1
|
Li M, Yao H, Yi K, Lao YH, Shao D, Tao Y. Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomater Sci 2024; 12:2203-2228. [PMID: 38293828 DOI: 10.1039/d3bm01970e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Tsubata T. The ligand interactions of B cell Siglecs are involved in the prevention of autoimmunity to sialylated self-antigens and in the quality control of signaling-competent B cells. Int Immunol 2023; 35:461-473. [PMID: 37504378 DOI: 10.1093/intimm/dxad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of membrane molecules that recognize sialic acid. Most of them are inhibitory receptors that inhibit immune-cell activation by recognizing sialic acid as a self-motif. Human B cells express CD22 (also known as Siglec-2), Siglec-5, Siglec-6 and Siglec-10 whereas mouse B cells express CD22 and Siglec-G (ortholog of human Siglec-10). Siglecs recognize both sialylated molecules expressed on the same cell (cis-ligands) and those expressed by other cells (trans-ligands). In Guillain-Barré syndrome (GBS), antibody production to gangliosides (which are sialic acid-containing glycolipids) expressed by neurons plays a pathogenic role. A Siglec-10 variant deficient in recognition of gangliosides is genetically associated with GBS, suggesting that Siglec-10 induces self-tolerance to gangliosides by recognizing gangliosides as trans-ligands. Recognition of the BCR as a cis-ligand by Siglec-G and CD22 suppresses BCR signaling in B-1 cells and conventional B cells, respectively. This signal suppression prevents excess expansion of B-1 cells and is involved in the quality control of signaling-competent B cells by setting a threshold for tonic signaling during B cell development. CD22 recognizes other cis-ligands including CD22 and β7 integrin. Interaction of CD22 with other CD22 molecules induces CD22 clustering that suppresses CD22-mediated signal inhibition upon BCR ligation, and interaction with β7 integrin maintains its function in the gut-homing of B cells. Taken together, interactions of B cell Siglecs with multiple trans- and cis-ligands play important roles in B cell homeostasis and immune responses.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
3
|
Tsubata T. Siglec cis-ligands and their roles in the immune system. Glycobiology 2023; 33:532-544. [PMID: 37154567 DOI: 10.1093/glycob/cwad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins are a family of membrane molecules primarily expressed in immune cells. Most of them are inhibitory receptors containing immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. On the cell surface, sialic acid-binding immunoglobulin-like lectins are mostly bound by sialylated glycans on membrane molecules expressed in the same cell (cis-ligands). Although ligands of sialic acid-binding immunoglobulin-like lectins are not efficiently identified by conventional methods such as immunoprecipitation, in situ labeling including proximity labeling is useful in identifying both cis-ligands and the sialylated ligands expressed by other cells (trans-ligands) of sialic acid-binding immunoglobulin-like lectins. Interaction of the inhibitory sialic acid-binding immunoglobulin-like lectins with cis-ligands including both those with and without signaling function modulates the inhibitory activity of sialic acid-binding immunoglobulin-like lectins by multiple different ways. This interaction also modulates signaling function of the cis-ligands. So far, little is known about the role of the interaction between sialic acid-binding immunoglobulin-like lectins and the cis-ligands. Nonetheless, recent studies showed that the inhibitory activity of CD22 (also known as Siglec-2) is regulated by endogenous ligands, most likely cis-ligands, differentially in resting B cells and those in which B-cell antigen receptor is ligated. This differential regulation plays a role in quality control of signaling-competent B cells and also partial restoration of B-cell antigen receptor signaling in immunodeficient B cells.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Pathology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
4
|
Abstract
![]()
Proximity
labeling can be defined as an enzymatic “in-cell”
chemical reaction that catalyzes the proximity-dependent modification
of biomolecules in live cells. Since the modified proteins can be
isolated and identified via mass spectrometry, this method has been
successfully utilized for the characterization of local proteomes
such as the sub-mitochondrial proteome and the proteome at membrane
contact sites, or spatiotemporal interactome information in live cells,
which are not “accessible” via conventional methods.
Currently, proximity labeling techniques can be applied not only for
local proteome mapping but also for profiling local RNA and DNA, in
addition to showing great potential for elucidating spatial cell–cell
interaction networks in live animal models. We believe that proximity
labeling has emerged as an essential tool in “spatiomics,”
that is, for the extraction of spatially distributed biological information
in a cell or organism. Proximity labeling is a multidisciplinary
chemical technique. For
a decade, we and other groups have engineered it for multiple applications
based on the modulation of enzyme chemistry, chemical probe design,
and mass analysis techniques that enable superior mapping results.
The technique has been adopted in biology and chemistry. This “in-cell”
reaction has been widely adopted by biologists who modified it into
an in vivo reaction in animal models. In our laboratory, we conducted
in vivo proximity labeling reactions in mouse models and could successfully
obtain the liver-specific secretome and muscle-specific mitochondrial
matrix proteome. We expect that proximity reaction can further contribute
to revealing tissue-specific localized molecular information in live
animal models. Simultaneously, chemists have also adopted the
concept and employed
chemical “photocatalysts” as artificial enzymes to develop
new proximity labeling reactions. Under light activation, photocatalysts
can convert the precursor molecules to the reactive species via electron
transfer or energy transfer and the reactive molecules can react with
proximal biomolecules within a definite lifetime in an aqueous solution.
To identify the modified biomolecules by proximity labeling, the modified
biomolecules should be enriched after lysis and sequenced using sequencing
tools. In this analysis step, the direct detection of modified residue(s)
on the modified proteins or nucleic acids can be the proof of their
labeling event by proximal enzymes or catalysts in the cell. In this
Account, we introduce the basic concept of proximity labeling and
the multidirectional advances in the development of this method. We
believe that this Account may facilitate further utilization and modification
of the method in both biological and chemical research communities,
thereby revealing unknown spatially distributed molecular or cellular
information or spatiome.
Collapse
Affiliation(s)
- Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Ryskalin L, Biagioni F, Morucci G, Busceti CL, Frati A, Puglisi-Allegra S, Ferrucci M, Fornai F. Spreading of Alpha Synuclein from Glioblastoma Cells towards Astrocytes Correlates with Stem-like Properties. Cancers (Basel) 2022; 14:cancers14061417. [PMID: 35326570 PMCID: PMC8946011 DOI: 10.3390/cancers14061417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The present study questions whether cells from glioblastoma multiforme (GBM), which overexpress α-synuclein (α-syn), may alter neighboring non-tumoral astrocyte cell lines. The occurrence of α-syn in GBM correlates with the expression of the stem cell marker nestin. When astrocytes are co-cultured with GBM cells in a trans-well apparatus the occurrence of α-syn and nestin rises remarkably. The increase in α-syn in co-cultured astrocytes is more pronounced at the plasma membrane, which mimics the placement of α-syn in GBM cells. When the mTOR inhibitor rapamycin is administered, GBM-induced expression of α-syn and nestin within co-cultured astrocytes is occluded, and morphological alterations are reverted. In the presence of rapamycin the sub-cellular placement of α-syn is modified being allocated within whorls and vacuoles instead of the plasma membrane. The effects induced by rapamycin occur both in baseline GBM cells and within astrocytes primed by co-cultured GBM cells. Abstract Evidence has been recently provided showing that, in baseline conditions, GBM cells feature high levels of α-syn which are way in excess compared with α-syn levels measured within control astrocytes. These findings are consistent along various techniques. In fact, they are replicated by using antibody-based protein detection, such as immuno-fluorescence, immuno-peroxidase, immunoblotting and ultrastructural stoichiometry as well as by measuring α-syn transcript levels at RT-PCR. The present manuscript further questions whether such a high amount of α-syn may be induced within astrocytes, which are co-cultured with GBM cells in a trans-well system. In astrocytes co-cultured with GBM cells, α-syn overexpression is documented. Such an increase is concomitant with increased expression of the stem cell marker nestin, along with GBM-like shifting in cell morphology. This concerns general cell morphology, subcellular compartments and profuse convolutions at the plasma membrane. Transmission electron microscopy (TEM) allows us to assess the authentic amount and sub-cellular compartmentalization of α-syn and nestin within baseline GBM cells and the amount, which is induced within co-cultured astrocytes, as well as the shifting of ultrastructure, which is reminiscent of GBM cells. These phenomena are mitigated by rapamycin administration, which reverts nestin- and α-syn-related overexpression and phenotypic shifting within co-cultured astrocytes towards baseline conditions of naïve astrocytes. The present study indicates that: (i) α-syn increases in astrocyte co-cultured with GBM cells; (ii) α-syn increases in astrocytes along with the stem cell marker nestin; (iii) α-syn increases along with a GBM-like shift of cell morphology; (iv) all these changes are replicated in different GBM cell lines and are reverted by the mTOR inhibitor rapamycin. The present findings indicate that α-syn does occur in high amount within GBM cells and may transmit to neighboring astrocytes as much as a stem cell phenotype. This suggests a mode of tumor progression for GBM cells, which may transform, rather than merely substitute, surrounding tissue; such a phenomenon is sensitive to mTOR inhibition.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Gabriele Morucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Roma, Italy
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Correspondence: ; Tel.: +39-050-2218601
| |
Collapse
|
6
|
Occurrence of Total and Proteinase K-Resistant Alpha-Synuclein in Glioblastoma Cells Depends on mTOR Activity. Cancers (Basel) 2022; 14:cancers14061382. [PMID: 35326535 PMCID: PMC8946689 DOI: 10.3390/cancers14061382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The accumulation of alpha-synuclein (α-syn) is considered a pathological hallmark of the neurodegenerative disorders known as synucleinopathies. The clearance of α-syn depends on autophagy activity, which is inhibited by the mechanistic target of rapamycin (mTOR). Thus, it is likely that α-syn accumulation may occur whenever mTOR is overactive and autophagy is suppressed. In fact, the lack of effective autophagy increases the amount of α-syn and may produce protein aggregation. Therefore, in the present study, we questioned whether cells from glioblastoma multiforme (GBM), a lethal brain neoplasm, wherein mTOR is upregulated and autophagy is suppressed, may overexpress α-syn. In fact, a large quantity of α-syn is measured in GBM cells compared with astrocytes, which includes proteinase K-resistant α-syn. Rapamycin, while inhibiting mTOR activity, significantly reduces the amount of α-syn and allocates α-syn within autophagy-like vacuoles. Abstract Alpha-synuclein (α-syn) is a protein considered to be detrimental in a number of degenerative disorders (synucleinopathies) of which α-syn aggregates are considered a pathological hallmark. The clearance of α-syn strongly depends on autophagy, which can be stimulated by inhibiting the mechanistic target of rapamycin (mTOR). Thus, the overexpression of mTOR and severe autophagy suppression may produce α-syn accumulation, including the proteinase K-resistant protein isoform. Glioblastoma multiforme (GBM) is a lethal brain tumor that features mTOR overexpression and severe autophagy inhibition. Cell pathology in GBM is reminiscent of a fast, progressive degenerative disorder. Therefore, the present work questions whether, as is analogous to neurons during degenerative disorders, an overexpression of α-syn occurs within GBM cells. A high amount of α-syn was documented in GBM cells via real-time PCR (RT-PCR), Western blotting, immunohistochemistry, immuno-fluorescence, and ultrastructural stoichiometry, compared with the amount of β- and γ-synucleins and compared with the amount of α-syn counted within astrocytes. The present study indicates that (i) α-syn is overexpressed in GBM cells, (ii) α-syn expression includes a proteinase-K resistant isoform, (iii) α-syn is dispersed from autophagy-like vacuoles to the cytosol, (iv) α-syn overexpression and cytosol dispersion are mitigated by rapamycin, and (v) the α-syn-related GBM-like phenotype is mitigated by silencing the SNCA gene.
Collapse
|
7
|
Chen Y, Zhou W, Li X, Yang K, Liang Z, Zhang L, Zhang Y. Research Progress of Protein-Protein Interaction Based on Liquid Chromatography Mass Spectrometry ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Optimized protocol for the identification of lipid droplet proteomes using proximity labeling proteomics in cultured human cells. STAR Protoc 2021; 2:100579. [PMID: 34151299 PMCID: PMC8190507 DOI: 10.1016/j.xpro.2021.100579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are endoplasmic reticulum-derived neutral lipid storage organelles that play critical roles in cellular lipid and energy homeostasis. Here, we present a protocol for the identification of high-confidence lipid droplet proteomes in a cell culture model. This approach overcomes limitations associated with standard biochemical fractionation techniques, employing an engineered ascorbate peroxidase (APEX2) to biotinylate endogenous lipid droplet proteins in living cells for subsequent purification and identification by proteomics. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2018). Protocol for the identification of high-confidence lipid droplet proteomes Biotinylation of lipid droplet proteins using APEX2 targeted to lipid droplets Purification of biotinylated lipid droplet proteins from buoyant fractions Label-free quantitative proteomics to define lipid droplet proteomes
Collapse
|
9
|
Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021; 109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular compartmentalization of proteins and protein complex formation allow cells to tightly control biological processes. Therefore, understanding the subcellular localization and interactions of a specific protein is crucial to uncover its biological function. The advent of proximity labeling (PL) has reshaped cellular proteomics in infection biology. PL utilizes a genetically modified enzyme that generates a "labeling cloud" by covalently labeling proteins in close proximity to the enzyme. Fusion of a PL enzyme to a specific antibody or a "bait" protein of interest in combination with affinity enrichment mass spectrometry (AE-MS) enables the isolation and identification of the cellular proximity proteome, or proxisome. This powerful methodology has been paramount for the mapping of membrane or membraneless organelles as well as for the understanding of hard-to-purify protein complexes, such as those of transmembrane proteins. Unsurprisingly, more and more infection biology research groups have recognized the potential of PL for the identification of host-pathogen interactions. In this chapter, we introduce the enzymes commonly used for PL labeling as well as recent promising advancements and summarize the major achievements in organelle mapping and nucleic acid PL. Moreover, we comprehensively describe the research on host-pathogen interactions using PL, giving special attention to studies in the field of virology.
Collapse
Affiliation(s)
- Francisco José Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
11
|
Li Y, Tian C, Liu K, Zhou Y, Yang J, Zou P. A Clickable APEX Probe for Proximity-Dependent Proteomic Profiling in Yeast. Cell Chem Biol 2020; 27:858-865.e8. [DOI: 10.1016/j.chembiol.2020.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/24/2019] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
|
12
|
Abstract
Siglecs are known to be bound and regulated by membrane molecules that display specific sialic acid-containing ligands and are present on the same cell (cis-ligands). Because of the low-affinity binding of Siglecs to the glycan ligands, conventional methods such as immunoprecipitation are not suitable for identification of Siglec cis-ligands. Here we describe efficient and specific labeling of cis-ligands of CD22 (also known as Siglec-2) on B lymphocytes by proximity labeling using tyramide. This method may also be applicable to labeling of cis-ligands of other Siglecs.
Collapse
|
13
|
Abstract
Determining the topology of the membrane proteome is fundamental for understanding its function at the membrane. However, conventional methods involving test tube reactions often lead to unreliable results, which do not accurately reflect membrane topology under physiological conditions, as perturbations occur during lysis. In this Perspective, we introduce a new method using engineered ascorbate peroxidase (APEX) for revealing membrane topological information in live cells without performing complicated sample preparation. We also discuss several examples of clearly resolved membrane topologies of various important mitochondrial proteins (e.g., LETM1, NDUFB10, MCU, SFXN1, and EXD2) and endoplasmic reticulum proteins (e.g., HMOX1) determined by using APEX-based methods.
Collapse
Affiliation(s)
- Chang-Mo Yoo
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| | - Hyun-Woo Rhee
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
14
|
Begines B, Alcudia A, Aguilera-Velazquez R, Martinez G, He Y, Trindade GF, Wildman R, Sayagues MJ, Jimenez-Ruiz A, Prado-Gotor R. Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing. Sci Rep 2019; 9:16097. [PMID: 31695064 PMCID: PMC6834569 DOI: 10.1038/s41598-019-52314-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 11/15/2022] Open
Abstract
Nowadays there is a worldwide growing interest in the Inkjet Printing technology owing to its potentially high levels of geometrical complexity, personalization and resolution. There is also social concern about usage, disposal and accumulation of plastic materials. In this work, it is shown that sugar-based biodegradable polyurethane polymers exhibit outstanding properties as polymer-matrix for gold nanoparticles composites. These materials could reach exceptional stabilization levels, and demonstrated potential as novel robust inks for Inkjet based Printing. Furthermore, a physical comparison among different polymers is discussed based on stability and printability experiments to search for the best ink candidate. The University of Seville logo was printed by employing those inks, and the presence of gold was confirmed by ToF-SIMS. This approach has the potential to open new routes and applications for fabrication of enhanced biomedical nanometallic-sensors using stabilized AuNP.
Collapse
Affiliation(s)
- Belen Begines
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Ana Alcudia
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Raul Aguilera-Velazquez
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Guillermo Martinez
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Yinfeng He
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gustavo F Trindade
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Material Science Institute of Seville, CSIC/US, Seville, 41092, Spain
| | - Ricky Wildman
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Aila Jimenez-Ruiz
- Department of Physical Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain.
| | - Rafael Prado-Gotor
- Department of Physical Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain.
| |
Collapse
|
15
|
Lee SY, Seo JK, Rhee HW. Direct Identification of Biotinylated Proteins from Proximity Labeling (Spot-BioID). Methods Mol Biol 2019; 2008:97-105. [PMID: 31124091 DOI: 10.1007/978-1-4939-9537-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, proximity labeling has been developed to map spatially localized proteomes in live cells. Usually, these methods employ enzymatic biotinylation of the proximal proteins with reactive biotin species. The labeled proteins may contain biotinylated modifications, which can be enriched by streptavidin beads through affinity purification. However, during the bead enrichment process, unlabeled proteins can be enriched to have specific binding affinity toward the biotinylated proteins or high binding affinity to the bead surface. If the unlabeled proteins remain attached to the beads after washing and are analyzed by mass spectrometry (MS) using the conventional workflow for the unlabeled peptidome, they would appear as proximal proteins in the targeted space. However, the unlabeled proteins, including the specific interaction partners of the biotinylated proteins, are false positives for proximity labeling. Including the unlabeled proteome in the identification list for proximity labeling does not provide a clear picture of the local proteome in the targeted space. This chapter is a detailed protocol of the first direct identification method (Spot-BioID) for identifying biotin-labeled proteomes of promiscuous biotin ligase (pBirA) labeling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
PAQR3 Regulates Endoplasmic Reticulum-to-Golgi Trafficking of COPII Vesicle via Interaction with Sec13/Sec31 Coat Proteins. iScience 2018; 9:382-398. [PMID: 30466064 PMCID: PMC6249397 DOI: 10.1016/j.isci.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022] Open
Abstract
Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.
Collapse
|
17
|
Pan M, Li M, Li L, Song Y, Hou L, Zhao J, Shen B. Identification of Novel Dense-Granule Proteins in Toxoplasma gondii by Two Proximity-Based Biotinylation Approaches. J Proteome Res 2018; 18:319-330. [PMID: 30362762 DOI: 10.1021/acs.jproteome.8b00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is an opportunistic pathogen infecting humans and a variety of vertebrate animals. Secretory dense-granule proteins (GRAs) play diverse roles in the mediation of host-parasite interactions and facilitate parasitism, but many of them still remain to be identified. Here, we used two proximity-based protein labeling techniques to identify novel GRA proteins. Taking GRA1 as bait, transgenic strains expressing GRA1-BirA* or GRA1-APEX were constructed to biotinylate GRAs. Using these methods, a total of 46 proteins were identified, 20 of which were known GRA proteins. Among these 46, 17 were identified by both strategies, and 14 out of the 17 were known GRAs. The other three were all confirmed to localize to dense granules. Nonetheless a significant portion of the proteins were only identified by either APEX or BirA*, indicating that there are differences between these methods. Of the 26 novel GRAs, 5 were validated as bona fide GRAs by localization studies. The majority of these novel GRAs are only present in coccidian parasites and are likely dispensable for parasite growth in vitro; they may play roles during animal infections. The identification of novel GRAs laid the foundation for further studies investigating the mechanisms underlying parasite-host interactions.
Collapse
Affiliation(s)
- Ming Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , PR China , 430070
| | - Mingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , PR China , 430070
| | - Longjiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , PR China , 430070
| | - Yongle Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , PR China , 430070
| | - Lun Hou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , PR China , 430070
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , PR China , 430070.,Key Laboratory of Preventive Medicine , Wuhan , Hubei , PR China.,Hubei Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , PR China , 430070
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , PR China , 430070.,Key Laboratory of Preventive Medicine , Wuhan , Hubei , PR China
| |
Collapse
|
18
|
Sobrino V, González-Rodríguez P, Annese V, López-Barneo J, Pardal R. Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Rep 2018; 19:embr.201744598. [PMID: 29335248 DOI: 10.15252/embr.201744598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023] Open
Abstract
Unlike other neural peripheral organs, the adult carotid body (CB) has a remarkable structural plasticity, as it grows during acclimatization to hypoxia. The CB contains neural stem cells that can differentiate into oxygen-sensitive glomus cells. However, an extended view is that, unlike other catecholaminergic cells of the same lineage (sympathetic neurons or chromaffin cells), glomus cells can divide and thus contribute to CB hypertrophy. Here, we show that O2-sensitive mature glomus cells are post-mitotic. However, we describe an unexpected population of pre-differentiated, immature neuroblasts that express catecholaminergic markers and contain voltage-dependent ion channels, but are unresponsive to hypoxia. Neuroblasts are quiescent in normoxic conditions, but rapidly proliferate and differentiate into mature glomus cells during hypoxia. This unprecedented "fast neurogenesis" is stimulated by ATP and acetylcholine released from mature glomus cells. CB neuroblasts, which may have evolved to facilitate acclimatization to hypoxia, could contribute to the CB oversensitivity observed in highly prevalent human diseases.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
19
|
Bersuker K, Peterson CWH, To M, Sahl SJ, Savikhin V, Grossman EA, Nomura DK, Olzmann JA. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. Dev Cell 2017; 44:97-112.e7. [PMID: 29275994 DOI: 10.1016/j.devcel.2017.11.020] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 01/06/2023]
Abstract
Lipid droplet (LD) functions are regulated by a complement of integral and peripheral proteins that associate with the bounding LD phospholipid monolayer. Defining the composition of the LD proteome has remained a challenge due to the presence of contaminating proteins in LD-enriched buoyant fractions. To overcome this limitation, we developed a proximity labeling strategy that exploits LD-targeted APEX2 to biotinylate LD proteins in living cells. Application of this approach to two different cell types identified the vast majority of previously validated LD proteins, excluded common contaminating proteins, and revealed new LD proteins. Moreover, quantitative analysis of LD proteome dynamics uncovered a role for endoplasmic reticulum-associated degradation in controlling the composition of the LD proteome. These data provide an important resource for future LD studies and demonstrate the utility of proximity labeling to study the regulation of LD proteomes.
Collapse
Affiliation(s)
- Kirill Bersuker
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Clark W H Peterson
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Milton To
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Victoria Savikhin
- SLAC National Accelerator Center, SSRL, Menlo Park, CA 94025, USA; Stanford Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth A Grossman
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Cho IT, Adelmant G, Lim Y, Marto JA, Cho G, Golden JA. Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum-mitochondrial contacts. J Biol Chem 2017; 292:16382-16392. [PMID: 28760823 PMCID: PMC5625067 DOI: 10.1074/jbc.m117.795286] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
To maintain cellular homeostasis, subcellular organelles communicate with each other and form physical and functional networks through membrane contact sites coupled by protein tethers. In particular, endoplasmic reticulum (ER)-mitochondrial contacts (EMC) regulate diverse cellular activities such as metabolite exchange (Ca2+ and lipids), intracellular signaling, apoptosis, and autophagy. The significance of EMCs has been highlighted by reports indicating that EMC dysregulation is linked to neurodegenerative diseases. Therefore, obtaining a better understanding of the physical and functional components of EMCs should provide new insights into the pathogenesis of several neurodegenerative diseases. Here, we applied engineered ascorbate peroxidase (APEX) to map the proteome at EMCs in live HEK293 cells. APEX was targeted to the outer mitochondrial membrane, and proximity-labeled proteins were analyzed by stable isotope labeling with amino acids in culture (SILAC)-LC/MS-MS. We further refined the specificity of the proteins identified by combining biochemical subcellular fractionation to the protein isolation method. We identified 405 proteins with a 2.0-fold cutoff ratio (log base 2) in SILAC quantification from replicate experiments. We performed validation screening with a Split-Rluc8 complementation assay that identified reticulon 1A (RTN1A), an ER-shaping protein localized to EMCs as an EMC promoter. Proximity mapping augmented with biochemical fractionation and additional validation methods reported here could be useful to discover other components of EMCs, identify mitochondrial contacts with other organelles, and further unravel their communication.
Collapse
Affiliation(s)
- Il-Taeg Cho
- From the Department of Pathology, Brigham and Women's Hospital, and
| | - Guillaume Adelmant
- the Departments of Cancer Biology and Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Youngshin Lim
- From the Department of Pathology, Brigham and Women's Hospital, and
| | - Jarrod A Marto
- From the Department of Pathology, Brigham and Women's Hospital, and
- the Departments of Cancer Biology and Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Ginam Cho
- From the Department of Pathology, Brigham and Women's Hospital, and
| | - Jeffrey A Golden
- From the Department of Pathology, Brigham and Women's Hospital, and
| |
Collapse
|
21
|
Ochs M, Knudsen L, Hegermann J, Wrede C, Grothausmann R, Mühlfeld C. Using electron microscopes to look into the lung. Histochem Cell Biol 2016; 146:695-707. [PMID: 27688057 DOI: 10.1007/s00418-016-1502-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
In the nineteenth century, there was a dispute about the existence of a lung alveolar epithelium which remained unsolved until the invention of electron microscopy (EM) and its application to the lung. From the early 1960s, Ewald Weibel became the master of lung EM. He showed that the alveolar epithelium is covered with a lining layer containing surfactant. Weibel also explained the phenomenon of "non-nucleated plates" observed already in 1881 by Albert Kölliker. Weibel's most significant contribution was to the development of stereological methods. Therefore, quantitative characterization of lung structure revealing structure-function relationships became possible. Today, the spectrum of EM methods to study the fine structure of the lung has been extended significantly. Cryo-preparation techniques are available which are necessary for immunogold labeling of molecules. Energy-filtering techniques can be used for the detection of elements. There have also been major improvements in stereology, thus providing a very versatile toolbox for quantitative lung phenotype analyses. A new dimension was added by 3D EM techniques. Depending on the desired sample size and resolution, the spectrum ranges from array tomography via serial block face scanning EM and focused ion beam scanning EM to electron tomography. These 3D datasets provide new insights into lung ultrastructure. Biomedical EM is an ever-developing field. Its high resolution remains unparalleled. Moreover, EM has the unique advantage of providing an "open view" into cells and tissues within their full architectural context. Therefore, EM will remain an indispensable tool for a better understanding of the lung's functional design.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| |
Collapse
|
22
|
APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest. Cell Rep 2016; 15:1837-47. [DOI: 10.1016/j.celrep.2016.04.064] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 04/17/2016] [Indexed: 12/13/2022] Open
|
23
|
Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc Natl Acad Sci U S A 2015; 112:12093-8. [PMID: 26362788 DOI: 10.1073/pnas.1515623112] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterization of the proteome of organelles and subcellular domains is essential for understanding cellular organization and identifying protein complexes as well as networks of protein interactions. We established a proteomic mapping platform in live Drosophila tissues using an engineered ascorbate peroxidase (APEX). Upon activation, the APEX enzyme catalyzes the biotinylation of neighboring endogenous proteins that can then be isolated and identified by mass spectrometry. We demonstrate that APEX labeling functions effectively in multiple fly tissues for different subcellular compartments and maps the mitochondrial matrix proteome of Drosophila muscle to demonstrate the power of APEX for characterizing subcellular proteomes in live cells. Further, we generate "MitoMax," a database that provides an inventory of Drosophila mitochondrial proteins with subcompartmental annotation. Altogether, APEX labeling in live Drosophila tissues provides an opportunity to characterize the organelle proteome of specific cell types in different physiological conditions.
Collapse
|
24
|
Rees JS, Li XW, Perrett S, Lilley KS, Jackson AP. Protein Neighbors and Proximity Proteomics. Mol Cell Proteomics 2015; 14:2848-56. [PMID: 26355100 PMCID: PMC4638030 DOI: 10.1074/mcp.r115.052902] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 12/31/2022] Open
Abstract
Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest.
Collapse
Affiliation(s)
- Johanna S Rees
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW, the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Xue-Wen Li
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Sarah Perrett
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Kathryn S Lilley
- the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Antony P Jackson
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW,
| |
Collapse
|
25
|
Jing J, He L, Sun A, Quintana A, Ding Y, Ma G, Tan P, Liang X, Zheng X, Chen L, Shi X, Zhang SL, Zhong L, Huang Y, Dong MQ, Walker CL, Hogan PG, Wang Y, Zhou Y. Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca²⁺ influx. Nat Cell Biol 2015; 17:1339-47. [PMID: 26322679 PMCID: PMC4589512 DOI: 10.1038/ncb3234] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022]
Abstract
Specialized junctional sites that connect the plasma membrane (PM) and endoplasmic reticulum (ER) play critical roles in controlling lipid metabolism and Ca2+ signaling1–4. Store operated Ca2+ entry mediated by dynamic STIM1-ORAI1 coupling represents a classical molecular event occurring at ER-PM junctions, but the protein composition and how previously-unrecognized protein regulators facilitate this process remain ill-defined. Using a combination of spatially-restricted biotin-labelling in situ coupled with mass spectrometry5, 6 and a secondary screen based on bimolecular fluorescence complementation7, we mapped the proteome of intact ER-PM junctions in living cells without disrupting their architectural integrity. Our approaches lead to the discovery of an ER-resident multi-transmembrane protein that we call STIMATE (STIM-activating enhancer, encoded by TMEM110) as a positive regulator of Ca2+ influx in vertebrates. STIMATE physically interacts with STIM1 to promote STIM1 conformational switch. Genetic depletion of STIMATE substantially reduces STIM1 puncta formation at ER-PM junctions and suppresses the Ca2+-NFAT signaling. Our findings enable further genetic studies to elucidate the function of STIMATE in normal physiology and disease, and set the stage to uncover more uncharted functions of hitherto underexplored ER-PM junctions.
Collapse
Affiliation(s)
- Ji Jing
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Lian He
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ariel Quintana
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guolin Ma
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Peng Tan
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Xiaowen Liang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Xiaolu Zheng
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Liangyi Chen
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaodong Shi
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| | - Ling Zhong
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Cheryl L Walker
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| |
Collapse
|
26
|
Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal. Glycoconj J 2015; 32:531-40. [DOI: 10.1007/s10719-015-9595-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
27
|
Zhang S, Moustafa Y, Huo Q. Different interaction modes of biomolecules with citrate-capped gold nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21184-21192. [PMID: 25347206 DOI: 10.1021/am506112u] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we investigated the interaction between five biorelevant molecules and citrate-capped gold nanoparticles using dynamic light scattering, ζ-potential analysis, UV-vis absorption spectroscopy, and transmission electron microscopy. The five biomolecules are bovine serum albumin (BSA), two immunoglobulin G (IgG) proteins, immunoglobulin M (IgM), and a polysaccharide molecule, hyaluronan. BSA, IgG, and IgM are high abundance proteins in blood. Hyaluronan is a major component of the extracellular matrix. An abnormal level of hyaluronan in blood is associated with a number of medical conditions including rheumatoid arthritis and malignancy. Five different interaction modes were observed from these molecules. While BSA and IgM interact with the gold nanoparticles by forming electrostatic interactions with the citrate ligands, IgG and hyaluronan adsorb to the nanoparticle metal core by displacing the citrate ligands. BSA, rabbit IgG, and hyaluronan formed a stable monolayer on the nanoparticle surface. Human IgG and IgM caused nanoparticle cluster formation upon interacting with the gold nanoparticles. For the first time, we discovered that hyaluronan, a highly negatively charged polyglycosaminoglycan, exhibits an exceptionally strong affinity toward the citrate-gold nanoparticles. It can effectively compete with IgG to adsorb to the gold nanoparticles. This finding has exciting implications for future research: the molecular composition of a protein corona formed on a nanoparticle surface upon mixing the nanoparticle with blood or other biological fluids may vary according to the pathological conditions of individuals, and the analysis of these compositions could potentially lead to new biomarker discovery with diagnostic applications.
Collapse
Affiliation(s)
- Shiyun Zhang
- NanoScience Technology Center, Department of Chemistry, College of Science, and Burnett School of Biomedical Science, College of Medicine, University of Central Florida , 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | | | | |
Collapse
|
28
|
Prado-Gotor R, López-Pérez G, Martín M, Cabrera-Escribano F, Franconetti A. Use of gold nanoparticles as crosslink agent to form chitosan nanocapsules: Study of the direct interaction in aqueous solutions. J Inorg Biochem 2014; 135:77-85. [DOI: 10.1016/j.jinorgbio.2014.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
29
|
Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotechnol 2013; 29:2207-11. [PMID: 23736894 DOI: 10.1007/s11274-013-1379-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.
Collapse
|
30
|
Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013; 339:1328-1331. [PMID: 23371551 DOI: 10.1126/science.1230593] [Citation(s) in RCA: 921] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microscopy and mass spectrometry (MS) are complementary techniques: The former provides spatiotemporal information in living cells, but only for a handful of recombinant proteins at a time, whereas the latter can detect thousands of endogenous proteins simultaneously, but only in lysed samples. Here, we introduce technology that combines these strengths by offering spatially and temporally resolved proteomic maps of endogenous proteins within living cells. Our method relies on a genetically targetable peroxidase enzyme that biotinylates nearby proteins, which are subsequently purified and identified by MS. We used this approach to identify 495 proteins within the human mitochondrial matrix, including 31 not previously linked to mitochondria. The labeling was exceptionally specific and distinguished between inner membrane proteins facing the matrix versus the intermembrane space (IMS). Several proteins previously thought to reside in the IMS or outer membrane, including protoporphyrinogen oxidase, were reassigned to the matrix by our proteomic data and confirmed by electron microscopy. The specificity of peroxidase-mediated proteomic mapping in live cells, combined with its ease of use, offers biologists a powerful tool for understanding the molecular composition of living cells.
Collapse
Affiliation(s)
- Hyun-Woo Rhee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Zou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jeffrey D Martell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Molecular Biology, Massachusetts General Hospital, and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
31
|
Sirois I, Groleau J, Pallet N, Brassard N, Hamelin K, Londono I, Pshezhetsky AV, Bendayan M, Hébert MJ. Caspase activation regulates the extracellular export of autophagic vacuoles. Autophagy 2012; 8:927-37. [PMID: 22692030 DOI: 10.4161/auto.19768] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct from apoptotic bodies and bearing markers of multivesicular bodies (MVB). Nutrient deficiency is also a potent inducer of autophagy and vesicular transport pathways can be assisted by autophagy. Nutrient deficiency induced a significant and rapid increase in autophagic features, as imaged by electron microscopy and immunoblotting analysis of LC3-II/LC3-I ratios. Increased autophagic flux was confirmed by exposing serum-starved cells to bafilomycin A 1. Induction of autophagy was followed by indices of an apoptotic response, as assessed by microscopy and poly (ADP-ribose) polymerase cleavage in absence of cell membrane permeabilization indicative of necrosis. Pan-caspase inhibition with ZVAD-FMK did not prevent the development of autophagy but negatively impacted autophagic vacuole (AV) maturation. Adopting a multidimensional proteomics approach with validation by immunoblotting, we determined that nutrient-deprived EC released AV components (LC3I, LC3-II, ATG16L1 and LAMP2) whereas pan-caspase inhibition with ZVAD-FMK blocked AV release. Similarly, nutrient deprivation in aortic murine EC isolated from CASP3/caspase 3-deficient mice induced an autophagic response in absence of apoptosis and failed to prompt LC3 release. Collectively, the present results demonstrate the release of autophagic components by nutrient-deprived apoptotic human cells in absence of cell membrane permeabilization. These results also identify caspase-3 as a novel regulator of AV release.
Collapse
Affiliation(s)
- Isabelle Sirois
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mayhew TM. Quantifying immunogold localization on electron microscopic thin sections: a compendium of new approaches for plant cell biologists. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4101-13. [PMID: 21633081 DOI: 10.1093/jxb/err176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A review is presented of recently developed methods for quantifying electron microscopical thin sections on which colloidal gold-labelled markers are used to identify and localize interesting molecules. These efficient methods rely on sound principles of random sampling, event counting, and statistical evaluation. Distributions of immunogold particles across cellular compartments can be compared within and between experimental groups. They can also be used to test for co-localization in multilabelling studies involving two or more sizes of gold particle. To test for preferential labelling of compartments, observed and expected gold particle distributions are compared by χ(2) analysis. Efficient estimators of gold labelling intensity [labelling density (LD) and/or relative labelling index (RLI)] are used to analyse volume-occupying compartments (e.g. Golgi vesicles) and/or surface-occupying compartments (e.g. cell membranes). Compartment size is estimated by counting chance events after randomly superimposing test lattices of points and/or line probes. RLI=1 when there is random labelling and RLI >1 when there is preferential labelling. Between-group comparisons do not require information about compartment size but, instead, raw gold particle counts in different groups are compared by combining χ(2) and contingency table analyses. These tests may also be used to assess co-distribution of different sized gold particles in compartments. Testing for co-labelling involves identifying sets of compartmental profiles that are unlabelled and labelled for one or both of two gold marker sizes. Numbers of profiles in each labelling set are compared by contingency table analysis and χ(2) analysis or Fisher's exact probability test. The various methods are illustrated with worked examples based on empirical and synthetic data and will be of practical benefit to those applying single or multiple immunogold labelling in their research.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
33
|
Prado-Gotor R, Grueso E. A kinetic study of the interaction of DNA with gold nanoparticles: mechanistic aspects of the interaction. Phys Chem Chem Phys 2010; 13:1479-89. [PMID: 21132199 DOI: 10.1039/c0cp00901f] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kinetic study of the interaction of gold nanoparticles capped with N-(2-mercaptopropionyl)glycine with double stranded DNA was carried out in water and in salt (NaCl) solutions. The kinetic curves are biexponential and reveal the presence of three kinetic steps. The dependence of the reciprocal fast and slow relaxation time, on the DNA concentration, is a curve and tends to a plateau at high DNA concentrations. The simplest mechanism consistent with the kinetic results involves a simple three-step series mechanism reaction scheme. The first step corresponds to a very fast step that is related to a diffusion controlled formation of an external precursor complex (DNA, AuNPs); the second step involves the formation of a (DNA/AuNPs)(I) complex, as a result of the binding affinity between hydrophilic groups of the tiopronin and the DNA grooves. Finally, the third step has been interpreted as a consequence of a conformational change of the (DNA/AuNPs)(I) complex formed in the second step, to a more compacted form (DNA/AuNPs)(II). The values of the rate constants of each step decrease as NaCl concentration increases. The results have been discussed in terms of solvation of the species and changes in the viscosity of the solution.
Collapse
Affiliation(s)
- Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Sevilla, C/Profesor García González s/n, 41012 Sevilla, Spain
| | | |
Collapse
|
34
|
Sirois I, Raymond MA, Brassard N, Cailhier JF, Fedjaev M, Hamelin K, Londono I, Bendayan M, Pshezhetsky AV, Hébert MJ. Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication. Cell Death Differ 2010; 18:549-62. [PMID: 20966960 DOI: 10.1038/cdd.2010.126] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The apoptotic program incorporates a paracrine component of importance in fostering tissue repair at sites of apoptotic cell deletion. As this paracrine pathway likely bears special importance in maladaptive intercellular communication leading to vascular remodeling, we aimed at further defining the mediators produced by apoptotic endothelial cells (EC), using comparative and functional proteomics. Apoptotic EC were found to release nanovesicles displaying ultrastructural characteristics, protein markers and functional activity that differed from apoptotic blebs. Tumor susceptibility gene 101 and translationally controlled tumor protein (TCTP) were identified in nanovesicle fractions purified from medium conditioned by apoptotic EC and absent from purified apoptotic blebs. Immunogold labeling identified TCTP on the surface of nanovesicles purified from medium conditioned by apoptotic EC and within multivesicular blebs in apoptotic EC. These nanovesicles induced an extracellular signal-regulated kinases 1/2 (ERK 1/2)-dependent antiapoptotic phenotype in vascular smooth muscle cells (VSMC), whereas apoptotic blebs did not display antiapoptotic activity on VSMC. Caspase-3 biochemical inhibition and caspase-3 RNA interference in EC submitted to a proapoptotic stimulus inhibited the release of nanovesicles. Also, TCTP siRNAs in EC attenuated the antiapoptotic activity of purified nanovesicles on VSMC. Collectively, these results identify TCTP-bearing nanovesicles as a novel component of the paracrine apoptotic program of potential importance in vascular repair.
Collapse
Affiliation(s)
- I Sirois
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), 1560 rue Sherbrooke Est, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cammisotto PG, Levy E, Bukowiecki LJ, Bendayan M. Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism. ACTA ACUST UNITED AC 2010; 45:143-200. [PMID: 20621336 DOI: 10.1016/j.proghi.2010.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2010] [Indexed: 12/25/2022]
Abstract
The understanding of the regulation of food intake has become increasingly complex. More than 20 hormones, both orexigenic and anorexigenic, have been identified. After crossing the blood-brain barrier, they reach their main site of action located in several hypothalamic areas and interact to balance satiety and hunger. One of the most significant advances in this matter has been the discovery of leptin. This hormone plays fundamental roles in the control of appetite and in regulating energy expenditure. In accordance with the lipostatic theory stated by Kennedy in 1953, leptin was originally discovered in white adipose tissue. Its expression by other tissues was later established. Among them, the gastric mucosa has been shown to secrete large amounts of leptin. Both the adipose and the gastric tissues share similar characteristics in the synthesis and storage of leptin in granules, in the formation of a complex with the soluble receptor and a secretion modulated by hormones and energy substrates. However while adipose tissue secretes leptin in a slow constitutive endocrine way, the gastric mucosa releases leptin in a rapid regulated exocrine fashion into the gastric juice. Exocrine-secreted leptin survives the extreme hydrolytic conditions of the gastric juice and reach the duodenal lumen in an intact active form. Scrutiny into transport mechanisms revealed that a significant amount of the exocrine leptin crosses the intestinal wall by active transcytosis. Leptin receptors, expressed on the luminal and basal membrane of intestinal epithelial cells, are involved in the control of nutrient absorption by enterocytes, mucus secretion by goblet cells and motility, among other processes, and this control is indeed different depending upon luminal or basal stimulus. Gastric leptin after transcytosis reaches the central nervous system, to control food intake. Studies using the Caco-2, the human intestinal cell line, in vitro allowed analysis of the mechanisms of leptin actions on the intestinal mucosa, identification of the mechanisms of leptin transcytosis and understanding the modulation of leptin receptors by nutrients and hormones. Exocrine-secreted gastric leptin thus participates in a physiological axis independent in terms of time and regulation from that of adipose tissue to rapidly control food intake and nutrient absorption. Adipocytes and gastric epithelial cells are two cell types the metabolism of which is closely linked to food intake and energy storage. The coordinated secretion of adipose and gastric leptins ensures proper management of food processing and energy storage.
Collapse
Affiliation(s)
- Philippe G Cammisotto
- Department of Pathology and Cell Biology, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
36
|
Lucocq JM, Gawden-Bone C. Quantitative assessment of specificity in immunoelectron microscopy. J Histochem Cytochem 2010; 58:917-27. [PMID: 20458060 DOI: 10.1369/jhc.2010.956243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In immunoelectron microscopy (immuno-EM) on ultrathin sections, gold particles are used for localization of molecular components of cells. These particles are countable, and quantitative methods have been established to estimate and evaluate the density and distribution of "raw" gold particle counts from a single uncontrolled labeling experiment. However, these raw counts are composed of two distinct elements: particles that are specific (specific labeling) and particles that are not (nonspecific labeling) for the target component. So far, approaches for assessment of specific labeling and for correction of raw gold particle counts to reveal specific labeling densities and distributions have not attracted much attention. Here, we discuss experimental strategies for determining specificity in immuno-EM, and we present methods for quantitative assessment of (1) the probability that an observed gold particle is specific for the target, (2) the density of specific labeling, and (3) the distribution of specific labeling over a series of compartments. These methods should be of general utility for researchers investigating the distribution of cellular components using on-section immunogold labeling.
Collapse
Affiliation(s)
- John Milton Lucocq
- Division of Cell Biology and Immunology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
37
|
Receptor-Mediated Transcytosis of Leptin through Human Intestinal Cells In Vitro. Int J Cell Biol 2010; 2010:928169. [PMID: 20454702 PMCID: PMC2862316 DOI: 10.1155/2010/928169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/11/2010] [Indexed: 01/08/2023] Open
Abstract
Gastric Leptin is absorbed by duodenal enterocytes and released on the basolateral side towards the bloodstream. We investigated in vitro some of the mechanisms of this transport. Caco-2/15 cells internalize leptin from the apical medium and release it through transcytosis in the basal medium in a time- temperature-dependent and saturable fashion. Leptin receptors are revealed on the apical brush-border membrane of the Caco-2 cells. RNA-mediated silencing of the receptor led to decreases in the uptake and basolateral release. Leptin in the basal medium was found bound to the soluble form of its receptor. An inhibitor of clathrin-dependent endocytosis (chlorpromazine) decreased leptin uptake. Confocal immunocytochemistry and the use of brefeldin A and okadaic acid revealed the passage of leptin through the Golgi apparatus. We propose that leptin transcytosis by intestinal cells depends on its receptor, on clathrin-coated vesicles and transits through the Golgi apparatus.
Collapse
|
38
|
Bendayan M, Londono I, Kemp BE, Hardie GD, Ruderman N, Prentki M. Association of AMP-activated protein kinase subunits with glycogen particles as revealed in situ by immunoelectron microscopy. J Histochem Cytochem 2009; 57:963-71. [PMID: 19581628 DOI: 10.1369/jhc.2009.954016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Immunogold cytochemistry was applied to reveal the intracellular location of AMP-activated protein kinase (AMPK) subunits in liver tissue of normal rats fed ad libitum. AMPK alpha and beta subunits were located both in the cytosol and in close association with rosettes of glycogen particles (alpha particles). To reveal their true in situ association with glycogen, particular tissue processing conditions that retain glycogen in the cells were required. These included fixation with a combination of glutaraldehyde and paraformaldehyde, followed by postfixation with osmium tetroxide and lead citrate and embedding in Epon. Processing by less-stringent fixation conditions and embedding in Lowicryl led to the extraction of the glycogen deposits, which in turn resulted in the absence of any labeling. This indicates that the loss of glycogen deposits leads to the loss of closely associated proteins. Labeling for the alpha(1) and alpha(2) subunits of AMPK was found to be about 2-fold greater over glycogen than over cytosol, whereas labeling for beta(1) was 8-fold higher over the glycogen particles than over the cytosol. Immunogold combined with morphometric analysis demonstrated that the beta(1) subunits are located at the periphery of the glycogen rosettes, consistent with a recent hypothesis developed via biochemical approaches.
Collapse
Affiliation(s)
- Moise Bendayan
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Levy E, Ménard D, Delvin E, Montoudis A, Beaulieu JF, Mailhot G, Dubé N, Sinnett D, Seidman E, Bendayan M. Localization, function and regulation of the two intestinal fatty acid-binding protein types. Histochem Cell Biol 2009; 132:351-67. [PMID: 19499240 DOI: 10.1007/s00418-009-0608-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2009] [Indexed: 01/20/2023]
Abstract
Although intestinal (I) and liver (L) fatty acid binding proteins (FABP) have been widely studied, the physiological significance of the presence of the two FABP forms (I- and L-FABP) in absorptive cells remains unknown as do the differences related to their distribution along the crypt-villus axis, regional expression, ontogeny and regulation in the human intestine. Our morphological experiments supported the expression of I- and L-FABP as early as 13 weeks of gestation. Whereas cytoplasmic immunofluorescence staining of L-FABP was barely detectable in the lower half of the villus and in the crypt epithelial cells, I-FABP was visualized in epithelial cells of the crypt-villus axis in all intestinal segments until the adult period in which the staining was maximized in the upper part of the villus. Immunoelectron microscopy revealed more intense labeling of L-FABP compared with I-FABP, accompanied with a heterogeneous distribution in the cytoplasm, microvilli and basolateral membranes. By western blot analysis, I- and L-FABP at 15 weeks of gestation appeared predominant in jejunum compared with duodenum, ileum, proximal and distal colon. Exploration of the maturation aspect documented a rise in L-FABP in adult tissues. Permanent transfections of Caco-2 cells with I-FABP cDNA resulted in decreased lipid export, apolipoprotein (apo) biogenesis and chylomicron secretion. Additionally, supplementation of Caco-2 with insulin, hydrocortisone and epidermal growth factor differentially modulated the expression of I- and L-FABP, apo B-48 and microsomal triglyceride transfer protein (MTP), emphasizing that these key proteins do not exhibit a parallel modulation. Overall, our findings indicate that the two FABPs display differences in localization, regulation and developmental pattern.
Collapse
Affiliation(s)
- Emile Levy
- Department of Nutrition, CHU-Sainte-Justine, University of Montreal, 3175 Côte Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bally M, Vörös J. Nanoscale labels: nanoparticles and liposomes in the development of high-performance biosensors. Nanomedicine (Lond) 2009; 4:447-67. [DOI: 10.2217/nnm.09.16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Technology for the detection of biological species has generated considerable interest in a variety of fields including healthcare, defense, food and environmental monitoring. In a biosensor, labeled specific binding partners are used to emit a detectable signal. Owing to their unique properties, nanomaterials have been proposed as a novel label category and have led to the development of new assays and new transduction mechanisms. In this article, the role of three major types of nanoscale labels (metallic, semiconductor and liposome nanoparticles) in the development of a new generation of optical, electrochemical or gravimetric biosensors will be presented. The underlying transduction principles will be briefly explained and assay strategies relying on the use of these ‘nanolabels’ will be described. The contribution to increased assay performance and sensitivity will be highlighted. Approaches towards simple, cost efficient and sensitive assays are essential to meet the demands of a growing number of applications.
Collapse
Affiliation(s)
- Marta Bally
- Laboratory of Biosensors & Bioelectronics, Institute for Biomedical Engineering, ETH and University Zurich, Gloriastr. 35, 8092 Zurich, Switzerland
| | - Janos Vörös
- Laboratory of Biosensors & Bioelectronics, Institute for Biomedical Engineering, ETH and University Zurich, Gloriastr. 35, 8092 Zurich, Switzerland
| |
Collapse
|
41
|
Plomp M, Malkin AJ. Mapping of proteomic composition on the surfaces of bacillus spores by atomic force microscopy-based immunolabeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:403-409. [PMID: 19063625 DOI: 10.1021/la803129r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomic force microscopy (AFM) provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g., viruses, bacteria, and bacterial spores) at near-molecular resolution in native conditions. Further development of atomic force microscopy to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.
Collapse
Affiliation(s)
- Marco Plomp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-233, Livermore, California 94551, USA
| | | |
Collapse
|
42
|
Lucocq JM, Gawden-Bone C. A stereological approach for estimation of cellular immunogold labeling and its spatial distribution in oriented sections using the rotator. J Histochem Cytochem 2009; 57:709-19. [PMID: 19124838 DOI: 10.1369/jhc.2008.952671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Particulate gold labeling applied to ultrathin sections is a powerful approach for locating cellular proteins and lipids on thin sections of cellular structures and compartments. Effective quantitative methods now allow estimation of both density and distribution of gold labeling across aggregate organelles or compartment profiles. However, current methods generally use random sections of cells and tissues, and these do not readily present the information needed for spatial mapping of cellular quantities of gold label. Yet spatial mapping of gold particle labeling becomes important when cells are polarized or show internal organization or spatial shifts in protein/lipid localization. Here we have applied a stereological approach called the rotator to estimate cellular gold label and proportions of labeling over cellular compartments at specific locations related to a chosen cell axis or chosen cellular structures. This method could be used in cell biology for mapping cell components in studies of protein translocation, cell polarity, cell cycle stages, or component cell types in tissues.
Collapse
Affiliation(s)
- John Milton Lucocq
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom.
| | | |
Collapse
|
43
|
Mayhew TM, Lucocq JM. Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review. Histochem Cell Biol 2008; 130:299-313. [PMID: 18553098 PMCID: PMC2491712 DOI: 10.1007/s00418-008-0451-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2008] [Indexed: 01/01/2023]
Abstract
Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations.
Collapse
Affiliation(s)
- Terry M Mayhew
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, E Floor, University of Nottingham, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
44
|
Xi D, Luo X, Lu Q, Yao K, Liu Z, Ning Q. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2008; 10:393-400. [PMID: 32214883 PMCID: PMC7088703 DOI: 10.1007/s11051-007-9263-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 06/09/2007] [Indexed: 05/20/2023]
Abstract
Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.
Collapse
Affiliation(s)
- Dong Xi
- Laboratory of Infectious Immunology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei P.R. China
| | - XiaoPing Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - QiangHua Lu
- Department of Physics, Huazhong University of Science and Technology, Wuhan, 430030 Hubei P.R. China
| | - KaiLun Yao
- Department of Physics, Huazhong University of Science and Technology, Wuhan, 430030 Hubei P.R. China
| | - ZuLi Liu
- Department of Physics, Huazhong University of Science and Technology, Wuhan, 430030 Hubei P.R. China
| | - Qin Ning
- Laboratory of Infectious Immunology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei P.R. China
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei P.R. China
| |
Collapse
|
45
|
|
46
|
Abstract
Lung stereology has a long and successful tradition. From mice to men, the application of new stereological methods at several levels (alveoli, parenchymal cells, organelles, proteins) has led to new insights into normal lung architecture, parenchymal remodelling in emphysema-like pathology, alveolar type II cell hyperplasia and hypertrophy and intracellular surfactant alterations as well as distribution of surfactant proteins. The Euler number of the network of alveolar openings, estimated using physical disectors at the light microscopic level, is an unbiased and direct estimate of alveolar number. Surfactant-producing alveolar type II cells can be counted and sampled for local size estimation with physical disectors at a high magnification light microscopic level. The number of their surfactant storage organelles, lamellar bodies, can be estimated using physical disectors at the EM level. By immunoelectron microscopy, surfactant protein distribution can be analysed with the relative labelling index. Together with the well-established classical stereological methods, these design-based methods now allow for a complete quantitative phenotype analysis in lung development and disease, including the structural characterization of gene-manipulated mice, at the light and electron microscopic level.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Anatomy, Experimental Morphology Unit, University of Bern, Switzerland.
| |
Collapse
|
47
|
Pankau WM, Mönninghoff S, von Kiedrowski G. Thermostable and Monoconjugable Gold Clusters with a Dodecadentate Thioether Ligand Gripper. Angew Chem Int Ed Engl 2006; 45:1889-91. [PMID: 16493711 DOI: 10.1002/anie.200502370] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wolf Matthias Pankau
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
48
|
Pankau WM, Mönninghoff S, von Kiedrowski G. Thermostabile und monokonjugierbare Goldcluster mit einem zwölfzähnigen Thioether- Liganden als Greifer. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 2006; 24:62-7. [PMID: 16380179 DOI: 10.1016/j.tibtech.2005.12.004] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/25/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
Nanoparticles of gold, which are in the size range 10-100 nm, undergo a plasmon resonance with light. This is a process whereby the electrons of the gold resonate in response to incoming radiation causing them to both absorb and scatter light. This effect can be harnessed to either destroy tissue by local heating or release payload molecules of therapeutic importance. Gold nanoparticles can also be conjugated to biologically active moieties, providing possibilities for targeting to particular tissues. Here, we review the progress made in the exploitation of the plasmon resonance of gold nanoparticles in photo-thermal therapeutic medicine.
Collapse
Affiliation(s)
- Dakrong Pissuwan
- Institute for Nanoscale Technology, University of Technology Sydney, Broadway NSW 2007, Australia
| | | | | |
Collapse
|
50
|
Joly E, Bendayan M, Roduit R, Saha AK, Ruderman NB, Prentki M. Malonyl-CoA decarboxylase is present in the cytosolic, mitochondrial and peroxisomal compartments of rat hepatocytes. FEBS Lett 2005; 579:6581-6. [PMID: 16298369 DOI: 10.1016/j.febslet.2005.10.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
A role for cytosolic malonyl-CoA decarboxylase (MCD) as a regulator of fatty acid oxidation has been postulated. However, there is no direct evidence that MCD is present in the cytosol. To address this issue, we performed cell fractionation and electron microscopic colloidal gold studies of rat liver to determine the location and activity of MCD. By both methods, substantial amounts of MCD protein and activity were found in the cytosol, mitochondria and peroxisomes, the latter with the highest specific activity. MCD species with different electrophoretic mobility were observed in the three fractions. The data demonstrate that active MCD is present in the cytosol, mitochondria and peroxisomes of rat liver, consistent with the view that MCD participates in the regulation of cytosolic malonyl-CoA levels and of hepatic fatty acid oxidation.
Collapse
Affiliation(s)
- Erik Joly
- Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de recherche du CHUM, Pavillon de Sève, Y-4603, 1560 Sherbrooke Est, and the Department of Nutrition and Biochemistry, Université de Montréal, Montréal PQ, Canada, H3T 1C5
| | | | | | | | | | | |
Collapse
|