hosseini S, Howett CJ, McEwen AS, Neish CD, Neveu M, Nordheim TA, Patterson GW, Patthoff DA, Phillips C, Rhoden A, Schmidt BE, Singer KN, Soderblom JM, Vance SD. The NASA Roadmap to Ocean Worlds. ASTROBIOLOGY 2019; 19:1-27. [PMID: 30346215 PMCID: PMC6338575 DOI: 10.1089/ast.2018.1955] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 05/20/2023]
Abstract
In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to "identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find." The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists.
Collapse
Affiliation(s)
- Amanda R. Hendrix
- Planetary Science Institute, Tucson, Arizona
- Address correspondence to: Amanda R. Hendrix, Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719
| | | | - Laura M. Barge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael T. Bland
- Astrogeology Science Center, U.S. Geological Survey, Flagstaff, Arizona
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, La Jolla, California
| | | | - Bonnie J. Buratti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Julie Castillo-Rogez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Serina Diniega
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Alexander G. Hayes
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Tori Hoehler
- NASA Ames Research Center, Mountain View, California
| | - Sona Hosseini
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona
| | - Catherine D. Neish
- Planetary Science Institute, Tucson, Arizona
- Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Marc Neveu
- NASA HQ/Universities Space Association, Washington, District of Columbia
| | - Tom A. Nordheim
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Cynthia Phillips
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Britney E. Schmidt
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - Jason M. Soderblom
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
45
|
Stevens AH, Childers D, Fox-Powell M, Nicholson N, Jhoti E, Cockell CS. Growth, Viability, and Death of Planktonic and Biofilm Sphingomonas desiccabilis in Simulated Martian Brines. ASTROBIOLOGY 2019; 19:87-98. [PMID: 30048150 PMCID: PMC6338574 DOI: 10.1089/ast.2018.1840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 05/22/2023]
Abstract
Aqueous solutions on Mars are theorized to contain very different ion compositions than those on Earth. To determine the effect of such solutions on typical environmental micro-organisms, which could be released from robotic spacecraft or human exploration activity, we investigated the resistance of Sphingomonas desiccabilis to brines that simulate the composition of martian aqueous environments. S. desiccabilis is a desiccation-resistant, biofilm-forming microbe found in desert crusts. The viability of cells in both planktonic and biofilm forms was measured after exposure to simulated martian brines. Planktonic cells showed a loss of viability over the course of several hours in almost all of the seven brines tested. Biofilms conferred greater resistance to all the brines, including those with low water activity and pH, but even cells in biofilms showed a complete loss of viability in <6 h in the harsher brines and in <2 days in the less harsh brines. One brine, however, allowed the microbes to maintain viability over several days, despite having a water activity and pH lower and ionic strength higher than brines that reduced viability over the same timescales, suggesting important ion-specific effects. These data show that biofilm-forming cells have a greater capacity to resist martian aqueous extremes, but that evaporative or deliquescent brines are likely to be destructive to many organisms over relatively short timescales, with implications for the habitability of Mars and for micro-organisms dispersed by robotic or human explorers.
Collapse
Affiliation(s)
- Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Delma Childers
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- Aberdeen Fungal Group, Institute of Medical Sciences, MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, United Kingdom
| | - Mark Fox-Powell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisha Jhoti
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
47
|
Sephton MA, Waite JH, Brockwell TG. How to Detect Life on Icy Moons. ASTROBIOLOGY 2018; 18:843-855. [PMID: 30035638 PMCID: PMC6067095 DOI: 10.1089/ast.2017.1656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 12/10/2017] [Indexed: 05/09/2023]
Abstract
The icy moons of the outer Solar System present the possibility of subsurface water, habitable conditions, and potential abodes for life. Access to evidence that reveals the presence of life on the icy moons can be facilitated by plumes that eject material from the subsurface out into space. One instrument capable of performing life-search investigations at the icy moons is the MAss SPectrometer for Planetary EXploration/Europa (MASPEX), which constitutes a high-resolution, high-sensitivity multibounce time-of-flight mass spectrometer capable of measuring trace amounts (ppb) of organic compounds. MASPEX has been selected for the NASA Europa Clipper mission and will sample any plumes and the surface-sputtered atmosphere to assess any evidence for habitability and life. MASPEX is capable of similar investigations targeted at other icy moons. Data may be forthcoming from direct sampling but also impact dissociation because of the high speed of some analytes. Impact dissociation is analogous to the dissociation provided by modern analytical pyrolysis methods. Radiolytic dissociation on the europan surface before or during the sputtering process can also induce fragmentation similar to pyrolysis. In this study, we have compiled pyrolysis mass spectrometry data from a variety of biological and nonbiological materials to demonstrate the ability of MASPEX to recognize habitability and detect life in any plumes and atmospheres of icy moons. Key Words: Europa-Icy moons-Life detection-Mass spectrometry-Organic matter. Astrobiology 18, 843-855.
Collapse
Affiliation(s)
- Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jack Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas
| | - Tim G. Brockwell
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas
| |
Collapse
|
48
|
Arney G, Domagal-Goldman SD, Meadows VS. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres. ASTROBIOLOGY 2018; 18:311-329. [PMID: 29189040 PMCID: PMC5867516 DOI: 10.1089/ast.2017.1666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/20/2017] [Indexed: 05/21/2023]
Abstract
Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ∼ 0.2, but at 30× the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 μm, likely the most accessible CO2 feature on an Archean-like exoplanet. Key Words: Organic haze-Organic sulfur gases-Biosignatures-Archean Earth. Astrobiology 18, 311-329.
Collapse
Affiliation(s)
- Giada Arney
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Shawn D. Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Victoria S. Meadows
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
- Astronomy Department, University of Washington, Seattle, Washington
- University of Washington Astrobiology Program, Seattle, Washington
| |
Collapse
|
49
|
Desai RT, Cowee MM, Wei H, Fu X, Gary SP, Volwerk M, Coates AJ. Hybrid Simulations of Positively and Negatively Charged Pickup Ions and Cyclotron Wave Generation at Europa. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2017; 122:10408-10420. [PMID: 29263979 PMCID: PMC5726379 DOI: 10.1002/2017ja024479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K+, O 2+, Na+, and Cl+, indicating the localized pickup of these species. Additional evidence for the presence of chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarized transverse wave power near the Cl+ gyrofrequency, thought to be due to the pickup of both Cl+ and the easily formed chlorine anion, Cl-. To test this hypothesis, we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negative pickup ions and self-consistently reproduce the growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in nongyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localized regions at Europa.
Collapse
Affiliation(s)
- R. T. Desai
- Mullard Space Science LaboratoryUniversity College LondonLondonUK
- Centre for Planetary SciencesUniversity College London/BirkbeckLondonUK
| | - M. M. Cowee
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - H. Wei
- Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesCAUSA
| | - X. Fu
- Space Science InstituteBoulderCOUSA
| | - S. P. Gary
- Los Alamos National LaboratoryLos AlamosNMUSA
- Space Science InstituteBoulderCOUSA
| | - M. Volwerk
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - A. J. Coates
- Mullard Space Science LaboratoryUniversity College LondonLondonUK
- Centre for Planetary SciencesUniversity College London/BirkbeckLondonUK
| |
Collapse
|
50
|
|