1
|
Yu Z, Guan J, Hanson C, Duong T, Zeng L. Fine-tuned spatiotemporal dynamics of DNA replication during phage lambda infection. J Virol 2024:e0112824. [PMID: 39480083 DOI: 10.1128/jvi.01128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
After the ejection of viral DNA into the host cytoplasm, the temperate bacteriophage (phage) lambda integrates a cascade of expressions from various regulatory genes, coupled with DNA replication, to commit to a decision between lysis and lysogeny. Higher multiplicity of infection (MOI) greatly shifts the decision toward the lysogenic pathway. However, how the phage separates the MOI from replicated viral DNA during lysis-lysogeny decision-making is unclear. To quantitatively understand the role of viral DNA replication, we constructed a reporter system facilitating the visualization of individual copies of phage DNA throughout the phage life cycle, along with the lysis-lysogeny reporters. We showed that intracellular viral DNA diverges between the lytic and lysogenic pathways from the early phase of the infection cycle, mostly due to the synchronization and success of DNA injection, as well as the competition for replication resources, rather than the replication rate. Strikingly, we observed two distinct replication patterns during lysogenization and surprisingly heterogeneous integration kinetics, which advances our understanding of temperate phage life cycles. We revealed that the weak repression function of Cro is critical for an optimal replication rate and plays a crucial role in establishing stable lysogens. IMPORTANCE Temperate bacteriophages, such as lambda, incorporate environmental cues including host abundance and nutrient conditions to make optimal decisions between propagation and dormancy. A higher phage-to-host ratio or multiplicity of infection (MOI) during λ infection strongly biases toward lysogeny. However, a comprehensive understanding of this decision-making process and the impact of phage replication prior to the decision is yet to be achieved. Here, we used fluorescence microscopy to quantitatively track the spatiotemporal progression of viral DNA replication in individual cells with different cell fates. The implementation of this fluorescent reporter system and quantitative analysis workflow opens a new avenue for future studies to delve deeper into various types of virus-host interactions at a high resolution.
Collapse
Affiliation(s)
- Zihao Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jingwen Guan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Catherine Hanson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Trish Duong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Van Duyne GD, Landy A. Bacteriophage lambda site-specific recombination. Mol Microbiol 2024; 121:895-911. [PMID: 38372210 PMCID: PMC11096046 DOI: 10.1111/mmi.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Kopkowski PW, Zhang Z, Saier MH. The effect of DNA-binding proteins on insertion sequence element transposition upstream of the bgl operon in Escherichia coli. Front Microbiol 2024; 15:1388522. [PMID: 38666260 PMCID: PMC11043490 DOI: 10.3389/fmicb.2024.1388522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The bglGFB operon in Escherichia coli K-12 strain BW25113, encoding the proteins necessary for the uptake and metabolism of β-glucosides, is normally not expressed. Insertion of either IS1 or IS5 upstream of the bgl promoter activates expression of the operon only when the cell is starving in the presence of a β-glucoside, drastically increasing transcription and allowing the cell to survive and grow using this carbon source. Details surrounding the exact mechanism and regulation of the IS insertional event remain unclear. In this work, the role of several DNA-binding proteins in how they affect the rate of insertion upstream of bgl are examined via mutation assays and protocols measuring transcription. Both Crp and IHF exert a positive effect on insertional Bgl+ mutations when present, active, and functional in the cell. Our results characterize IHF's effect in conjunction with other mutations, show that IHF's effect on IS insertion into bgl also affects other operons, and indicate that it may exert its effect by binding to and altering the DNA conformation of IS1 and IS5 in their native locations, rather than by directly influencing transposase gene expression. In contrast, the cAMP-CRP complex acts directly upon the bgl operon by binding upstream of the promoter, presumably altering local DNA into a conformation that enhances IS insertion.
Collapse
Affiliation(s)
| | - Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Pozdeev G, Beckett MC, Mogre A, Thomson NR, Dorman CJ. Reciprocally rewiring and repositioning the Integration Host Factor (IHF) subunit genes in Salmonella enterica serovar Typhimurium: impacts on physiology and virulence. Microb Genom 2022; 8. [PMID: 35166652 PMCID: PMC8942017 DOI: 10.1099/mgen.0.000768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Integration Host Factor (IHF) is a heterodimeric nucleoid-associated protein that plays roles in bacterial nucleoid architecture and genome-wide gene regulation. The ihfA and ihfB genes encode the subunits and are located 350 kbp apart, in the Right replichore of the Salmonella chromosome. IHF is composed of one IhfA and one IhfB subunit. Despite this 1 : 1 stoichiometry, MS revealed that IhfB is produced in 2-fold excess over IhfA. We re-engineered Salmonella to exchange reciprocally the protein-coding regions of ihfA and ihfB, such that each relocated protein-encoding region was driven by the expression signals of the other's gene. MS showed that in this 'rewired' strain, IhfA is produced in excess over IhfB, correlating with enhanced stability of the hybrid ihfB-ihfA mRNA that was expressed from the ihfB promoter. Nevertheless, the rewired strain grew at a similar rate to the wild-type and was similar in competitive fitness. However, compared to the wild-type, it was less motile, had growth-phase-specific reductions in SPI-1 and SPI-2 gene expression, and was engulfed at a higher rate by RAW macrophage. Our data show that while exchanging the physical locations of its ihf genes and the rewiring of their regulatory circuitry are well tolerated in Salmonella, genes involved in the production of type 3 secretion systems exhibit dysregulation accompanied by altered phenotypes.
Collapse
Affiliation(s)
- German Pozdeev
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Aalap Mogre
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Qin G, Wu S, Zhang L, Li Y, Liu C, Yu J, Deng L, Xiao G, Zhang Z. An Efficient Modular Gateway Recombinase-Based Gene Stacking System for Generating Multi-Trait Transgenic Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040488. [PMID: 35214820 PMCID: PMC8879548 DOI: 10.3390/plants11040488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
Transgenic technology can transfer favorable traits regardless of reproductive isolation and is an important method in plant synthetic biology and genetic improvement. Complex metabolic pathway modification and pyramiding breeding strategies often require the introduction of multiple genes at once, but the current vector assembly systems for constructing multigene expression cassettes are not completely satisfactory. In this study, a new in vitro gene stacking system, GuanNan Stacking (GNS), was developed. Through the introduction of Type IIS restriction enzyme-mediated Golden Gate cloning, GNS allows the modular, standardized assembly of target gene expression cassettes. Because of the introduction of Gateway recombination, GNS facilitates the cloning of superlarge transgene expression cassettes, allows multiple expression cassettes to be efficiently assembled in a binary vector simultaneously, and is compatible with the Cre enzyme-mediated marker deletion mechanism. The linked dual positive-negative marker selection strategy ensures the efficient acquisition of target recombinant plasmids without prokaryotic selection markers in the T-DNA region. The host-independent negative selection marker combined with the TAC backbone ensures the cloning and transfer of large T-DNAs (>100 kb). Using the GNS system, we constructed a binary vector containing five foreign gene expression cassettes and obtained transgenic rice carrying the target traits, proving that the method developed in this research is a powerful tool for plant metabolic engineering and compound trait transgenic breeding.
Collapse
Affiliation(s)
- Guannan Qin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suting Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
| | - Liying Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
| | - Yanyao Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmei Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghui Yu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
| | - Lihua Deng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
| | - Guoying Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (G.X.); (Z.Z.)
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
- Correspondence: (G.X.); (Z.Z.)
| |
Collapse
|
6
|
Badel C, Da Cunha V, Oberto J. Archaeal tyrosine recombinases. FEMS Microbiol Rev 2021; 45:fuab004. [PMID: 33524101 PMCID: PMC8371274 DOI: 10.1093/femsre/fuab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Catherine Badel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Reverchon S, Meyer S, Forquet R, Hommais F, Muskhelishvili G, Nasser W. The nucleoid-associated protein IHF acts as a 'transcriptional domainin' protein coordinating the bacterial virulence traits with global transcription. Nucleic Acids Res 2021; 49:776-790. [PMID: 33337488 PMCID: PMC7826290 DOI: 10.1093/nar/gkaa1227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023] Open
Abstract
Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαβ heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.
Collapse
Affiliation(s)
- Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Sam Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Raphaël Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Florence Hommais
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| |
Collapse
|
8
|
Li D, Zheng C, Zhou J, Chen B, Xu R, Yuan W, Zheng E, Liang W, Yang Y, He L, Shi J, Yan C, Wang X, Chen J. pGP-B2E, a Recombinant Compatible TA/TB-Ligation Vector for Rapid and Inexpensive Gene Cloning. Mol Biotechnol 2019; 62:56-66. [PMID: 31749084 DOI: 10.1007/s12033-019-00226-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA cloning is the basic step for different fields of life science, and many efforts have been made to simplify this procedure. In this study, we report two general purpose plasmids (pGP), pGP-XB2E and pGP-B2E, for rapid and cost-effective construct of basic clones. The BciVI and XcmI cleavage sites are designed in pGP-XB2E to test plasmid linearization efficiency. The plasmid has better linearization efficiency by using BciVI which could almost completely digest 2 μg plasmid in 10 min with only one-tenth the recommended enzyme concentration. In order to further optimize the pGP-XB2E, a new plasmid, pGP-B2E, which removed XcmI cleavage site was designed. This vector is highly efficient for cloning PCR products up to 1812 bp, and the number of colonies was about five times that of pGP-XB2E. In addition to TA cloning, blunt-end PCR products with T ended in the primer could be positively linked to the T-vector pGP-B2E without A-tailing treatment (TB cloning). Moreover, as an entry vector, pGP-B2E was also compatible for gateway recombination reaction without frameshift mutations. In general, this vector provides a universal, quick, and cost-efficient method for basic molecular cloning.
Collapse
Affiliation(s)
- Dongyue Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chao Zheng
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Bin Chen
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Rumeng Xu
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Wenxia Yuan
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ersong Zheng
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Weifang Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yong Yang
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Lijuan He
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jianghua Shi
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, 315101, People's Republic of China
| | - Xuming Wang
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| | - Jianping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
- Institute of Plant Virology, Ningbo University, Ningbo, People's Republic of China.
| |
Collapse
|
9
|
Dorman CJ, Ní Bhriain N. CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends Microbiol 2019; 28:19-27. [PMID: 31519332 DOI: 10.1016/j.tim.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
In this opinion article we highlight links between the H-NS nucleoid-associated protein, variable DNA topology, the regulation of CRISPR-cas locus expression, CRISPR-Cas activity, and the recruitment of novel genetic information by the CRISPR array. We propose that the requirement that the invading mobile genetic element be negatively supercoiled limits effective CRISPR action to a window in the bacterial growth cycle when DNA topology is optimal, and that this same window is used for the efficient integration of new spacer sequences at the CRISPR array. H-NS silences CRISPR promoters, and we propose that antagonists of H-NS, such as the LeuO transcription factor, provide a basis for a stochastic genetic switch that acts at random in each cell in the bacterial population. In addition, we wish to propose a mechanism by which mobile genetic elements can suppress CRISPR-cas transcription using H-NS homologues. Although the individual components of this network are known, we propose a new model in which they are integrated and linked to the physiological state of the bacterium. The model provides a basis for cell-to-cell variation in the expression and performance of CRISPR systems in bacterial populations.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Niamh Ní Bhriain
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Yin J, Liu H, Xiang W, Jin T, Guo D, Wang L, Zhi H. Discovery of the Agrobacterium growth inhibition sequence in virus and its application to recombinant clone screening. AMB Express 2019; 9:116. [PMID: 31342207 PMCID: PMC6656845 DOI: 10.1186/s13568-019-0840-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
Infectious clone vectors used widely in genetic research. While constructing soybean mosaic virus (SMV) clone vectors, we found that transformed Agrobacterium grew significantly different depending on the viral strains used. In particular, the clone vectors constructed with SMV SC15 significantly suppressed the growth of Agrobacterium. Recombinant and truncated virus vector experiments showed that the polymorphism of a P1 protein coding sequence of SC15 leads to the growth inhibition of Agrobacterium. But the lack of other protein encoding sequences, except for the sequence encoding coat protein, should reduce the ability of SC15 to suppress Agrobacterium growth. A vector (pCB301-attL-SC15P) compatible with the Gateway cloning system was constructed using this Agrobacterium inhibitory sequence. The results from the LR recombination reaction with pCB301-attL-SC15P and Agrobacterium transformation showed the valuable application potential of the Agrobacterium inhibitory sequence to serve as a negative screening factor for effective recombinant clone screening in Agrobacterium.
Collapse
|
11
|
Verdonk CJ, Sullivan JT, Williman KM, Nicholson L, Bastholm TR, Hynes MF, Ronson CW, Bond CS, Ramsay JP. Delineation of the integrase-attachment and origin-of-transfer regions of the symbiosis island ICEMlSymR7A. Plasmid 2019; 104:102416. [DOI: 10.1016/j.plasmid.2019.102416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
|
12
|
Flores-Ríos R, Quatrini R, Loyola A. Endogenous and Foreign Nucleoid-Associated Proteins of Bacteria: Occurrence, Interactions and Effects on Mobile Genetic Elements and Host's Biology. Comput Struct Biotechnol J 2019; 17:746-756. [PMID: 31303979 PMCID: PMC6606824 DOI: 10.1016/j.csbj.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
Mobile Genetic Elements (MGEs) are mosaics of functional gene modules of diverse evolutionary origin and are generally divergent from the hosts´ genetic background. Existing biases in base composition and codon usage of these elements` genes impose transcription and translation limitations that may affect the physical and regulatory integration of MGEs in new hosts. Stable appropriation of the foreign DNA depends on a number of host factors among which are the Nucleoid-Associated Proteins (NAPs). These small, basic, highly abundant proteins bind and bend DNA, altering its topology and folding, thereby affecting all known essential DNA metabolism related processes. Both chromosomally- (endogenous) and MGE- (foreign) encoded NAPs have been shown to exist in bacteria. While the role of host-encoded NAPs in xenogeneic silencing of both episomal (plasmids) and integrative MGEs (pathogenicity islands and prophages) is well acknowledged, less is known about the role of MGE-encoded NAPs in the foreign elements biology or their influence on the host's chromosome expression dynamics. Here we review existing literature on the topic, present examples on the positive and negative effects that endogenous and foreign NAPs exert on global transcriptional gene expression, MGE integrative and excisive recombination dynamics, persistence and transfer to suitable hosts and discuss the nature and relevance of synergistic and antagonizing higher order interactions between diverse types of NAPs.
Collapse
Affiliation(s)
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Alejandra Loyola
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile
| |
Collapse
|
13
|
Ide K, Mitsui K, Irie R, Matsushita Y, Ijichi N, Toyodome S, Kosai KI. A Novel Construction of Lentiviral Vectors for Eliminating Tumorigenic Cells from Pluripotent Stem Cells. Stem Cells 2018; 36:230-239. [DOI: 10.1002/stem.2725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The risk of tumor formation poses a challenge for human pluripotent stem cell (hPSC)-based transplantation therapy. Specific and total elimination of tumorigenic hPSCs by suicide genes (SGs) has not been achieved because no methodology currently exists for testing multiple candidate transgene constructs. Here, we present a novel method for efficient generation of tumorigenic cell-targeting lentiviral vectors (TC-LVs) with diverse promoters upstream of a fluorescent protein and SGs. Our two-plasmid system achieved rapid and simultaneous construction of different TC-LVs with different promoters. Ganciclovir (GCV) exerted remarkable cytotoxicity in herpes simplex virus thymidine kinase-transduced hPSCs, and high specificity for undifferentiated cells was achieved using the survivin promoter (TC-LV.Surv). Moreover, GCV treatment completely abolished teratoma formation by TC-LV.Surv-infected hPSCs transplanted into mice, without harmful effects. Thus, TC-LV can efficiently identify the best promoter and SG for specific and complete elimination of tumorigenic hPSCs, facilitating the development of safe regenerative medicine.
Collapse
Affiliation(s)
- Kanako Ide
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kaoru Mitsui
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Rie Irie
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yohei Matsushita
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Nobuhiro Ijichi
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Soichiro Toyodome
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ken-ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Clinical and Translational Research, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
14
|
Dorman CJ, Bogue MM. The interplay between DNA topology and accessory factors in site-specific recombination in bacteria and their bacteriophages. Sci Prog 2016; 99:420-437. [PMID: 28742481 PMCID: PMC10365484 DOI: 10.3184/003685016x14811202974921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.
Collapse
Affiliation(s)
| | - Marina M. Bogue
- Natural Science (Microbiology) from Trinity College Dublin, Ireland
| |
Collapse
|
15
|
Laxmikanthan G, Xu C, Brilot AF, Warren D, Steele L, Seah N, Tong W, Grigorieff N, Landy A, Van Duyne GD. Structure of a Holliday junction complex reveals mechanisms governing a highly regulated DNA transaction. eLife 2016; 5. [PMID: 27223329 PMCID: PMC4880445 DOI: 10.7554/elife.14313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/07/2016] [Indexed: 11/13/2022] Open
Abstract
The molecular machinery responsible for DNA expression, recombination, and compaction has been difficult to visualize as functionally complete entities due to their combinatorial and structural complexity. We report here the structure of the intact functional assembly responsible for regulating and executing a site-specific DNA recombination reaction. The assembly is a 240-bp Holliday junction (HJ) bound specifically by 11 protein subunits. This higher-order complex is a key intermediate in the tightly regulated pathway for the excision of bacteriophage λ viral DNA out of the E. coli host chromosome, an extensively studied paradigmatic model system for the regulated rearrangement of DNA. Our results provide a structural basis for pre-existing data describing the excisive and integrative recombination pathways, and they help explain their regulation. DOI:http://dx.doi.org/10.7554/eLife.14313.001 Some viruses can remain dormant inside an infected cell and only become active when conditions are right to multiply and infect other cells. Bacteriophage λ is a much-studied model virus that adopts this lifecycle by inserting its genetic information into the chromosome of a bacterium called Escherichia coli. Certain signals can later trigger the viral DNA to be removed from the bacterial chromosome, often after many generations, so that it can replicate and make new copies of the virus. Specific sites on the viral and bacterial DNA earmark where the virus’s genetic information will insert and how it will be removed. Remarkably, each of these two site-specific reactions (i.e. insertion and removal) cannot be reversed once started, and their onset is precisely controlled. These reactions involve a molecular machine or complex that consists of four enzymes that cut and reconnect the DNA strands and seven DNA-bending proteins that bring distant sites closer together. Despite decades of work by many laboratories, no one had provided a three-dimensional image of this complete molecular machine together with the DNA it acts upon. Now, Laxmikanthan et al. reveal a three-dimensional structure of this machine with all its components by trapping and purifying the complex at the halfway point in the removal process, when the DNA forms a structure known as a “Holliday junction”. The structure was obtained using electron microscopy of complexes frozen in ice. The structure answers many of the long-standing questions about the removal and insertion reactions. For example, it shows how the DNA-bending proteins and enzymes assemble into a large complex to carry out the removal reaction, which is different from the complex that carries out the insertion reaction. It also shows that the removal and insertion reactions are each prevented from acting in the opposite direction because the two complexes have different requirements. These new findings improve our understanding of how the insertion and removal reactions are precisely regulated. Laxmikanthan et al.’s results also serve as examples for thinking about the complicated regulatory machines that are widespread in biology. DOI:http://dx.doi.org/10.7554/eLife.14313.002
Collapse
Affiliation(s)
- Gurunathan Laxmikanthan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Chen Xu
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - Axel F Brilot
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - David Warren
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Lindsay Steele
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Nicole Seah
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Wenjun Tong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Nikolaus Grigorieff
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States.,Division of Biology and Medicine, Brown University, Providence, United States
| | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
16
|
Abstract
The site-specific recombinase encoded by bacteriophage λ (Int) is responsible for integrating and excising the viral chromosome into and out of the chromosome of its Escherichia coli host. Int carries out a reaction that is highly directional, tightly regulated, and depends upon an ensemble of accessory DNA bending proteins acting on 240 bp of DNA encoding 16 protein binding sites. This additional complexity enables two pathways, integrative and excisive recombination, whose opposite, and effectively irreversible, directions are dictated by different physiological and environmental signals. Int recombinase is a heterobivalent DNA binding protein and each of the four Int protomers, within a multiprotein 400 kDa recombinogenic complex, is thought to bind and, with the aid of DNA bending proteins, bridge one arm- and one core-type DNA site. In the 12 years since the publication of the last review focused solely on the λ site-specific recombination pathway in Mobile DNA II, there has been a great deal of progress in elucidating the molecular details of this pathway. The most dramatic advances in our understanding of the reaction have been in the area of X-ray crystallography where protein-DNA structures have now been determined for of all of the DNA-protein interfaces driving the Int pathway. Building on this foundation of structures, it has been possible to derive models for the assembly of components that determine the regulatory apparatus in the P-arm, and for the overall architectures that define excisive and integrative recombinogenic complexes. The most fundamental additional mechanistic insights derive from the application of hexapeptide inhibitors and single molecule kinetics.
Collapse
|
17
|
Batabyal S, Cervenka G, Ha JH, Kim YT, Mohanty S. Broad-Band Activatable White-Opsin. PLoS One 2015; 10:e0136958. [PMID: 26360377 PMCID: PMC4567350 DOI: 10.1371/journal.pone.0136958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/11/2015] [Indexed: 01/29/2023] Open
Abstract
Currently, the use of optogenetic sensitization of retinal cells combined with activation/inhibition has the potential to be an alternative to retinal implants that would require electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that the narrow spectral sensitivity of an opsin requires active stimulation by a blue laser or a light emitting diode with much higher intensities than ambient light. In order to allow an ambient light-based stimulation paradigm, we report the development of a ‘white-opsin’ that has broad spectral excitability in the visible spectrum. The cells sensitized with white-opsin showed excitability at an order of magnitude higher with white light compared to using only narrow-band light components. Further, cells sensitized with white-opsin produced a photocurrent that was five times higher than Channelrhodopsin-2 under similar photo-excitation conditions. The use of fast white-opsin may allow opsin-sensitized neurons in a degenerated retina to exhibit a higher sensitivity to ambient white light. This property, therefore, significantly lowers the activation threshold in contrast to conventional approaches that use intense narrow-band opsins and light to activate cellular stimulation.
Collapse
Affiliation(s)
- Subrata Batabyal
- Biophysics and Physiology Lab, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Gregory Cervenka
- Biophysics and Physiology Lab, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Ji Hee Ha
- Department of cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Young-tae Kim
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Samarendra Mohanty
- Biophysics and Physiology Lab, The University of Texas at Arlington, Arlington, TX, United States of America
- * E-mail:
| |
Collapse
|
18
|
Radchuk V, Pirko YV, Isayenkov SV, Yemets AI, Blume YB. cDNA library construction from meristematic tissue of finger millet panicle. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714050089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Nucleoprotein architectures regulating the directionality of viral integration and excision. Proc Natl Acad Sci U S A 2014; 111:12372-7. [PMID: 25114241 DOI: 10.1073/pnas.1413019111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The virally encoded site-specific recombinase Int collaborates with its accessory DNA bending proteins IHF, Xis, and Fis to assemble two distinct, very large, nucleoprotein complexes that carry out either integrative or excisive recombination along regulated and essentially unidirectional pathways. The core of each complex consists of a tetramer of Integrase protein (Int), which is a heterobivalent DNA binding protein that binds and bridges a core-type DNA site (where strand cleavage and ligation are executed), and a distal arm-type site, that is brought within range by one or more DNA bending proteins. The recent determination of the patterns of these Int bridges has made it possible to think realistically about the global architecture of the recombinogenic complexes. Here, we combined the previously determined Int bridging patterns with in-gel FRET experiments and in silico modeling to characterize and differentiate the two 400-kDa multiprotein Holiday junction recombination intermediates formed during λ integration and excision. The results lead to architectural models that explain how integration and excision are regulated in λ site-specific recombination. Our confidence in the basic features of these architectures is based on the redundancy and self-consistency of the underlying data from two very different experimental approaches to establish bridging interactions, a set of strategic intracomplex distances from FRET experiments, and the model's ability to explain key aspects of the integrative and excisive recombination pathways, such as topological changes, the mechanism of capturing attB, and the features of asymmetry and flexibility within the complexes.
Collapse
|
20
|
Li MV, Shukla D, Rhodes BH, Lall A, Shu J, Moriarity BS, Largaespada DA. HomeRun Vector Assembly System: a flexible and standardized cloning system for assembly of multi-modular DNA constructs. PLoS One 2014; 9:e100948. [PMID: 24959875 PMCID: PMC4069157 DOI: 10.1371/journal.pone.0100948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/01/2014] [Indexed: 11/29/2022] Open
Abstract
Advances in molecular and synthetic biology call for efficient assembly of multi-modular DNA constructs. We hereby present a novel modular cloning method that obviates the need for restriction endonucleases and significantly improves the efficiency in the design and construction of complex DNA molecules by standardizing all DNA elements and cloning reactions. Our system, named HomeRun Vector Assembly System (HVAS), employs a three-tiered vector series that utilizes both multisite gateway cloning and homing endonucleases, with the former building individual functional modules and the latter linking modules into the final construct. As a proof-of-principle, we first built a two-module construct that supported doxycycline-induced expression of green fluorescent protein (GFP). Further, with a three-module construct we showed quantitatively that there was minimal promoter leakage between neighbouring modules. Finally, we developed a method, in vitro Cre recombinase-mediated cassette exchange (RMCE) cloning, to regenerate a gateway destination vector from a previous multisite gateway cloning reaction, allowing access to existing DNA element libraries in conventional gateway entry clones, and simple creation of constructs ready for in vivo RMCE. We believe these methods constitute a useful addition to the standard molecular cloning techniques that could potentially support industrial scale synthesis of DNA constructs.
Collapse
Affiliation(s)
- Ming V. Li
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Dip Shukla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian H. Rhodes
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anjali Lall
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jingmin Shu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering and Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Branden S. Moriarity
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering and Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering and Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
21
|
Berntsson RPA, Odegrip R, Sehlén W, Skaar K, Svensson LM, Massad T, Högbom M, Haggård-Ljungquist E, Stenmark P. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2. Nucleic Acids Res 2013; 42:2725-35. [PMID: 24259428 PMCID: PMC3936717 DOI: 10.1093/nar/gkt1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer.
Collapse
Affiliation(s)
- Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden and Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Swiercz JP, Nanji T, Gloyd M, Guarné A, Elliot MA. A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Res 2013; 41:4171-84. [PMID: 23427309 PMCID: PMC3627587 DOI: 10.1093/nar/gkt095] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Effective chromosome organization is central to the functioning of any cell. In bacteria, this organization is achieved through the concerted activity of multiple nucleoid-associated proteins. These proteins are not, however, universally conserved, and different groups of bacteria have distinct subsets that contribute to chromosome architecture. Here, we describe the characterization of a novel actinobacterial-specific protein in Streptomyces coelicolor. We show that sIHF (SCO1480) associates with the nucleoid and makes important contributions to chromosome condensation and chromosome segregation during Streptomyces sporulation. It also affects antibiotic production, suggesting an additional role in gene regulation. In vitro, sIHF binds DNA in a length-dependent but sequence-independent manner, without any obvious structural preferences. It does, however, impact the activity of topoisomerase, significantly altering DNA topology. The sIHF–DNA co-crystal structure reveals sIHF to be composed of two domains: a long N-terminal helix and a C-terminal helix-two turns-helix domain with two separate DNA interaction sites, suggesting a potential role in bridging DNA molecules.
Collapse
Affiliation(s)
- Julia P Swiercz
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Abstract
Direct cloning of PCR fragments by TA cloning or blunt end ligation are two simple methods which would greatly benefit high-throughput (HTP) cloning constructions if the efficiency can be improved. In this study, we have developed a ribosomal binding site (RBS) switching strategy for direct cloning of PCR fragments. RBS is an A/G rich region upstream of the translational start codon and is essential for gene expression. Change from A/G to T/C in the RBS blocks its activity and thereby abolishes gene expression. Based on this property, we introduced an inactive RBS upstream of a selectable marker gene, and designed a fragment insertion site within this inactive RBS. Forward and reverse insertions of specifically tailed fragments will respectively form an active and inactive RBS, thus all background from vector self-ligation and fragment reverse insertions will be eliminated due to the non-expression of the marker gene. The effectiveness of our strategy for TA cloning and blunt end ligation are confirmed. Application of this strategy to gene over-expression, a bacterial two-hybrid system, a bacterial one-hybrid system, and promoter bank construction are also verified. The advantages of this simple procedure, together with its low cost and high efficiency, makes our strategy extremely useful in HTP cloning constructions.
Collapse
|
24
|
Prediction and screening of nuclear targeting proteins with nuclear localization signals in Helicobacter pylori. J Microbiol Methods 2012; 91:490-6. [PMID: 23079023 DOI: 10.1016/j.mimet.2012.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 01/26/2023]
Abstract
Host cell pathology induced by nuclear targeting of bacterial proteins has recently been identified as a pathogenic mechanism of bacteria. However, very few bacterial proteins were identified to target the nuclei of host cells. This study was designed to screen nuclear targeting proteins with nuclear localization signals (NLSs) in Helicobacter pylori using a combination of bioinformatic analysis and the Gateway recombinational cloning system. Forty-nine functional or hypothetical proteins were predicted to carry the putative NLSs among 1570 open reading frames (ORFs) of H. pylori 26695. Entire sets of 49 H. pylori ORFs were cloned for the generation of green fluorescent protein-tagged proteins using the Gateway recombinational cloning system. Twenty-six H. pylori proteins with the putative NLSs were found to target in the nuclei of COS-7 cells, whereas 23 were localized in the cytoplasm of host cells. Deletion of NLS sequences from four selected nuclear targeting proteins, urease subunit A, Omp18, secreted protein involved in flagellar motility, and response regulator, resulted in cytoplasmic localization of these mutant proteins. In conclusion, a combination of bioinformatic analysis and the Gateway cloning system was shown to be a useful tool for large-scale screening of nuclear targeting proteins with NLSs in H. pylori, which can be used to better understand the H. pylori-directed host cell pathology.
Collapse
|
25
|
Choi JY, Kim YS, Wang Y, Tao XY, Liu Q, Roh JY, Woo SD, Jin BR, Je YH. Fast and efficient generation of recombinant baculoviruses by in vitro transposition. Appl Microbiol Biotechnol 2012; 96:1353-60. [PMID: 23053112 DOI: 10.1007/s00253-012-4468-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
A novel recombinant bacmid, bEasyBac, that enables the easy and fast generation of pure recombinant baculovirus without any purification step was constructed. In bEasyBac, attR recombination sites were introduced to facilitate the generation of a recombinant viral genome by in vitro transposition. Moreover, the extracellular RNase gene from Bacillus amyloliquefaciens, barnase, was expressed under the control of the Cotesia plutellae bracovirus early promoter to negatively select against the non-recombinant background. The bEasyBac bacmid could only replicate in host insect cells when the barnase gene was replaced with the gene of interest by in vitro transposition. When bEasyBac was transposed with pDualBac-EGFP, the resulting recombinant virus, AcEasy-EGFP, showed comparable levels of EGFP expression efficiency to the plaque-purified recombinant virus AcEGFP, which was constructed using the bAcGOZA system. In addition, no non-recombinant backgrounds were detected in unpurified AcEasy-EGFP stocks. Based on these results, a high-throughput system for the generation of multiple recombinant viruses at a time was established.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mir-Sanchis I, Martínez-Rubio R, Martí M, Chen J, Lasa Í, Novick RP, Tormo-Más MÁ, Penadés JR. Control ofStaphylococcus aureuspathogenicity island excision. Mol Microbiol 2012; 85:833-45. [DOI: 10.1111/j.1365-2958.2012.08145.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Farkašovská J, Godány A. Analysis of the Site-Specific Integration System of the Streptomyces aureofaciens Phage μ1/6. Curr Microbiol 2011; 64:226-33. [DOI: 10.1007/s00284-011-0054-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
|
28
|
Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 2011; 92:227-39. [DOI: 10.1007/s00253-011-3519-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
|
29
|
Almagro-Moreno S, Napolitano MG, Boyd EF. Excision dynamics of Vibrio pathogenicity island-2 from Vibrio cholerae: role of a recombination directionality factor VefA. BMC Microbiol 2010; 10:306. [PMID: 21118541 PMCID: PMC3014918 DOI: 10.1186/1471-2180-10-306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/30/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vibrio Pathogenicity Island-2 (VPI-2) is a 57 kb region present in choleragenic V. cholerae isolates that is required for growth on sialic acid as a sole carbon source. V. cholerae non-O1/O139 pathogenic strains also contain VPI-2, which in addition to sialic acid catabolism genes also encodes a type 3 secretion system in these strains. VPI-2 integrates into chromosome 1 at a tRNA-serine site and encodes an integrase intV2 (VC1758) that belongs to the tyrosine recombinase family. IntV2 is required for VPI-2 excision from chromosome 1, which occurs at very low levels, and formation of a non-replicative circular intermediate. RESULTS We determined the conditions and the factors that affect excision of VPI-2 in V. cholerae N16961. We demonstrate that excision from chromosome 1 is induced at low temperature and after sublethal UV-light irradiation treatment. In addition, after UV-light irradiation compared to untreated cells, cells showed increased expression of three genes, intV2 (VC1758), and two putative recombination directionality factors (RDFs), vefA (VC1785) and vefB (VC1809) encoded within VPI-2. We demonstrate that along with IntV2, the RDF VefA is essential for excision. We constructed a knockout mutant of vefA in V. cholerae N16961, and found that no excision of VPI-2 occurred, indicating that a functional vefA gene is required for excision. Deletion of the second RDF encoded by vefB did not result in a loss of excision. Among Vibrio species in the genome database, we identified 27 putative RDFs within regions that also encoded IntV2 homologues. Within each species the RDFs and their cognate IntV2 proteins were associated with different island regions suggesting that this pairing is widespread. CONCLUSIONS We demonstrate that excision of VPI-2 is induced under some environmental stress conditions and we show for the first time that an RDF encoded within a pathogenicity island in V. cholerae is required for excision of the region.
Collapse
|
30
|
Wu WY, Fong BA, Gilles AG, Wood DW. Recombinant protein purification by self-cleaving elastin-like polypeptide fusion tag. ACTA ACUST UNITED AC 2010; Chapter 26:26.4.1-26.4.18. [PMID: 19937722 DOI: 10.1002/0471140864.ps2604s58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit presents a rapid and simple method for the nonchromatographic purification of recombinant proteins expressed in E. coli. This method relies on a thermally responsive elastin-like polypeptide (ELP) tag, where the tagged protein is precipitated using a mild temperature shift. The tag is then induced to self-cleave by a mild pH shift and is subsequently removed by a final thermal precipitation. The result is a purified native protein target, without the requirement for affinity apparatus or protease removal of the tag. This protocol describes the required cloning methods to insert a given target into the expression vector, as well as the general method for purifying the resulting expressed protein.
Collapse
Affiliation(s)
- Wan-Yi Wu
- Princeton University, Princeton, New Jersey, USA
| | | | | | | |
Collapse
|
31
|
Mohamed MR, Rahman MM, Lanchbury JS, Shattuck D, Neff C, Dufford M, van Buuren N, Fagan K, Barry M, Smith S, Damon I, McFadden G. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses. Proc Natl Acad Sci U S A 2009; 106:9045-50. [PMID: 19451633 PMCID: PMC2683884 DOI: 10.1073/pnas.0900452106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Indexed: 11/18/2022] Open
Abstract
Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.
Collapse
Affiliation(s)
- Mohamed R. Mohamed
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610
| | | | | | - Chris Neff
- Myriad Genetics, Salt Lake City, UT 84108
| | | | - Nick van Buuren
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Katharine Fagan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Michele Barry
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Scott Smith
- World Health Organization Collaborating Center for Smallpox and other Poxvirus Infections, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Inger Damon
- World Health Organization Collaborating Center for Smallpox and other Poxvirus Infections, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
32
|
Mutational analysis and homology-based modeling of the IntDOT core-binding domain. J Bacteriol 2009; 191:2330-9. [PMID: 19168607 DOI: 10.1128/jb.01280-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tyrosine recombinases mediate a wide range of important genetic rearrangement reactions. Models for tyrosine recombinases have been based largely on work done on the integrase of phage lambda and recombinases like Cre, Flp, and XerC/D. All of these recombinases share a common amino acid signature that is important for catalysis. Several conjugative transposons (CTns) encode recombinases that are also members of the tyrosine recombinase family, but the reaction that they catalyze differs in that recombination does not require homology in the attachment sites. In this study, we examine the role of the core-binding (CB) domain of the CTnDOT integrase (IntDOT) that is located adjacent to the catalytic domain of the protein. Since there is no crystal structure for any of the CTn integrases, we began with a predicted three-dimensional structure produced by homology-based modeling. Amino acid substitutions were made at positions predicted by the model to be close to the DNA. Mutant proteins were tested for the ability to mediate integration in vivo and for in vitro DNA-binding, cleavage, and ligation activities. We identified for the first time nonconserved amino acid residues in the CB domain that are important for catalytic activity. Mutant proteins with substitutions at three positions in the CB domain are defective for DNA cleavage but still proficient in ligation. The positions of the residues in the complex suggest that the mutant residues affect the positioning of the cleaved phosphodiester bond in the active site without disruption of the ligation step.
Collapse
|
33
|
Abstract
From bacterial viruses to humans, site-specific recombination and transposition are the major pathways for rearranging genomes on both long- and short-time scales. The site-specific pathways can be divided into 2 groups based on whether they are stochastic or regulated. Recombinases Cre and lambda Int are well-studied examples of each group, respectively. Both have been widely exploited as powerful and flexible tools for genetic engineering: Cre primarily in vivo and lambda Int primarily in vitro. Although Cre and Int use the same mechanism of DNA strand exchange, their respective reaction pathways are very different. Cre-mediated recombination is bidirectional, unregulated, does not require accessory proteins, and has a minimal symmetric DNA target. We show that when Cre is fused to the small N-terminal domain of Int, the resulting chimeric Cre recombines complex higher-order DNA targets comprising >200 bp encoding 16 protein-binding sites. This recombination requires the IHF protein, is unidirectional, and is regulated by the relative levels of the 3 accessory proteins, IHF, Xis, and Fis. In one direction, recombination depends on the Xis protein, and in the other direction it is inhibited by Xis. It is striking that regulated directionality and complexity can be conferred in a simple chimeric construction. We suggest that the relative ease of constructing a chimeric Cre with these properties may simulate the evolutionary interconversions responsible for the large variety of site-specific recombinases observed in Archaea, Eubacteria, and Eukarya.
Collapse
|
34
|
Gillies AR, Hsii JF, Oak S, Wood DW. Rapid cloning and purification of proteins: gateway vectors for protein purification by self-cleaving tags. Biotechnol Bioeng 2008; 101:229-40. [PMID: 18727029 DOI: 10.1002/bit.21974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have combined Invitrogen's Gateway cloning technology with self-cleaving purification tags to generate a new system for rapid production of recombinant protein products. To accomplish this, we engineered our previously reported DeltaI-CM cleaving intein to include a Gateway cloning recognition sequence, and demonstrated that the resulting Gateway-competent intein is unaffected. This intein can therefore be used in several previously reported purification methods, while at the same time being compatible with Gateway cloning. We have incorporated this intein into a set of Gateway vectors, which include self-cleaving elastin-like polypeptide (ELP), chitin binding domain (CBD), phasin (polyhydroxybutyrate-binding), or maltose binding domain (MBD) tags. These vectors were verified by Gateway cloning of TEM-1 beta-lactamase and Escherichia coli catalase genes, and the expressed target proteins were purified using the four methods encoded on the vectors. The purification methods were unaffected by replacing the DeltaI-CM intein with the Gateway intein. It was observed that some purification methods were more appropriate for each target than others, suggesting utility of this technology for rapid process identification and optimization. The modular design of the Gateway system and intein purification method suggests that any tag and promoter can be trivially added to this system for the development of additional expression vectors. This technology could greatly facilitate process optimization, allowing several targets and methods to be tested in a high-throughput manner.
Collapse
Affiliation(s)
- Alison R Gillies
- Department of Chemical Engineering, Princeton University, A417 Engineering Quadrangle, Olden Street, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
35
|
Protein interactions: analysis using allele libraries. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 110:47-66. [PMID: 18528666 DOI: 10.1007/10_2008_102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interaction defective alleles (IDAs) are alleles that contain mutations affecting their ability to interact with their wild type binding partners. The locations of the mutations may lead to the identification of protein interaction domains and interaction interfaces. IDAs may also distinguish different binding interfaces of multidomain proteins that are part of large complexes, thus shedding light on large protein structures that have yet to be determined. IDAs may also be used in conjunction with RNAi to dissect protein interaction networks. Here, the wild type allele is knocked down and replaced with an IDA that has lost the ability to interact with a specific binding partner. As a result, interactions are disrupted rather than knocking out the entire gene. Thus, IDAs have the potential to be extremely valuable tools in protein interaction network analysis. IDAs can be isolated by reverse two-hybrid analysis, which was demonstrated over a decade ago, but high background levels caused by truncated IDAs have prevented its widespread adoption. We recently described a novel method for full-length allele library generation that eliminates this background and increases the efficiency of the reverse two-hybrid protocol (and IDA isolation) significantly. Here we discuss our strategy for allele library generation, the potential uses of IDAs as outlined above, and additional applications of allele libraries.
Collapse
|
36
|
Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol 2008; 190:4736-48. [PMID: 18456804 DOI: 10.1128/jb.00089-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence gene expression in Vibrio cholerae is dependent upon a complex transcriptional cascade that is influenced by both specific and global regulators in response to environmental stimuli. Here, we report that the global regulator integration host factor (IHF) positively affects virulence gene expression in V. cholerae. Inactivation of ihfA and ihfB, the genes encoding the IHF subunits, decreased the expression levels of the two main virulence factors tcpA and ctx and prevented toxin-coregulated pilus and cholera toxin production. IHF was found to directly bind to and bend the tcpA promoter region at an IHF consensus site centered at position -162 by using gel mobility shift assays and DNase I footprinting experiments. Deletion or mutation of the tcpA IHF consensus site resulted in the loss of IHF binding and additionally disrupted the binding of the repressor H-NS. DNase I footprinting revealed that H-NS protection overlaps with both the IHF and the ToxT binding sites at the tcpA promoter. In addition, disruption of ihfA in an hns or toxT mutant background had no effect on tcpA expression. These results suggest that IHF may function at the tcpA promoter to alleviate H-NS repression.
Collapse
|
37
|
Abstract
As an increasing number of genes and open reading frames of unknown function are discovered, expression of the encoded proteins is critical toward establishing function. Accordingly, there is an increased need for highly efficient, high-fidelity methods for directional cloning. Among the available methods, site-specific recombination-based cloning techniques, which eliminate the use of restriction endonucleases and ligase, have been widely used for high-throughput (HTP) procedures. We have developed a recombination cloning method, which uses truncated recombination sites to clone PCR products directly into destination/expression vectors, thereby bypassing the requirement for first producing an entry clone. Cloning efficiencies in excess of 80% are obtained providing a highly efficient method for directional HTP cloning.
Collapse
Affiliation(s)
- Changlin Fu
- Monsanto Company, 800 N. Lindbergh Blvd., St Louis, MO 63167, USA
| | | | | | | |
Collapse
|
38
|
Hazelbaker D, Azaro MA, Landy A. A biotin interference assay highlights two different asymmetric interaction profiles for lambda integrase arm-type binding sites in integrative versus excisive recombination. J Biol Chem 2008; 283:12402-14. [PMID: 18319248 DOI: 10.1074/jbc.m800544200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The site-specific recombinase integrase encoded by bacteriophage lambda promotes integration and excision of the viral chromosome into and out of its Escherichia coli host chromosome through a Holliday junction recombination intermediate. This intermediate contains an integrase tetramer bound via its catalytic carboxyl-terminal domains to the four "core-type" sites of the Holliday junction DNA and via its amino-terminal domains to distal "arm-type" sites. The two classes of integrase binding sites are brought into close proximity by an ensemble of accessory proteins that bind and bend the intervening DNA. We have used a biotin interference assay that probes the requirement for major groove protein binding at specified DNA loci in conjunction with DNA protection, gel mobility shift, and genetic experiments to test several predictions of the models derived from the x-ray crystal structures of minimized and symmetrized surrogates of recombination intermediates lacking the accessory proteins and their cognate DNA targets. Our data do not support the predictions of "non-canonical" DNA targets for the N-domain of integrase, and they indicate that the complexes used for x-ray crystallography are more appropriate for modeling excisive rather than integrative recombination intermediates. We suggest that the difference in the asymmetric interaction profiles of the N-domains and arm-type sites in integrative versus excisive recombinogenic complexes reflects the regulation of recombination, whereas the asymmetry of these patterns within each reaction contributes to directionality.
Collapse
Affiliation(s)
- Dane Hazelbaker
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
39
|
Bartish G, Moradi H, Nygård O. Amino acids Thr56 and Thr58 are not essential for elongation factor 2 function in yeast. FEBS J 2007; 274:5285-97. [PMID: 17892487 DOI: 10.1111/j.1742-4658.2007.06054.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Yeast elongation factor 2 is an essential protein that contains two highly conserved threonine residues, T56 and T58, that could potentially be phosphorylated by the Rck2 kinase in response to environmental stress. The importance of residues T56 and T58 for elongation factor 2 function in yeast was studied using site directed mutagenesis and functional complementation. Mutations T56D, T56G, T56K, T56N and T56V resulted in nonfunctional elongation factor 2 whereas mutated factor carrying point mutations T56M, T56C, T56S, T58S and T58V was functional. Expression of mutants T56C, T56S and T58S was associated with reduced growth rate. The double mutants T56M/T58W and T56M/T58V were also functional but the latter mutant caused increased cell death and considerably reduced growth rate. The results suggest that the physiological role of T56 and T58 as phosphorylation targets is of little importance in yeast under standard growth conditions. Yeast cells expressing mutants T56C and T56S were less able to cope with environmental stress induced by increased growth temperatures. Similarly, cells expressing mutants T56M and T56M/T58W were less capable of adapting to increased osmolarity whereas cells expressing mutant T58V behaved normally. All mutants tested were retained their ability to bind to ribosomes in vivo. However, mutants T56D, T56G and T56K were under-represented on the ribosome, suggesting that these nonfunctional forms of elongation factor 2 were less capable of competing with wild-type elongation factor 2 in ribosome binding. The presence of nonfunctional but ribosome binding forms of elongation factor 2 did not affect the growth rate of yeast cells also expressing wild-type elongation factor 2.
Collapse
Affiliation(s)
- Galyna Bartish
- School of Life Sciences, Södertörns högskola, Huddinge, Sweden
| | | | | |
Collapse
|
40
|
Perehinec TM, Qazi SNA, Gaddipati SR, Salisbury V, Rees CED, Hill PJ. Construction and evaluation of multisite recombinatorial (Gateway) cloning vectors for Gram-positive bacteria. BMC Mol Biol 2007; 8:80. [PMID: 17880697 PMCID: PMC2039747 DOI: 10.1186/1471-2199-8-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/19/2007] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Gateway recombinatorial cloning system allows easy and rapid joining of DNA fragments. Here we report the construction and evaluation of three different Gram-positive vectors that can be used with the Multisite Gateway cloning system to rapidly produce new gene arrangements in plasmid constructs for use in a variety of Gram-positive bacteria. RESULTS Comparison of patterns of reporter gene expression with conventionally constructed clones show that the presence of residual recombination (att) sites does not have an effect on patterns of gene expression, although overall levels of gene expression may vary. Rapid construction of these new vectors allowed vector/gene combinations to be optimized following evaluation of plasmid constructs in different bacterial cells and demonstrates the benefits of plasmid construction using Gateway cloning. CONCLUSION The residual att sites present after Gateway cloning did not affect patterns of promoter induction in Gram-positive bacteria and there was no evidence of differences in mRNA stability of transcripts. However overall levels of gene expression may be reduced, possibly due to some post-transcriptional event. The new vectors described here allow faster, more efficient cloning in range of Gram-positive bacteria.
Collapse
Affiliation(s)
- Tania M Perehinec
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK
| | - Saara NA Qazi
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sanyasi R Gaddipati
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK
| | - Vyvyan Salisbury
- Faculty of Applied Sciences, University of the West of England, Bristol, UK
| | - Catherine ED Rees
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK
| | - Philip J Hill
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
41
|
Malanowska K, Yoneji S, Salyers AA, Gardner JF. CTnDOT integrase performs ordered homology-dependent and homology-independent strand exchanges. Nucleic Acids Res 2007; 35:5861-73. [PMID: 17720706 PMCID: PMC2034462 DOI: 10.1093/nar/gkm637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although the integrase (IntDOT) of the Bacteroides conjugative transposon CTnDOT has been classified as a member of the tyrosine recombinase family, the reaction it catalyzes appears to differ in some features from reactions catalyzed by other tyrosine recombinases. We tested the ability of IntDOT to cleave and ligate activated attDOT substrates in the presence of mismatches. Unlike other tyrosine recombinases, the results revealed that IntDOT is able to perform ligation reactions even when all the bases within the crossover region are mispaired. We also show that there is a strong bias in the order of strand exchanges during integrative recombination. The top strands are exchanged first in reactions that appear to require 2 bp of homology between the partner sites adjacent to the sites of cleavage. The bottom strands are exchanged next in reactions that do not require homology between the partner sites. This mode of coordination of strand exchanges is unique among tyrosine recombinases.
Collapse
|
42
|
Abstract
Sequence analysis revealed that the integrase of the Bacteroides conjugative transposon CTnDOT (IntDOT) might be a member of the tyrosine recombinase family because IntDOT has five of six highly conserved residues found in the catalytic domains of tyrosine recombinases. Yet, IntDOT catalyses a reaction that appears to differ in some respects from well-studied tyrosine recombinases such as that of phage lambda. To assess the importance of the conserved residues, we changed residues in IntDOT that align with conserved residues in tyrosine recombinases. Some substitutions resulted in a complete loss or significant decrease of integration activity in vivo. The ability of the mutant proteins to cleave and ligate CTnDOT attachment site (attDOT) DNA in vitro in general paralleled the in vivo results, but the H345A mutant, which had a wild-type level of integration in vivo, exhibited a slightly lower level of cleavage and ligation in vitro. Our results confirm the hypothesis that IntDOT belongs to the tyrosine recombinase family, but the catalytic core of the protein seems to have somewhat different organization. Previous DNA sequence analyses showed that CTnDOT att sites contain 5 bp non-homologous coupling sequences which were assumed to define the putative staggered sites of cleavage. However, cleavage assays showed that one of the cleavage sites is 2 bp away from the junction of CTnDOT and coupling sequence DNA. The site is in a region of homology that is conserved in CTnDOT att sites.
Collapse
|
43
|
Gray PN, Busser KJ, Chappell TG. A Novel Approach for Generating Full-length, High Coverage Allele Libraries for the Analysis of Protein Interactions. Mol Cell Proteomics 2007; 6:514-26. [PMID: 17151022 DOI: 10.1074/mcp.t600023-mcp200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast reverse two-hybrid method was developed to identify mutations disrupting protein-protein interactions. Adoption of the method has been slow, in large part, due to the high frequency of truncation and frameshift mutants typically observed with current protocols. We have developed a new strategy, based on in vitro recombinational cloning and full-length selection in Escherichia coli, to eliminate this background and dramatically increase the efficiency of the reverse two-hybrid protocol. The method was tested by generating an allele library of MyoD1 and selecting for alleles with defective interaction with Id1. Our results confirm that most of the interaction-defective alleles contain a single point mutation in the known interaction domain, the basic helix-loop-helix region. Moreover analysis of the crystal structure of MyoD reveals that the majority of these mutations occurred at the interaction interface. The results obtained using this novel approach for allele library generation demonstrate a significant advancement in the application of yeast reverse two-hybrid screens. Furthermore this method is applicable to any loss-of-function mutant screen where truncated proteins are a source of high background.
Collapse
Affiliation(s)
- Phillip N Gray
- Invitrogen Corporation, Carlsbad, California 92008, USA.
| | | | | |
Collapse
|
44
|
Sun X, Mierke DF, Biswas T, Lee SY, Landy A, Radman-Livaja M. Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site. Mol Cell 2007; 24:569-80. [PMID: 17114059 PMCID: PMC1866956 DOI: 10.1016/j.molcel.2006.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/13/2006] [Accepted: 10/04/2006] [Indexed: 11/28/2022]
Abstract
The highly directional and tightly regulated recombination reaction used to site-specifically excise the bacteriophage lambda chromosome out of its E. coli host chromosome requires the binding of six sequence-specific proteins to a 99 bp segment of the phage att site. To gain structural insights into this recombination pathway, we measured 27 FRET distances between eight points on the 99 bp regulatory DNA bound with all six proteins. Triangulation of these distances using a metric matrix distance-geometry algorithm provided coordinates for these eight points. The resulting path for the protein-bound regulatory DNA, which fits well with the genetics, biochemistry, and X-ray crystal structures describing the individual proteins and their interactions with DNA, provides a new structural perspective into the molecular mechanism and regulation of the recombination reaction and illustrates a design by which different families of higher-order complexes can be assembled from different numbers and combinations of the same few proteins.
Collapse
Affiliation(s)
- Xingmin Sun
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Dale F. Mierke
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Tapan Biswas
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, Massachusetts 02115
| | - Sang Yeol Lee
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Arthur Landy
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| | - Marta Radman-Livaja
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| |
Collapse
|
45
|
Mumm JP, Landy A, Gelles J. Viewing single lambda site-specific recombination events from start to finish. EMBO J 2006; 25:4586-95. [PMID: 16977316 PMCID: PMC1590000 DOI: 10.1038/sj.emboj.7601325] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/10/2006] [Indexed: 11/09/2022] Open
Abstract
The site-specific recombination pathway by which the bacteriophage lambda chromosome is excised from its Escherichia coli host chromosome is a tightly regulated, highly directional, multistep reaction that is executed by a series of multiprotein complexes. Until now, it has been difficult to study the individual steps of such reactions in the context of the entire pathway. Using single-molecule light microscopy, we have examined this process from start to finish. Stable bent-DNA complexes containing integrase and the accessory proteins IHF (integration host factor) and Xis form rapidly on attL and attR recombination partners, and synapsis of partner complexes follows rapidly after their formation. Integrase-mediated DNA cleavage before or immediately after synapsis is required to stabilize the synaptic assemblies. Those complexes that synapsed (approximately 50% of the total) yield recombinant product with a remarkable approximately 100% efficiency. The rate-limiting step of excision occurs after synapsis, but closely precedes or is concomitant with the appearance of a stable Holliday junction. Our kinetic analysis shows that directionality of this recombination reaction is conferred by the irreversibility of multiple reaction steps.
Collapse
Affiliation(s)
- Jeffrey P Mumm
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, J Walter Wilson Laboratories, Providence, RI, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, J Walter Wilson Laboratories, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, J Walter Wilson Laboratories, room 360, 69 Brown Street, Providence, RI 02912, USA. Tel.: +1 401 863 2566; Fax: +1 401 863 1348; E-mail:
| | - Jeff Gelles
- Department of Biochemistry, MS 009 Brandeis University, Waltham, MA, USA
| |
Collapse
|
46
|
Mangan MW, Lucchini S, Danino V, Cróinín TO, Hinton JCD, Dorman CJ. The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59:1831-47. [PMID: 16553887 DOI: 10.1111/j.1365-2958.2006.05062.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The integration host factor (IHF) is a DNA-binding and -bending protein with roles in local DNA structural organization and transcriptional regulation in Gram-negative bacteria. This heterodimeric protein is composed of the two highly homologous subunits IHFalpha and IHFbeta. DNA microarray analysis was used to define the regulon of genes subject to IHF control in Salmonella enterica serovar Typhimurium (S. Typhimurium). The transcription profile of the wild type was compared with those of mutants deficient in IHFalpha, IHFbeta, or both IHFalpha and IHFbeta. Our data reveal a new connection between IHF and the expression of genes required by the bacterium to undergo the physiological changes associated with the transition from exponential growth to stationary phase. When a mutant lacking IHF entered stationary phase, it displayed downregulated expression of classic stationary-phase genes in the absence of any concomitant change in expression of the RpoS sigma factor. Purified IHF was found to bind to the regulatory regions of stationary-phase genes indicating an auxiliary and direct role for IHF in RpoS-dependent gene activation. Loss of IHF also had a profound influence on expression of the major virulence genes and epithelial cell invasion, indicating a role in co-ordinating regulation of the pathogenic traits with adaptation to stationary phase. Although the three mutants showed considerable overlaps in the genes affected by the ihf lesions, the observed patterns were not identical, showing that S. Typhimurium has not one but three overlapping IHF regulons.
Collapse
Affiliation(s)
- Michael W Mangan
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Ireland
| | | | | | | | | | | |
Collapse
|
47
|
Radman-Livaja M, Biswas T, Ellenberger T, Landy A, Aihara H. DNA arms do the legwork to ensure the directionality of lambda site-specific recombination. Curr Opin Struct Biol 2006; 16:42-50. [PMID: 16368232 PMCID: PMC1892226 DOI: 10.1016/j.sbi.2005.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 10/24/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
The integrase protein of bacteriophage lambda (Int) catalyzes site-specific recombination between lambda phage and Escherichia coli genomes. Int is a tyrosine recombinase that binds to DNA core sites via a C-terminal catalytic domain and to a collection of arm DNA sites, distant from the site of recombination, via its N-terminal domain. The arm sites, in conjunction with accessory DNA-bending proteins, provide a means of regulating the efficiency and directionality of Int-catalyzed recombination. Recent crystal structures of lambda Int tetramers bound to synaptic and Holliday junction intermediates, together with new biochemical data, suggest a mechanism for the allosteric control of the recombination reaction through arm DNA binding interactions.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Division of Biology and Medicine-Box G, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
48
|
Busso D, Delagoutte-Busso B, Moras D. Construction of a set Gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal Biochem 2005; 343:313-21. [PMID: 15993367 DOI: 10.1016/j.ab.2005.05.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/29/2022]
Abstract
We describe here the construction of a 10-Gateway-based vector set applicable for high-throughput cloning and for expressing recombinant proteins in Escherichia coli. Plasmids bear elements required to produce recombinant proteins under control of the T7 promoter and encode different N-terminal partners. Since the vector set is derived from a unique backbone, a consistent comparison of the impact of fusion partner(s) on protein expression and solubility is easily amenable. Finally, a sequence encoding a six-histidine tag has been inserted to be in frame with the cloned open reading frame either at its C terminus or at the N terminus, giving the flexibility of choosing the six-histidine tag location for further purification. To test the applicability of our vector set, expression and solubility profile and six-histidine tag accessibility have been demonstrated for two Bacillus subtilis signaling proteins' encoding genes (SBGP codes E0508 and E0511).
Collapse
Affiliation(s)
- Didier Busso
- Département de Biologie et de Génomique Structurales, IGBMC, CNRS/INSERM/Université Louis Pasteur, Parc d'Innovation, 1 rue Laurent Fries, BP10142, 67404 Illkirch Cedex, France.
| | | | | |
Collapse
|
49
|
Semsey S, Virnik K, Adhya S. A gamut of loops: meandering DNA. Trends Biochem Sci 2005; 30:334-41. [PMID: 15950878 DOI: 10.1016/j.tibs.2005.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/29/2005] [Accepted: 04/22/2005] [Indexed: 11/18/2022]
Abstract
Nucleoprotein complexes comprising short DNA loops (150 base pairs or less) are involved in a wide variety of DNA transactions (e.g. transcription regulation, replication and recombination) in both prokaryotes and eukaryotes, and also can be useful in designing nanostructures. In these higher-order nucleoprotein complexes, proteins bound to spatially separated sites on a DNA interact with each other by looping out the relatively stiff intervening DNA. Recent technological developments have enabled determination of DNA trajectories in a few DNA-loop-containing regulatory complexes. Results show that, in a given system, a specific DNA trajectory is preferred over others.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | |
Collapse
|
50
|
Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T. A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 2005; 435:1059-66. [PMID: 15973401 PMCID: PMC1809751 DOI: 10.1038/nature03657] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 04/15/2005] [Indexed: 11/09/2022]
Abstract
Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage lambda to integrate or excise its genome into and out of the host chromosome. lambda recombination is carried out by the bacteriophage-encoded integrase protein (lambda-int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of lambda-int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of lambda-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|