1
|
Miller GW. Exposomics: perfection not required. EXPOSOME 2024; 4:osae006. [PMID: 39372501 PMCID: PMC11450953 DOI: 10.1093/exposome/osae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Gary W Miller
- Editor-in-Chief, Exposome, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
3
|
Almeida Filho N. Towards a unified theory of health-disease: II. Holopathogenesis. Rev Saude Publica 2014; 48:192-205. [PMID: 24897040 PMCID: PMC4206141 DOI: 10.1590/s0034-8910.2014048005196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
This article presents a systematic framework for modeling several classes of illness-sickness-disease named as Holopathogenesis. Holopathogenesis is defined as processes of over-determination of diseases and related conditions taken as a whole, comprising selected facets of the complex object Health. First, a conceptual background of Holopathogenesis is presented as a series of significant interfaces (biomolecular-immunological, physiopathological-clinical, epidemiological-ecosocial). Second, propositions derived from Holopathogenesis are introduced in order to allow drawing the disease-illness-sickness complex as a hierarchical network of networks. Third, a formalization of intra- and inter-level correspondences, over-determination processes, effects and links of Holopathogenesis models is proposed. Finally, the Holopathogenesis frame is evaluated as a comprehensive theoretical pathology taken as a preliminary step towards a unified theory of health-disease.
Collapse
Affiliation(s)
- Naomar Almeida Filho
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brasil
| |
Collapse
|
4
|
Hatala AR. The Status of the “Biopsychosocial” Model in Health Psychology: Towards an Integrated Approach and a Critique of Cultural Conceptions. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojmp.2012.14009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Jonas WB. Building an Evidence House: Challenges and Solutions to Research in Complementary and Alternative Medicine. Complement Med Res 2005; 12:159-67. [PMID: 15985781 DOI: 10.1159/000085412] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conventional biomedicine is having a revolution in scientific input from genomics to imaging to information and systems biology. Biomedicine is also struggling to find a balance between rigor and relevance such that public values and health care costs can be properly managed. At the same time complementary and alternative medicine (CAM) is becoming increasingly popular. Can rigorous research in CAM be developed? Can it be held to the same standards of evidence as conventional medicine? Should it be held to those standards? Are there additional standards and better integration strategies for CAM that are of value to all medicine, complementary or conventional? In this article, I address some of the major challenges faced by investigators when conducting research in CAM. These challenges include: quality standards of research; the evolving nature of science; accommodating pluralism; addressing underlying assumptions; and, managing controversial topics in CAM research. These challenges are formidable and will require that CAM attain a sufficient level of science to move it out of the margins of health care and a more careful approach to research integration that can keep its focus on public benefit and the public's health. I suggest a framework of an 'Evidence House' for addressing many of these challenges.
Collapse
Affiliation(s)
- Wayne B Jonas
- Samueli Institute for Information Biology, Alexandria, VA 22314, USA.
| |
Collapse
|
6
|
Liu G, Lee TMH, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms. J Am Chem Soc 2005; 127:38-9. [PMID: 15631437 DOI: 10.1021/ja043780a] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bioelectronic method for coding unknown single nucleotide polymorphisms (SNPs) based on the use of different encoding nanocrystals is described. Four such nanocrystals, ZnS, CdS, PbS, and CuS, linked to the adenosine, cytidine, guanosine and thymidine mononucleotides, respectively, are sequentially introduced to the DNA hybrid-coated magnetic-bead solution. Each mutation captures via base pairing different nanocrystal-mononucleotide conjugates, and yields a characteristic multipotential voltammogram, whose peak potentials reflect the identity of the mismatch. The mismatch recognition events are being amplified by the metal accumulation feature of the stripping voltammetric transduction mode. Each of the eight possible one-base mismatches can thus be identified in a single voltammetric run. The use of nanocrystal tracers for detecting two known mutations in a single DNA target is also illustrated in connection to nanocrystals linked to two nucleotides along with a single voltammetric run. The protocol presented should facilitate the rapid, simple, low-cost, and high throughput screening for SNPs.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Chemical Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-6006, USA
| | | | | |
Collapse
|
7
|
Nóbrega MA, Zhu Y, Plajzer-Frick I, Afzal V, Rubin EM. Megabase deletions of gene deserts result in viable mice. Nature 2004; 431:988-93. [PMID: 15496924 DOI: 10.1038/nature03022] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 09/08/2004] [Indexed: 12/24/2022]
Abstract
The functional importance of the roughly 98% of mammalian genomes not corresponding to protein coding sequences remains largely undetermined. Here we show that some large-scale deletions of the non-coding DNA referred to as gene deserts can be well tolerated by an organism. We deleted two large non-coding intervals, 1,511 kilobases and 845 kilobases in length, from the mouse genome. Viable mice homozygous for the deletions were generated and were indistinguishable from wild-type littermates with regard to morphology, reproductive fitness, growth, longevity and a variety of parameters assaying general homeostasis. Further detailed analysis of the expression of multiple genes bracketing the deletions revealed only minor expression differences in homozygous deletion and wild-type mice. Together, the two deleted segments harbour 1,243 non-coding sequences conserved between humans and rodents (more than 100 base pairs, 70% identity). Some of the deleted sequences might encode for functions unidentified in our screen; nonetheless, these studies further support the existence of potentially 'disposable DNA' in the genomes of mammals.
Collapse
|
8
|
Abstract
This year marks the 50th anniversary of the identification of the 3-dimensional structure of the DNA double helix and the completion of the US Human Genome Project. Now that we have completed the human genome sequence, what have we learned? How will this information benefit humankind? And, what are the implications for our patients in obstetrics and gynecology? Perhaps the biggest surprise is that there are only approximately 30,000 human genes, far fewer than earlier estimated. I propose the term "gynome" to describe that part of the human genome that is unique to women. We have learned that manifestations of diseases and therapeutic response can be gender specific. A major challenge is to define the interplay of the genetic variations of women with variations in their environment and lifestyle. Ultimately, this should lead to improved diagnosis of disease, earlier detection of genetic predispositions to disease, the design of more effective drugs, and gene therapy.
Collapse
Affiliation(s)
- Sherman Elias
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Cui Y, Wang J, Zhang X, Lang R, Bi M, Guo L, Lu SH. ECRG2, a novel candidate of tumor suppressor gene in the esophageal carcinoma, interacts directly with metallothionein 2A and links to apoptosis. Biochem Biophys Res Commun 2003; 302:904-15. [PMID: 12646258 DOI: 10.1016/s0006-291x(03)00122-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Esophageal cancer related gene 2 (ECRG2) is a novel candidate of the tumor suppressor gene identified from human esophagus. To study the biological role of the ECRG2 gene, we performed a GAL4-based yeast two-hybrid screening of a human fetal liver cDNA library. Using the ECRG2 cDNA as bait, we identified nine putative clones as associated proteins. The interaction of ECRG2 and metallothionein 2A (MT2A) was confirmed by glutathione S-transferase pull-down assays in vitro and co-immunoprecipitation experiments in vivo. ECRG2 co-localized with MT2A mostly to nuclei and slightly to cytoplasm, as shown by confocal microscopy. Transfection of ECRG2 gene inhibited cell proliferation and induced apoptosis in esophageal cancer cells. In the co-transfection of ECRG2 and MT2A assays, cell proliferation was inhibited and apoptosis was slightly induced compared with control groups. When we used antisense MT2A to interdict the effect of MT2A, the inhibition of cell proliferation and induction of apoptosis were significantly enhanced. When we used antisense ECRG2 to interdict the effect of ECRG2 in the group of Bel7402 cells co-transfected with ECRG2 and MT2A, the inhibition of cell proliferation and induction of apoptosis disappeared. The results provide evidence for ECRG2 in esophageal cancer cells acting as a bifunctional protein associated with the regulation of cell proliferation and induction of apoptosis. ECRG2 might reduce the function of MT2A on the regulation of cell proliferation and induction of apoptosis. The physical interaction of ECRG2 and MT2A may play an important role in the carcinogenesis of esophageal cancer.
Collapse
Affiliation(s)
- Yongping Cui
- Department of Etiology and Carcinogenesis, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The Cannon lecture this year illustrates how knowledge of DNA sequences of complex living organisms is beginning to shape the landscape of physiology in the 21st century. Enormous challenges and opportunities now exist for physiologists to relate the galaxy of genes to normal and pathological functions. The first extensive genomic systems biology map for cardiovascular and renal function was completed last year as well as a new hypothesis-generating tool ("physiological profiling") that enables us to hypothesize relationships between specific genes responsible for the regulation of regulatory pathways. Techniques of chromosomal substitution (consomic and congenic rats) are beginning to confirm statistical results from linkage analysis studies, narrow the regions of genetic interest for positional cloning, and provide genetically well-defined control strains for physiological studies. Patterns of gene expression identified by microarray and mapping of expressed genes to chromosomal sites are adding to the understanding of systems physiology. The previously unimaginable goal of connecting approximately 36,000 genes to the complex functions of mammalian systems is indeed well underway.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
11
|
|
12
|
Phillips TJ, Belknap JK, Hitzemann RJ, Buck KJ, Cunningham CL, Crabbe JC. Harnessing the mouse to unravel the genetics of human disease. GENES, BRAIN, AND BEHAVIOR 2002; 1:14-26. [PMID: 12886946 DOI: 10.1046/j.1601-1848.2001.00011.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Complex traits, i.e. those with multiple genetic and environmental determinants, represent the greatest challenge for genetic analysis, largely due to the difficulty of isolating the effects of any one gene amid the noise of other genetic and environmental influences. Methods exist for detecting and mapping the Quantitative Trait Loci (QTLs) that influence complex traits. However, once mapped, gene identification commonly involves reduction of focus to single candidate genes or isolated chromosomal regions. To reach the next level in unraveling the genetics of human disease will require moving beyond the focus on one gene at a time, to explorations of pleiotropism, epistasis and environment-dependency of genetic effects. Genetic interactions and unique environmental features must be as carefully scrutinized as are single gene effects. No one genetic approach is likely to possess all the necessary features for comprehensive analysis of a complex disease. Rather, the entire arsenal of behavioral genomic and other approaches will be needed, such as random mutagenesis, QTL analyses, transgenic and knockout models, viral mediated gene transfer, pharmacological analyses, gene expression assays, antisense approaches and importantly, revitalization of classical genetic methods. In our view, classical breeding designs are currently underutilized, and will shorten the distance to the target of understanding the complex genetic and environmental interactions associated with disease. We assert that unique combinations of classical approaches with current behavioral and molecular genomic approaches will more rapidly advance the field.
Collapse
Affiliation(s)
- T J Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Brazill SA, Kim PH, Kuhr WG. Capillary gel electrophoresis with sinusoidal voltammetric detection: a strategy to allow four-"color" DNA sequencing. Anal Chem 2001; 73:4882-90. [PMID: 11681464 DOI: 10.1021/ac010521k] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel detection strategy for DNA sequencing applications that utilizes a frequency-based electrochemical method is reported. Sinusoidal voltammetry is used to selectively identify four unique redox molecules that are covalently attached to the 5'-end of a 20-base sequencing primer. The tags used in this work are ferrocene derivatives with different substituents attached to the ferrocene ring, where the electron-donating or -withdrawing character of the substituent alters the half-wave potential of the modified ferrocene. Therefore, each tag has a unique SV frequency spectrum that can be easily identified in the frequency domain. In this work, the discrimination of one tag versus all others is accomplished through a "phase-nulling" technique. The signal for each tag is selectively eliminated while the other three responses remain virtually unchanged. This analysis scheme allows for the selective identification of each tagged oligonucleotide eluting in sieving polymer capillary gel electrophoresis with a separation efficiency of 2 x 10(6) theoretical plates per meter. This separation efficiency is sufficient to perform "low-resolution" DNA sequencing; the conditions used in this work have not yet been optimized for high-resolution sequencing applications.
Collapse
Affiliation(s)
- S A Brazill
- Department of Chemistry, University of California, Riverside 92521-0403, USA
| | | | | |
Collapse
|
14
|
Abstract
Fourteen neurological diseases are known to be caused by anomalous expansion of unstable trinucleotide repeats. The mechanism that links such expansions to the corresponding pathologies is still unknown. It is thought to cover a variety of mechanisms ranging from interference with nucleic acid structure and transcription to alterations in protein structure and functions. Understanding the cellular role of the proteins involved in these diseases is of primary importance to design possible therapeutical approaches. Structural biology is a powerful tool for providing a detailed description at atomic resolution of protein functions and suggesting working hypotheses which can then be tested experimentally. In this review we discuss the available structural knowledge about proteins involved in trinucleotide expansion diseases and how this may influence our current means of investigation.
Collapse
Affiliation(s)
- L Masino
- National Institute for Medical Research, London, UK
| | | |
Collapse
|
15
|
|
16
|
Affiliation(s)
- D S Roos
- Department of Biology and Genomics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|