1
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2025; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
2
|
Kumar R, Das SP, Choudhury BU, Kumar A, Prakash NR, Verma R, Chakraborti M, Devi AG, Bhattacharjee B, Das R, Das B, Devi HL, Das B, Rawat S, Mishra VK. Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. Biol Res 2024; 57:80. [PMID: 39506826 PMCID: PMC11542492 DOI: 10.1186/s40659-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.
Collapse
Affiliation(s)
- Rahul Kumar
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India.
| | | | - Burhan Uddin Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Umiam, 793103, Meghalaya, India
| | | | - Ramlakhan Verma
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bijoya Bhattacharjee
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Rekha Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bapi Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | | | - Biswajit Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Santoshi Rawat
- Department of Food Science and Technology, College of Agriculture, G.B.P.U.A.&T., Pantnagar, India
| | | |
Collapse
|
3
|
Kheira HS, Elsayed GR, El-Adl M. Liraglutide and resveratrol alleviated cyclosporin A induced nephrotoxicity in rats through improving antioxidant status, apoptosis and pro-inflammatory markers. Biochem Biophys Res Commun 2024; 730:150337. [PMID: 38986220 DOI: 10.1016/j.bbrc.2024.150337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
The recent study delves into the role of both liraglutide and/or resveratrol on the nephropathic affection in rats treated with cyclosporine A (CsA). Rats were intoxicated with CsA (25 mg/kg) orally for 21 days and were supplemented with liraglutide (30 μg/kg) s/c daily and 20 mg/kg of resveratrol (20 mg/kg) orally. At the end of the experiment, serum samples and renal tissues were collected to determine renal damage markers, apoptotic markers, proinflammatory markers, and antioxidant status markers. Kidney function tests and antioxidant activity notably improved in the treated rats (CsA + Lir/CsA + Res/CsA + Lir + Res). Moreover, both Lir and/or Res enhanced Bcl-2 levels while down-regulating the Bax levels in rats treated with CsA. Interestingly, the immune-staining for tumor necrosis factor (TNF-α) was tested negative and mild positive in renal tissue of rats given Lir and/or Res while being treated with Cs A which indicated their anti-inflammatory effect that reduced the renal damage. The findings of this investigation revealed the ameliorative anti-inflammatory in addition to the antioxidant role of both liraglutide and resveratrol against the kidney damage caused due to CsA administration.
Collapse
Affiliation(s)
- Hend Samy Kheira
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad Ramadan Elsayed
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Yadav P, Vats R, Wadhwa S, Bano A, Namdev R, Gupta M, Bhardwaj R. Enhancing Proliferation of Stem Cells from Human Exfoliated Deciduous Teeth (SHED) through hTERT Expression while Preserving Stemness and Multipotency. Stem Cell Rev Rep 2024; 20:1902-1914. [PMID: 38878252 DOI: 10.1007/s12015-024-10746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Stem cells from human exfoliated deciduous teeth (SHED) hold promise in regenerative medicine owing to their multipotent capabilities resembling mesenchymal stem cells (MSCs). Despite their potential, SHED have not been extensively investigated because their limited lifespan and unavailability of cell-lines pose challenges for therapeutic applications. This study investigated the effect of ectopic human telomerase reverse transcriptase (hTERT) expression on SHEDs' proliferation while preserving stemness and genomic integrity. METHODS Deciduous teeth were collected from children aged 6-10 years. After isolation and characterization, the SHED were transduced with pBabe-puro-hTERT retrovirus to establish SHED cell-line, which was evaluated and compared with pBabe-puro (mock control) for stemness, multipotency and growth attributes through flow cytometry, trilineage differentiation, and growth kinetics. We also estimated hTERT gene expression, genomic integrity, and validated cell-line through STR analysis. RESULTS Following hTERT transduction, SHED displayed elevated hTERT gene expression while retaining fibroblast-like morphology and mesenchymal stem cell markers. Moreover, after hTERT transduction cellular shape remained same along with increased replicative lifespan and proliferation potential. SHED-hTERT cells exhibited multi-potency and maintained stemness, as evidenced by surface marker expression and multilineage differentiation. Furthermore, genomic integrity was not affected by hTERT integration, as confirmed by STR analysis and CDKN2A gene assessment. CONCLUSION Ectopic hTERT expression in SHED successfully prolonged their replicative lifespan and improved their ability to proliferate and migrate, while preserving their stemness, multipotency and genomic integrity, suggesting minimal carcinogenic risk. Establishment of SHED cell-line holds potential in regenerative medicine applications, especially in cell-based drugs and tissue engineering experiments.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Sapna Wadhwa
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Ritu Namdev
- Dept. of Pediatric Dentistry, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, 124001, India
| | - Monika Gupta
- Dept. of Pathology, Post Graduate Institute of Medical Sciences, Rohtak, Haryana, 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India.
| |
Collapse
|
5
|
Shaukat A, Khaliq N, Riaz R, Munsab R, Ashraf T, Raufi N, Shah H. Noninvasive diagnostic biomarkers, genomic profiling, and advanced microscopic imaging in the early detection and characterization of Naegleria fowleri infections leading to primary amebic meningoencephalitis (PAM). Ann Med Surg (Lond) 2024; 86:2032-2048. [PMID: 38576920 PMCID: PMC10990330 DOI: 10.1097/ms9.0000000000001843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
This review delves into the strategies for early detection and characterization of Naegleria fowleri infections leading to primary amoebic meningoencephalitis (PAM). The study provides an in-depth analysis of current diagnostic approaches, including cerebrospinal fluid analysis, brain tissue examination, immunostaining techniques, and culture methods, elucidating their strengths and limitations. It explores the geographical distribution of N. fowleri, with a focus on regions near the equator, and environmental factors contributing to its prevalence. The review emphasizes the crucial role of early detection in PAM management, discussing the benefits of timely identification in treatment, personalized care, and prevention strategies. Genomic profiling techniques, such as conventional PCR, nested PCR, multiplex PCR, and real-time PCR, are thoroughly examined as essential tools for accurate and prompt diagnosis. Additionally, the study explores advanced microscopic imaging techniques to characterize N. fowleri's morphology and behavior at different infection stages, enhancing our understanding of its life cycle and pathogenic mechanisms. In conclusion, this review underscores the potential of these strategies to improve our ability to detect, understand, and combat N. fowleri infections, ultimately leading to better patient outcomes and enhanced public health protection.
Collapse
Affiliation(s)
| | - Nawal Khaliq
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rumaisa Riaz
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rabbia Munsab
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Nahid Raufi
- Department of Medicine, Kabul Medical University, Kabul, Afghanistan
| | - Hafsa Shah
- Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
6
|
Chaisson MJP, Sulovari A, Valdmanis PN, Miller DE, Eichler EE. Advances in the discovery and analyses of human tandem repeats. Emerg Top Life Sci 2023; 7:361-381. [PMID: 37905568 PMCID: PMC10806765 DOI: 10.1042/etls20230074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Long-read sequencing platforms provide unparalleled access to the structure and composition of all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes our current understanding of their organization within the human genome, their importance with respect to disease, as well as the advances and challenges in understanding their genetic diversity and functional effects. Novel computational methods are being developed to visualize and associate these complex patterns of human variation with disease, expression, and epigenetic differences. We predict accurate characterization of this repeat-rich form of human variation will become increasingly relevant to both basic and clinical human genetics.
Collapse
Affiliation(s)
- Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, U.S.A
- The Genomic and Epigenomic Regulation Program, USC Norris Cancer Center, University of Southern California, Los Angeles, CA 90089, U.S.A
| | - Arvis Sulovari
- Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, U.S.A
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, U.S.A
- Department of Pediatrics, University of Washington, Seattle, WA 98195, U.S.A
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
7
|
Panneerchelvam S, Norazmi MN. DNA Profiling in Human Identification: From Past to Present. Malays J Med Sci 2023; 30:5-21. [PMID: 38239252 PMCID: PMC10793127 DOI: 10.21315/mjms2023.30.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/02/2022] [Indexed: 01/22/2024] Open
Abstract
Forensic DNA typing has been widely accepted in the courts all over the world. This is because DNA profiling is a very powerful tool to identify individuals on the basis of their unique genetic makeup. DNA evidence is capable of not only identifying the presence of specific biospecimens in a crime scene, but it is also used to exonerate suspects who are innocent of a crime. Technological advancements in DNA profiling, including the development of validated kits and statistical methods have made this tool to be more precise in forensic investigations. Therefore, validated combined DNA index system (CODIS) short tandem repeats (STRs) kits which require very small amount of DNA, coupled with real-time polymerase chain reaction (PCR) and the statistical strengths are used routinely to identify human remains, establish paternity or to match suspected crime scene biospecimens. The road to modern DNA profiling has been long, and it has taken scientists decades of work and fine tuning to develop highly accurate testing and analyses that are used today. This review will discuss the various DNA polymorphisms and their utility in human identity testing.
Collapse
Affiliation(s)
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| |
Collapse
|
8
|
Picard C, Frassati C, Cherouat N, Maioli S, Moskovtchenko P, Cherel M, Chiaroni J, Pedini P. New methods for the quantification of mixed chimerism in transplantation. Front Immunol 2023; 14:1023116. [PMID: 36742303 PMCID: PMC9892455 DOI: 10.3389/fimmu.2023.1023116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Background Quantification of chimerism showing the proportion of the donor in a recipient is essential for the follow-up of hematopoietic stem cell transplantation but can also be useful to document an immune tolerance situation after solid organ transplantation. Historically, chimerism has been quantified from genomic DNA, but with technological advances, chimerism from donor-derived cell-free DNA seems particularly relevant in solid organ transplantation. Methods The reference method was until recently the short tandem repeat technique, but new innovative techniques as digital PCR (dPCR) and NGS, have revolutionized the quantification of chimerism, such as the so-called microchimerism analysis. After a short review of chimerism methods, a comparison of chimerism quantification data for two new digital PCR systems (QIAcuity™ dPCR (Qiagen®) and QuantStudio Absolute Q (ThermoFisher®) and two NGS-based chimerism quantification methods (AlloSeq HCT™ (CareDx®) and NGStrack™ (GenDX®)) was performed. Results These new methods were correlated and concordant to routinely methods (r²=0.9978 and r²=0.9974 for dPCR methods, r²=0.9978 and r²=0.9988 for NGS methods), and had similar high performance (sensitivity, reproductibility, linearity). Conclusion Finally, the choice of the innovative method of chimerism within the laboratory does not depend on the analytical performances because they are similar but mainly on the amount of activity and the access to instruments and computer services.
Collapse
Affiliation(s)
- Christophe Picard
- Immunogenetic Laboratory, EFS PACC, Marseille, France,CNRS, EFS, ADES, Aix Marseille Université, Marseille, France
| | - Coralie Frassati
- Immunogenetic Laboratory, EFS PACC, Marseille, France,*Correspondence: Pascal Pedini, ; Coralie Frassati,
| | | | | | | | | | - Jacques Chiaroni
- Immunogenetic Laboratory, EFS PACC, Marseille, France,CNRS, EFS, ADES, Aix Marseille Université, Marseille, France
| | - Pascal Pedini
- Immunogenetic Laboratory, EFS PACC, Marseille, France,CNRS, EFS, ADES, Aix Marseille Université, Marseille, France,*Correspondence: Pascal Pedini, ; Coralie Frassati,
| |
Collapse
|
9
|
Hayati M, Chindelevitch L, Aanensen D, Colijn C. Deep clustering of bacterial tree images. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210231. [PMID: 35989604 PMCID: PMC9393560 DOI: 10.1098/rstb.2021.0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
The field of genomic epidemiology is rapidly growing as many jurisdictions begin to deploy whole-genome sequencing (WGS) in their national or regional pathogen surveillance programmes. WGS data offer a rich view of the shared ancestry of a set of taxa, typically visualized with phylogenetic trees illustrating the clusters or subtypes present in a group of taxa, their relatedness and the extent of diversification within and between them. When methicillin-resistant Staphylococcus aureus (MRSA) arose and disseminated widely, phylogenetic trees of MRSA-containing types of S. aureus had a distinctive 'comet' shape, with a 'comet head' of recently adapted drug-resistant isolates in the context of a 'comet tail' that was predominantly drug-sensitive. Placing an S. aureus isolate in the context of such a 'comet' helped public health laboratories interpret local data within the broader setting of S. aureus evolution. In this work, we ask what other tree shapes, analogous to the MRSA comet, are present in bacterial WGS datasets. We extract trees from large bacterial genomic datasets, visualize them as images and cluster the images. We find nine major groups of tree images, including the 'comets', star-like phylogenies, 'barbell' phylogenies and other shapes, and comment on the evolutionary and epidemiological stories these shapes might illustrate. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Maryam Hayati
- School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Leonid Chindelevitch
- Department of Infectious Disease Epidemiology, Imperial College, Praed Street, London W2 1NY, UK
| | - David Aanensen
- Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
10
|
Singsanan S, Yamsri S, Pangjit K, Saenwang P, Karnpean R, Fucharoen S. Five Variable Number of Tandem Repeats Loci (D17S5, APOB, TPO Intron 10, IL-1α Intron 6, and CIAS1) in Thais and Application in the Prenatal Diagnostic Laboratory. Genet Test Mol Biomarkers 2022; 26:324-330. [PMID: 35763384 DOI: 10.1089/gtmb.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Prenatal diagnosis of genetic disease requires DNA analysis of fetal tissue of a responsible gene. Accurate diagnosis is useful for the appropriate management of pregnancy. However, maternal contamination of fetal specimens poses a high preanalytical risk of prenatal misdiagnosis. We have examined five variable number of tandem repeat (VNTR) polymorphisms for use in monitoring potential maternal contamination. Materials and Methods: A study was conducted to examine the heterozygosities of five VNTR loci including, D17S5, APOB, TPO intron 10, IL-1α intron 6, and CIAS1 in 200 unrelated Thai subjects and applied to the monitoring of maternal contamination in 22 families at risk of having fetuses with severe thalassemia. Results: The heterozygosities of D17S5, APOB, TPO intron 10, IL-1α intron 6, and CIAS1 VNTRs were 59.5, 19.5, 66.0, 35.5, and 42.0%, respectively. Therefore, the TPO intron 10 and D17S5 loci were chosen for prenatal diagnosis of thalassemia in 22 families. Analyses of these VNTRs demonstrated an increase of informative data from 59.1% provided by the routine D1S80 VNTR analysis to 90.9%. Conclusions: The VNTR diagnostic procedure described above is simple, cost-effective, rapid, and does not require the use of sophisticated instruments; it should prove useful in the prenatal diagnosis of thalassemia.
Collapse
Affiliation(s)
- Sanita Singsanan
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Supawadee Yamsri
- Faculty of Associated Medical Sciences, Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Phairo Saenwang
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Rossarin Karnpean
- Department of Pathology, Faculty of Medicine, Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Supan Fucharoen
- Faculty of Associated Medical Sciences, Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Majumdar A, Patel P, Pasaniuc B, Ophoff RA. A summary-statistics-based approach to examine the role of serotonin transporter promoter tandem repeat polymorphism in psychiatric phenotypes. Eur J Hum Genet 2021; 30:547-554. [PMID: 34949768 PMCID: PMC9091198 DOI: 10.1038/s41431-021-00996-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023] Open
Abstract
In genetic studies of psychiatric disorders in the pre-genome-wide association study (GWAS) era, one of the most commonly studied loci is the serotonin transporter (SLC6A4) promoter polymorphism, a 43-base-pair insertion/deletion polymorphism in the promoter region (5-HTTLPR). The genetic association signals between 5-HTTLPR and psychiatric phenotypes, however, have been inconsistent across many studies. Since the polymorphism cannot be tested via available SNP arrays, we had previously proposed an efficient machine learning algorithm to predict the genotypes of 5-HTTLPR based on the genotypes of eight nearby SNPs, which requires access to individual-level genotype and phenotype data. To utilize the advantage of publicly available GWAS summary statistics obtained from studies with very large sample sizes, we develop a GWAS summary-statistics-based approach for testing the variable number of tandem repeat (VNTR) associations with various phenotypes. We first cross-verify the accuracy of the summary-statistics-based approach for 61 phenotypes in the UK Biobank. Since we observed a strong similarity between the predicted individual-level 5-HTTLPR genotype-based approach and the summary-statistics-based approach, we applied our method to the available neurobehavioral GWAS summary statistics data obtained from large-scale GWAS. We found no genome-wide significant evidence for association between 5-HTTLPR and any of the neurobehavioral traits. We did observe, however, genome-wide significant evidence for association between this locus and human adult height, BMI, and total cholesterol. Our summary-statistics-based approach provides a systematic way to examine the role of VNTRs and related types of genetic polymorphisms in disease risk and trait susceptibility of phenotypes for which large-scale GWAS summary statistics data are available.
Collapse
|
12
|
Jena RC, Chand PK. Multiple DNA marker-assisted diversity analysis of Indian mango (Mangifera indica L.) populations. Sci Rep 2021; 11:10345. [PMID: 33990638 PMCID: PMC8121829 DOI: 10.1038/s41598-021-89470-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
Arbitrary (65 RAPD, 25 ISSR, 23 DAMD), gene-targeted (22 SCoT, 33 CBDP) and co-dominant sequence specific (40 SSR) markers were used individually, or in combinations, to examine the genetic variability within and among 70 selected Indian mango genotypes based on geographic origin (East India, West India, North India, South India) and fruit status (Selection, Hybrid, Landrace). The highest genetic variability was demonstrated by the East Indian populations, followed by those from South India, West India, and North India, when measured in terms of Na, Ne, H, I, PB%, Ht and Hs. Interestingly, the local genotypes of Odisha, which forms a part of East Indian populations, showed the highest diversity compared to hybrid or selection groups, suggesting that the indigenous genotypes hold a greater potential for exploiting the unique and favourable alleles. The maximum genetic variability was detected in geographical/fruit status populations with SSRs (Na-1.76/1.88, Ne-1.48/1.51, H-0.28/0.30, I-0.41/0.45, PB%-76.1/86.9, Ht-0.31/0.32 and Hs-0.28/0.30), followed by CBDPs and SCoTs, reflecting their preeminence for examining the level of genetic polymorphism and diversity. Outcome of AMOVA based analyses as well as low-to-moderate coefficient of genetic differentiation (Gst) and high gene flow (Nm) indicated a greater amount of intra-population genetic variation compared to heterogeneity at inter-population level. Information generated through this investigation could facilitate conservation and further exploitation of mango germplasm including genetic improvement through breeding.
Collapse
Affiliation(s)
- Ram Chandra Jena
- Plant Biotechnology Laboratory, Post-Graduate Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| | - Pradeep Kumar Chand
- Plant Biotechnology Laboratory, Post-Graduate Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
13
|
Giacometti C, Bellan E, Ambrosi A, Dei Tos AP, Cassaro M, Ludwig K. "While there is p57, there is hope." The past and the present of diagnosis in first trimester abortions: Diagnostic dilemmas and algorithmic approaches. A review. Placenta 2021; 116:31-37. [PMID: 33714612 DOI: 10.1016/j.placenta.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022]
Abstract
Distinction of hydatidiform moles (HM) from non-molar (NM) specimens and subclassification of HM as complete hydatidiform mole (CHM) versus partial hydatidiform mole (PHM) are important for clinical practice and investigational studies. The issue of diagnostic reproducibility is still unsolved, the lack of diagnostic accuracy based on morphology is substantial with an important interobserver variability, even between experienced gynecologic pathologists. Many ancillary techniques have been investigated in the last years to refine HM diagnosis. p57 (a paternally imprinted, maternally expressed gene) immunohistochemistry, based on the unique genetics of CHM (purely androgenetic), PHM (diandric triploid), and NM specimens (biparental, with allelic balance) can identify CHMs, which lack p57 expression because of a lack of maternal DNA. However, although its role in HM diagnosis is pivotal, it does not allow the distinction of PHM from NM specimens, both of which express p57 due to the presence of maternal DNA. Molecular genotyping, which compares villous and decidual DNA patterns to determine the parental source and ratios of polymorphic alleles, distinguishes purely androgenetic CHM from diandric triploid PHM, and both of these from NM specimens. Beyond the claim of establishing a "diagnostic truth", exceptions and peculiar genetic scenarios in the origin of rare CHM and PHM should be kept in mind when approaching any ancillary technique. An algorithmic approach, even in settings with limited resources, can help the pathologists in the diagnostic dilemma of diagnosis of first trimester abortions.
Collapse
Affiliation(s)
- Cinzia Giacometti
- Department of Services, Pathology Unit, ULSS 6 "Euganea", Via P. Cosma, 1 - 35012 Camposampiero (Padua), Italy.
| | - Elena Bellan
- Department of Medicine, Pathology Unit, University of Padua, Via A. Gabelli, 61 - 35128, Padua, Italy.
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58- 20132, Milan, Italy.
| | - Angelo Paolo Dei Tos
- Department of Medicine, Pathology Unit, University of Padua, Via A. Gabelli, 61 - 35128, Padua, Italy.
| | - Mauro Cassaro
- Department of Services, Pathology Unit, ULSS 6 "Euganea", Via P. Cosma, 1 - 35012 Camposampiero (Padua), Italy.
| | - Kathrin Ludwig
- Department of Medicine - Pathology & Cytopathology Unit, Padua University Hospital, Via Giustiniani, 2 - 35121 Padua, Italy.
| |
Collapse
|
14
|
KAMATANI Y, NAKAMURA Y. Genetic variations in medical research in the past, at present and in the future. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:324-335. [PMID: 34121043 PMCID: PMC8403528 DOI: 10.2183/pjab.97.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
As we look so different, our genomic sequences vary enormously. The differences in our genome, genetic variations, have played very significant roles in medical research and have contributed to improvement of medical managements in the last 2-3 decades. Genetic variations include germline variations, somatic mutations, and diversities in receptor genes of rearranged immune cells, T cells and B cells. Germline variants are in some cases causative of genetic diseases, are associated with the risk of various diseases, and also affect drug efficacies or adverse events. Some somatic mutations are causative of tumor development. Recent DNA sequencing technologies allow us to perform single-cell analysis or detailed repertoire analysis of B and T cells. It is critically important to investigate temporal changes in immune environment in various anatomical regions in the next one to two decades. In this review article, we would like to introduce the roles of genetic variations in medical fields in the past, at present and in the future.
Collapse
Affiliation(s)
- Yoichiro KAMATANI
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke NAKAMURA
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
15
|
Byrne AS, Goudreau A, Bissonnette N, Shamputa IC, Tahlan K. Methods for Detecting Mycobacterial Mixed Strain Infections-A Systematic Review. Front Genet 2020; 11:600692. [PMID: 33408740 PMCID: PMC7779811 DOI: 10.3389/fgene.2020.600692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with multiple strains of a single pathogenic species. Known to occur in humans and animals, MSIs deserve special consideration when studying transmission dynamics, evolution, and treatment of mycobacterial diseases, notably tuberculosis in humans and paratuberculosis (or Johne's disease) in ruminants. Therefore, a systematic review was conducted to examine how MSIs are defined in the literature, how widespread the phenomenon is across the host species spectrum, and to document common methods used to detect such infections. Our search strategy identified 121 articles reporting MSIs in both humans and animals, the majority (78.5%) of which involved members of the Mycobacterium tuberculosis complex, while only a few (21.5%) examined non-tuberculous mycobacteria (NTM). In addition, MSIs exist across various host species, but most reports focused on humans due to the extensive amount of work done on tuberculosis. We reviewed the strain typing methods that allowed for MSI detection and found a few that were commonly employed but were associated with specific challenges. Our review notes the need for standardization, as some highly discriminatory methods are not adapted to distinguish between microevolution of one strain and concurrent infection with multiple strains. Further research is also warranted to examine the prevalence of NTM MSIs in both humans and animals. In addition, it is envisioned that the accurate identification and a better understanding of the distribution of MSIs in the future will lead to important information on the epidemiology and pathophysiology of mycobacterial diseases.
Collapse
Affiliation(s)
| | - Alex Goudreau
- Science & Health Sciences Librarian, University of New Brunswick, Saint John, NB, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Isdore Chola Shamputa
- Department of Nursing & Health Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
16
|
Culver HR, Sinha J, Prieto TR, Calo CJ, Fairbanks BD, Bowman CN. Click Nucleic Acid–DNA Binding Behavior: Dependence on Length, Sequence, and Ionic Strength. Biomacromolecules 2020; 21:4205-4211. [DOI: 10.1021/acs.biomac.0c00996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Heidi R. Culver
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Tania R. Prieto
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher J. Calo
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Lee HE, Park SJ, Huh JW, Imai H, Kim HS. Enhancer Function of MicroRNA-3681 Derived from Long Terminal Repeats Represses the Activity of Variable Number Tandem Repeats in the 3' UTR of SHISA7. Mol Cells 2020; 43:607-618. [PMID: 32655015 PMCID: PMC7398795 DOI: 10.14348/molcells.2020.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
microRNAs (miRNAs) are non-coding RNA molecules involved in the regulation of gene expression. miRNAs inhibit gene expression by binding to the 3' untranslated region (UTR) of their target gene. miRNAs can originate from transposable elements (TEs), which comprise approximately half of the eukaryotic genome and one type of TE, called the long terminal repeat (LTR) is found in class of retrotransposons. Amongst the miRNAs derived from LTR, hsa-miR-3681 was chosen and analyzed using bioinformatics tools and experimental analysis. Studies on hsa-miR-3681 have been scarce and this study provides the relative expression analysis of hsa-miR-3681-5p from humans, chimpanzees, crab-eating monkeys, and mice. Luciferase assay for hsa-miR-3681-5p and its target gene SHISA7 supports our hypothesis that the number of miRNA binding sites affects target gene expression. Especially, the variable number tandem repeat (VNTR) and hsa-miR-3681-5p share the binding sites in the 3' UTR of SHISA7, which leads the enhancer function of hsa-miR-3681-5p to inhibit the activity of VNTR. In conclusion, hsa-miR-3681-5p acts as a super-enhancer and the enhancer function of hsa-miR-3681-5p acts as a repressor of VNTR activity in the 3' UTR of SHISA7.
Collapse
Affiliation(s)
- Hee-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan 4624, Korea
- Institute of Systems Biology, Pusan National University, Busan 4641, Korea
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon 3113, Korea
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama 484-806, Japan
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 4641, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 4241, Korea
| |
Collapse
|
18
|
Dheer P, Rautela I, Sharma V, Dhiman M, Sharma A, Sharma N, Sharma MD. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene 2020; 753:144795. [PMID: 32450202 DOI: 10.1016/j.gene.2020.144795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The advent of genetic selection and genome modification method assure about a real novel reformation in biotechnology and genetic engineering. With the extensive capabilities of molecular markers of them being stable, cost-effective and easy to use, they ultimately become a potent tool for variety of applications such a gene targeting, selection, editing, functional genomics; mainly for the improvisation of commercially important crops. Three main benefits of molecular marker in the field of agriculture and crop improvement programmes first, reduction of the duration of breeding programmes, second, they allow creation of new genetic variation and genetic diversity of plants and third most promising benefit is help in production of engineered plant for disease resistance, or resistance from pathogen and herbicides. This review is anticipated to present an outline how the techniques have been evolved from the simple conventional applications of DNA based molecular markers to highly throughput CRISPR technology and geared the crop yield. Techniques like using Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) systems have revolutionised in the field of genome editing. These have been promptly accepted in both the research and commercial industry. On the whole, the widespread use of molecular markers with their types, their appliance in plant breeding along with the advances in genetic selection and genome editing together being a novel strategy to boost crop yield has been reviewed.
Collapse
Affiliation(s)
- Pallavi Dheer
- Department of Life Sciences, Shri Guru Ram Rai Institute of Technology & Science, Patel Nagar, Dehradun, Uttarakhand, India
| | - Indra Rautela
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Vandana Sharma
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Manjul Dhiman
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Aditi Sharma
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Nishesh Sharma
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India.
| |
Collapse
|
19
|
Hatano Y, Tamada M, Matsuo M, Hara A. Molecular Trajectory of BRCA1 and BRCA2 Mutations. Front Oncol 2020; 10:361. [PMID: 32269964 PMCID: PMC7109296 DOI: 10.3389/fonc.2020.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Every cancer carries genomic mutations. Although almost all these mutations arise after fertilization, a minimal count of cancer predisposition mutations are already present at the time of genesis of germ cells. Of the cancer predisposition genes identified to date, BRCA1 and BRCA2 have been determined to be associated with hereditary breast and ovarian cancer syndrome. Such cancer predisposition genes have recently been attracting attention owing to the emergence of molecular genetics, thus, affecting the strategy of cancer prevention, diagnostics, and therapeutics. In this review, we summarize the molecular significance of these two BRCA genes. First, we provide a brief history of BRCA1 and BRCA2, including their identification as cancer predisposition genes and recognition as members in the Fanconi anemia pathway. Next, we describe the molecular function and interaction of BRCA proteins, and thereafter, describe the patterns of BRCA dysfunction. Subsequently, we present emerging evidence on mutational signatures to determine the effects of BRCA disorders on the mutational process in cancer cells. Currently, BRCA genes serve as principal targets for clinical molecular oncology, be they germline or sporadic mutations. Moreover, comprehensive cancer genome analyses enable us to not only recognize the current status of the known cancer driver gene mutations but also divulge the past mutational processes and predict the future biological behavior of cancer through the molecular trajectory of genomic alterations.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | |
Collapse
|
20
|
DNA copy number variations – Do these big mutations have a big effect on cardiovascular risk? Int J Cardiol 2020; 298:116-117. [DOI: 10.1016/j.ijcard.2019.08.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 11/19/2022]
|
21
|
Chen C, Guo Y, Jin X, Cui W, Wei Y, Fang Y, Lan Q, Kong T, Xie T, Zhu B. Forensic characteristics and population genetics of Chinese Kazakh ethnic minority with an efficient STR panel. PeerJ 2019; 7:e6802. [PMID: 31086740 PMCID: PMC6487181 DOI: 10.7717/peerj.6802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
On the purpose of enhancing the forensic efficiency of CODIS STR loci, new STR loci have been gradually discovered and developed into some commercial multiplex systems. Recently, 22 STR loci including 18 non-CODIS STR loci and four CODIS STR loci were investigated in 501 unrelated healthy individuals of Kazakh ethnic group. Seven to 20 alleles at the different loci were identified and altogether 276 alleles for 22 selected loci were detected with the corresponding allelic frequencies ranging from 0.0010 to 0.3623. No significant deviation was observed from the Hardy-Weinberg equilibrium test for any of the 22 STRs. The value of cumulative power of discrimination in Kazakh group was 1-1.00E-28. Analyses of population differentiations and genetic distances between Kazakh and other Chinese groups presented that the Kazakh group with the Uygur group. These 22 STR loci evenly distributed on 22 different autosomal chromosomes were characterized by high genetic diversities and therefore could be utilized in the forensic cases to further increase the discrimination performance.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuanyuan Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yating Fang
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Lan
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Kong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tong Xie
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Park B, Ha BS, Lee SH, Kim MK, Choi JI, Ryu JS. Variable-number tandem repeat loci-discriminating Pleurotus ostreatus cultivars. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Abstract
INTRODUCTION Among various human tissue identity testing platforms, short tandem repeat (STR) genotyping has emerged as the most powerful and cost-effective method. Beyond forensic applications, tissue identity testing has become increasingly important in modern medical practice, in areas such as diagnostic pathology. Areas covered: A brief overview of various molecular/genetic techniques for identity testing is provided. This includes restriction fragment length polymorphism, single nucleotide polymorphism array and STR genotyping by multiplex PCR. Diagnostic applications of STR genotyping are covered in greater details: genotyping diagnosis of gestational trophoblastic disease, resolving tissue specimen mislabeling or histologic contaminant or 'floaters', bone marrow engraftment/chimerism analysis and interrogation of the primary source of malignancy in patients receiving organ donation. Four clinical cases are then presented to further illustrate these important clinical applications along with discussion of the interpretation, limitations, and pitfalls of STR genotyping. Expert commentary: STR genotyping is currently the most applicable method of identity testing and has extended its role well into the practice of diagnostic pathology with novel and powerful applications beyond forensics.
Collapse
Affiliation(s)
- Ian Baine
- a Department of Pathology , Yale University School of Medicine , New Haven , CT , USA
| | - Pei Hui
- a Department of Pathology , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
24
|
Lee J. Development and Evolution of Molecular Markers and Genetic Maps in Capsicum Species. COMPENDIUM OF PLANT GENOMES 2019. [DOI: 10.1007/978-3-319-97217-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Ptáček LJ. Raymond Leslie White (1943–2018). Am J Hum Genet 2019. [DOI: 10.1016/j.ajhg.2018.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Vijay A, Garg I, Ashraf MZ. Perspective: DNA Copy Number Variations in Cardiovascular Diseases. Epigenet Insights 2018; 11:2516865718818839. [PMID: 30560231 PMCID: PMC6291864 DOI: 10.1177/2516865718818839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Human genome contains many variations, often called mutations, which are difficult to detect and have remained a challenge for years. A substantial part of the genome encompasses repeats and when such repeats are in the coding region they may lead to change in the gene expression profile followed by pathological conditions. Structural variants are alterations which change one or more sequence feature in the chromosome such as change in the copy number, rearrangements, and translocations of a sequence and can be balanced or unbalanced. Copy number variants (CNVs) may increase or decrease the copies of a given region and have a pivotal role in the onset of many diseases including cardiovascular disorders. Cardiovascular disorders have a magnitude of well-established risk factors and etiology, but their correlation with CNVs is still being studied. In this article, we have discussed history of CNVs and a summary on the diseases associated with CNVs. To detect such variations, we shed light on the number of techniques introduced so far and their limitations. The lack of studies on cardiovascular diseases to determine the frequency of such variants needs clinical studies with larger cohorts. This review is a compilation of articles suggesting the importance of CNVs in multitude of cardiovascular anomalies. Finally, future perspectives for better understanding of CNVs and cardiovascular disorders have also been discussed.
Collapse
Affiliation(s)
- Aatira Vijay
- Genomics Division, Defence Institute of Physiology & Allied Sciences, Delhi, India
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology & Allied Sciences, Delhi, India
| | - Mohammad Zahid Ashraf
- Genomics Division, Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|
27
|
Genovese LM, Geraci F, Corrado L, Mangano E, D'Aurizio R, Bordoni R, Severgnini M, Manzini G, De Bellis G, D'Alfonso S, Pellegrini M. A Census of Tandemly Repeated Polymorphic Loci in Genic Regions Through the Comparative Integration of Human Genome Assemblies. Front Genet 2018; 9:155. [PMID: 29770143 PMCID: PMC5941971 DOI: 10.3389/fgene.2018.00155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
Polymorphic Tandem Repeat (PTR) is a common form of polymorphism in the human genome. A PTR consists in a variation found in an individual (or in a population) of the number of repeating units of a Tandem Repeat (TR) locus of the genome with respect to the reference genome. Several phenotypic traits and diseases have been discovered to be strongly associated with or caused by specific PTR loci. PTR are further distinguished in two main classes: Short Tandem Repeats (STR) when the repeating unit has size up to 6 base pairs, and Variable Number Tandem Repeats (VNTR) for repeating units of size above 6 base pairs. As larger and larger populations are screened via high throughput sequencing projects, it becomes technically feasible and desirable to explore the association between PTR and a panoply of such traits and conditions. In order to facilitate these studies, we have devised a method for compiling catalogs of PTR from assembled genomes, and we have produced a catalog of PTR for genic regions (exons, introns, UTR and adjacent regions) of the human genome (GRCh38). We applied four different TR discovery software tools to uncover in the first phase 55,223,485 TR (after duplicate removal) in GRCh38, of which 373,173 were determined to be PTR in the second phase by comparison with five assembled human genomes. Of these, 263,266 are not included by state-of-the-art PTR catalogs. The new methodology is mainly based on a hierarchical and systematic application of alignment-based sequence comparisons to identify and measure the polymorphism of TR. While previous catalogs focus on the class of STR of small total size, we remove any size restrictions, aiming at the more general class of PTR, and we also target fuzzy TR by using specific detection tools. Similarly to other previous catalogs of human polymorphic loci, we focus our catalog toward applications in the discovery of disease-associated loci. Validation by cross-referencing with existing catalogs on common clinically-relevant loci shows good concordance. Overall, this proposed census of human PTR in genic regions is a shared resource (web accessible), complementary to existing catalogs, facilitating future genome-wide studies involving PTR.
Collapse
Affiliation(s)
| | - Filippo Geraci
- Institute for Informatics and Telematics of CNR, Pisa, Italy
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | | | | | - Roberta Bordoni
- Institute for Biomedical Technologies of CNR, Segrate, Italy
| | | | - Giovanni Manzini
- Institute for Informatics and Telematics of CNR, Pisa, Italy.,Department of Science and Technological Innovation, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | | | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | | |
Collapse
|
28
|
Genotyping and Sequencing Technologies in Population Genetics and Genomics. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2017_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Merlyn Keziah S, Subathra Devi C. Essentials of Conservation Biotechnology: A mini review. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/263/2/022047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Tang H, Nzabarushimana E. STRScan: targeted profiling of short tandem repeats in whole-genome sequencing data. BMC Bioinformatics 2017; 18:398. [PMID: 28984185 PMCID: PMC5629557 DOI: 10.1186/s12859-017-1800-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short tandem repeats (STRs) are found in many prokaryotic and eukaryotic genomes, and are commonly used as genetic markers, in particular for identity and parental testing in DNA forensics. The unstable expansion of some STRs was associated with various genetic disorders (e.g., the Huntington disease), and thus was used in genetic testing for screening individuals at high risk. Traditional STR analyses were based on the PCR amplification of STR loci followed by gel electrophoresis. With the availability of massive whole genome sequencing data, it becomes practical to mine STR profiles in silico from genome sequences. Software tools such as lobSTR and STR-FM have been developed to address these demands, which are, however, built upon whole genome reads mapping tools, and thus may not be sensitive enough. RESULTS In this paper, we present a standalone software tool STRScan that uses a greedy algorithm for targeted STR profiling in next-generation sequencing (NGS) data. STRScan was tested on the whole genome sequencing data from Venter genome sequencing and 1000 Genomes Project. The results showed that STRScan can profile 20% more STRs in the target set that are missed by lobSTR. CONCLUSION STRScan is particularly useful for the NGS-based targeted STR profiling, e.g., in genetic and human identity testing. STRScan is available as open-source software at http://darwin.informatics.indiana.edu/str/ .
Collapse
Affiliation(s)
- Haixu Tang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, 47405, IN, USA.
| | - Etienne Nzabarushimana
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, 47405, IN, USA
| |
Collapse
|
31
|
Integrating the microbiome as a resource in the forensics toolkit. Forensic Sci Int Genet 2017; 30:141-147. [DOI: 10.1016/j.fsigen.2017.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 06/24/2017] [Indexed: 11/19/2022]
|
32
|
Shapero MH, Kundu SK, Engleman E, Laus R, Van Schooten WCA, Merigan TC. In Vivo Persistence of Donor Cells following Adoptive Transfer of Allogeneic Dendritic Cells in HIV-Infected Patients. Cell Transplant 2017; 9:307-317. [DOI: 10.1177/096368970000900302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peripheral blood samples from HIV-seropositive individuals enrolled in a pilot clinical trial investigating the use of allogeneic dendritic cell therapy were evaluated for mixed chimerism. In this study, dendritic cells from HLA-identical, HIV-seronegative siblings were used. Patients received an infusion of dendritic cells pulsed with HIV MN gp160 protein or with peptides from HLA-A2 restricted epitopes of env, gag, and pol proteins every month for 6–9 months. Of the five allogeneic dendritic cell recipients, two showed increases in HIV antigen-specific immune responses. Allele-specific polymorphisms were identified in three sib-pairs that allowed infused donor cells to be detected using sensitive PCR-based molecular methods. Analysis of blood samples from patients showed similar patterns of donor cell persistence after the first infusion, in that cells were detectable for at least 1 week. Also, differences were observed in the kinetics of cell survival between the first and subsequent infusion cycles in all three patients. This suggests variation in HIV-specific immune responses detected among these three patients was not due to differences in persistence of infused donor cells.
Collapse
Affiliation(s)
| | - Smriti K. Kundu
- Center for AIDS Research, Stanford University Medical Center, Stanford, CA 94305
| | - Edgar Engleman
- Stanford Medical School Blood Center, Stanford, CA 94034
| | | | | | - Thomas C. Merigan
- Center for AIDS Research, Stanford University Medical Center, Stanford, CA 94305
| |
Collapse
|
33
|
Queller DC, Goodnight KF. ESTIMATING RELATEDNESS USING GENETIC MARKERS. Evolution 2017; 43:258-275. [PMID: 28568555 DOI: 10.1111/j.1558-5646.1989.tb04226.x] [Citation(s) in RCA: 1302] [Impact Index Per Article: 162.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1987] [Accepted: 08/17/1988] [Indexed: 11/28/2022]
Affiliation(s)
- David C. Queller
- Department of Biology Rice University P.O. Box 1892 Houston TX 77251
| | | |
Collapse
|
34
|
Taylor EB, Foote CJ, Wood CC. MOLECULAR GENETIC EVIDENCE FOR PARALLEL LIFE-HISTORY EVOLUTION WITHIN A PACIFIC SALMON (SOCKEYE SALMON AND KOKANEE, ONCORHYNCHUS NERKA). Evolution 2017; 50:401-416. [PMID: 28568856 DOI: 10.1111/j.1558-5646.1996.tb04502.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1994] [Accepted: 12/14/1994] [Indexed: 11/30/2022]
Abstract
The Pacific salmon Oncorhynchus nerka typically occurs as a sea-run form (sockeye salmon) or may reside permanently in lakes (kokanee) thoughout its native North Pacific. We tested whether such geographically extensive ecotypic variation resulted from parallel evolutionary divergence thoughout the North Pacific or whether the two forms are monophyletic groups by examining allelic variation between sockeye salmon and kokanee at two minisatellite DNA repeat loci and in mitochondrial DNA (mtDNA) Bgl II restriction sites. Our examination of over 750 fish from 24 populations, ranging from Kamchatka to the Columbia River, identified two major genetic groups of North Pacific O. nerka: a "northwestern" group consisting of fish from Kamchatka, western Alaska, and northwestern British Columbia, and a "southern" group consisting of sockeye salmon and kokanee populations from the Fraser and Columbia River systems. Maximum-likelihood analysis accompanied by bootstrapping provided strong support for these two genetic groups of O. nerka; the populations did not cluster by migratory form, but genetic affinities were organized more strongly by geographic proximity. The two major genetic groups resolved in our study probably stem from historical isolation and dispersal of O. nerka from two major Wisconsinan glacial refugia in the North Pacific. There were significant minisatellite DNA allele frequency differences between sockeye salmon and kokanee populations from different parts of the same watershed, between populations spawning in different tributaries of the same lake, and also between sympatric populations spawning in the same stream at the same time. MtDNA Bgl II restriction site variation was significant between sockeye salmon and kokanee spawning in different parts of the same major watershed but not between forms spawning in closer degrees of reproductive sympatry. Patterns of genetic affinity and allele sharing suggested that kokanee have arisen from sea-run sockeye salmon several times independently in the North Pacific. We conclude that sockeye salmon and kokanee are para- and polyphyletic, respectively, and that the present geographic distribution of the ecotypes results from parallel evolutionary origins of kokanee from sockeye (divergences between them) thoughout the North Pacific.
Collapse
Affiliation(s)
- Eric B Taylor
- Canadian Department of Fisheries and Oceans, Biological Sciences Branch, Pacific Biological Station, Nanaimo, British Columbia, V9R 5K6, Canada
| | - Chris J Foote
- School of Fisheries, WH-10, University of Washington, Seattle, Washington, 98195
| | - C C Wood
- Canadian Department of Fisheries and Oceans, Biological Sciences Branch, Pacific Biological Station, Nanaimo, British Columbia, V9R 5K6, Canada
| |
Collapse
|
35
|
Abstract
When individuals are exposed to stressful environmental challenges, the response varies widely in one or more of three components: psychology, behavior and physiology. This variability among individuals can be defined as temperament. In recent years, an increasing large body of evidence suggests that the dimensions of temperament, as well as personality, psychological disorders and behavioral traits, are influenced by genetic factors, and much of the variation appears to involve variation in genes or gene polymorphisms in the hypothalamic-pituitary-adrenocortical (HPA) axis and the behavior-controlling neurotransmitter networks. Here, we review our current understanding of the probabilistic impact of a number of candidate gene polymorphisms that control temperament, psychological disorders and behavioral traits in animals and human, including the gene polymorphisms related to corticotrophin-releasing hormone (CRH) production and adrenal cortisol production involved in the HPA axis, and a large number of gene polymorphisms in the dopaminergic and serotonergic neurotransmitter networks. It will very likely to assist in diagnosis and treatment of human relevant disorders, and provide useful contributions to our understanding of evolution, welfare and conservation, for animals in the wild and in production systems. Additionally, investigations of gene-gene and gene-environment complex interactions in humans and animals need further clear illustration.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- a College of Animal Science and Technology, Southwest University , Chong Qing , PR China.,b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| | - Graeme B Martin
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia.,c Nuffield Department of Obstetrics and Gynecology , University of Oxford , Oxford , UK
| | - Dominique Blache
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| |
Collapse
|
36
|
den Bakker HC, Gravendeel B, Kuyper TW. An ITS phylogeny of Leccinum and an analysis of the evolution of minisatellite-like sequences within ITS1. Mycologia 2017. [DOI: 10.1080/15572536.2005.11833001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Henk C. den Bakker
- Nationaal Herbarium Nederland, Universiteit Leiden branch, Phanerogams and Cryptogams of the Netherlands and Europe section, P.O. Box 9514, 2300 RA Leiden, The Netherlands
| | - Barbara Gravendeel
- Nationaal Herbarium Nederland, Universiteit Leiden branch, Molecular Systematics taskforce, P.O. Box 9514, 2300 RA Leiden, The Netherlands
| | - Thomas W. Kuyper
- Wageningen Agricultural University, Department of Environmental Sciences, Subdepartment of Soil Quality, P.O. Box 8005, 6700 EC Wageningen, The Netherlands
| |
Collapse
|
37
|
Ei PW, Aung WW, Lee JS, Choi GE, Chang CL. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods. J Korean Med Sci 2016; 31:1673-1683. [PMID: 27709842 PMCID: PMC5056196 DOI: 10.3346/jkms.2016.31.11.1673] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/06/2016] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.
Collapse
Affiliation(s)
- Phyu Win Ei
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar
| | - Wah Wah Aung
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar
| | - Jong Seok Lee
- International Tuberculosis Research Center, Changwon, Korea
| | - Go Eun Choi
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Chulhun L Chang
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
38
|
Tefferi A. Genomics Basics: DNA Structure, Gene Expression, Cloning, Genetic Mapping, and Molecular Tests. Semin Cardiothorac Vasc Anesth 2016; 10:282-90. [PMID: 17200086 DOI: 10.1177/1089253206294343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genomics is the study of the structure and function of the human genome including genes and their surrounding DNA sequences. The over 3 billion base pairs of the human genome have now been sequenced and approximately 25 000 genes acknowledged. However, only 1% of the entire genome has been assigned to protein coding and decades more work is anticipated to define the functional relevance of noncoding DNA as well as the basis and consequences of sequence variations among individuals. For medical scientists, the focus remains on discovering both disease-causing and disease-susceptibility genes. For pharmaceutical companies, the opportunity to develop molecularly targeted therapy is not going unnoticed. For the practicing physician, the prospect of genomic medicine that incorporates molecular diagnosis and pathogenesis-targeted therapy requires basic understanding of terminology and concepts in molecular biology and the corresponding laboratory tests.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
39
|
Dabbagh N, Preisfeld A. The Chloroplast Genome of Euglena mutabilis-Cluster Arrangement, Intron Analysis, and Intrageneric Trends. J Eukaryot Microbiol 2016; 64:31-44. [PMID: 27254767 DOI: 10.1111/jeu.12334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/06/2016] [Accepted: 05/25/2016] [Indexed: 11/28/2022]
Abstract
A comparative analysis of the chloroplast genome of Euglena mutabilis underlined a high diversity in the evolution of plastids in euglenids. Gene clusters in more derived Euglenales increased in complexity with only a few, but remarkable changes in the genus Euglena. Euglena mutabilis differed from other Euglena species in a mirror-inverted arrangement of 12 from 15 identified clusters, making it very likely that the emergence at the base of the genus Euglena, which has been considered a long branch artifact, is truly a probable position. This was corroborated by many similarities in gene arrangement and orientation with Strombomonas and Monomorphina, rendering the genome organization of E. mutabilis in certain clusters as plesiomorphic feature. By RNA analysis exact exon-intron boundaries and the type of the 77 introns identified were mostly determined unambiguously. A detailed intron study of psbC pointed at two important issues: First, the number of introns varied even between species, and no trend from few to many introns could be observed. Second, mat1 was localized in Eutreptiales exclusively in intron 1, and mat2 was not identified. With the emergence of Euglenaceae in most species, a new intron containing mat2 inserted in front of the previous intron 1 and thereby became intron 2 with mat1.
Collapse
Affiliation(s)
- Nadja Dabbagh
- Bergische University Wuppertal, Faculty of Mathematics and Natural Sciences, Zoology and Didactics of Biology, Wuppertal, Germany
| | - Angelika Preisfeld
- Bergische University Wuppertal, Faculty of Mathematics and Natural Sciences, Zoology and Didactics of Biology, Wuppertal, Germany
| |
Collapse
|
40
|
Abstract
The past 2 decades have witnessed an explosion in molecular neurogenetics and neurobiology. The aggres sive application of new techniques to the dominantly inherited disorder, Huntington's disease, defined the standard for the positional cloning of human genetic diseases. A parallel effort from neurobiologists and clinicians has set the stage for the development of potential new therapies for the disease. Along the winding road to finding the gene, many lessons were learned by clinicians and scientists alike. The next decade of research offers new challenges and rewards for those involved with this disease. The Neuroscientist 1:51- 58, 1995
Collapse
Affiliation(s)
- Anne B. Young
- Neurology Service, Massachusetts General Hospital Department
of Neurology, Harvard Medical School Boston, Massachusetts
| |
Collapse
|
41
|
Rumore JL, Tschetter L, Nadon C. The Impact of Multilocus Variable-Number Tandem-Repeat Analysis on PulseNet Canada Escherichia coli O157:H7 Laboratory Surveillance and Outbreak Support, 2008-2012. Foodborne Pathog Dis 2016; 13:255-61. [PMID: 26990274 DOI: 10.1089/fpd.2015.2066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lack of pattern diversity among pulsed-field gel electrophoresis (PFGE) profiles for Escherichia coli O157:H7 in Canada does not consistently provide optimal discrimination, and therefore, differentiating temporally and/or geographically associated sporadic cases from potential outbreak cases can at times impede investigations. To address this limitation, DNA sequence-based methods such as multilocus variable-number tandem-repeat analysis (MLVA) have been explored. To assess the performance of MLVA as a supplemental method to PFGE from the Canadian perspective, a retrospective analysis of all E. coli O157:H7 isolated in Canada from January 2008 to December 2012 (inclusive) was conducted. A total of 2285 E. coli O157:H7 isolates and 63 clusters of cases (by PFGE) were selected for the study. Based on the qualitative analysis, the addition of MLVA improved the categorization of cases for 60% of clusters and no change was observed for ∼40% of clusters investigated. In such situations, MLVA serves to confirm PFGE results, but may not add further information per se. The findings of this study demonstrate that MLVA data, when used in combination with PFGE-based analyses, provide additional resolution to the detection of clusters lacking PFGE diversity as well as demonstrate good epidemiological concordance. In addition, MLVA is able to identify cluster-associated isolates with variant PFGE pattern combinations that may have been previously missed by PFGE alone. Optimal laboratory surveillance in Canada is achieved with the application of PFGE and MLVA in tandem for routine surveillance, cluster detection, and outbreak response.
Collapse
Affiliation(s)
- Jillian Leigh Rumore
- 1 Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada , Winnipeg, Canada
| | - Lorelee Tschetter
- 1 Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada , Winnipeg, Canada
| | - Celine Nadon
- 1 Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada , Winnipeg, Canada .,2 Department of Medical Microbiology, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
42
|
Naga Chaithanya MV, Sailaja D, Dinesh MR, Vasugi C, Lakshmana Reddy DC, Aswath C. Microsatellite-Based DNA Fingerprinting of Guava (Psidium guajava) Genotypes. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40011-015-0660-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Chen JJ, Wang Y. Microsatellite Development and Potential Application in Authentication, Conservation, and Genetic Improvement of Chinese Medicinal Plants. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60029-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
Kurosawa K, Kuromaru R, Imaizumi K, Nakamura Y, Ishikawa F, Ueda K, Kuroki Y. Monozygotic Twins with Discordant Sex. ACTA ACUST UNITED AC 2014; 41:301-10. [PMID: 1364144 DOI: 10.1017/s0001566000002154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA nine-year-old girl with short stature was referred to the department of pediatrics at Kyushu University. The clinical diagnosis was Turner syndrome; karyotypic analysis performed on peripheral blood, using GTG techniques, demonstrated a 45,X/47,XYY (17:83) mosaicism. Her twin brother, a phenotypically normal male, had the same karyotype; 45,X/47,XYY (3:97) on peripheral blood. Their skin fibroblast karyotypes showed the same mosaicism, ie. 45,X/47,XYY (41:59 and 31:69 respectively). On eleven biochemical genetic markers the twin pair were concordant, thus the likelihood of monozygosity was 0.99527034. In addition, the analysis of variable number of tandem repeat (VNTR) markers revealed the likelihood of monozygosity to be 0.99944386. The most plausible explanation of the X/XYY mosaicism was nondisjunction of the Y in the first cleavage division of the 46,XY zygote. A disproportionate rate of cell populations with 45,X and 47.XYY in the twinning process of the X/XYY embryo, especially in the germ lines, would result in discordant sex in twin pairs.
Collapse
Affiliation(s)
- K Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Samardjieva KG, Marinova E. Microsatellites—A New Approach of Marker- Assisted Selection. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.1995.10818855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Abstract
The existence of BRCA1 was proven in 1990 by mapping predisposition to young-onset breast cancer in families to chromosome 17q21. Knowing that such a gene existed and approximately where it lay triggered efforts by public and private groups to clone and sequence it. The press baptized the competition "the race" and reported on it in detail for the next 4 years. BRCA1 was positionally cloned in September 1994. Twenty years later, I reflect on "the race" and its consequences for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. GENETICS RESEARCH INTERNATIONAL 2014; 2014:691759. [PMID: 24808959 PMCID: PMC3997932 DOI: 10.1155/2014/691759] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
Microsatellites are the most popular and versatile genetic marker with myriads of applications in population genetics, conservation biology, and evolutionary biology. These are the arrays of DNA sequences, consisting of tandemly repeating mono-, di-, tri-, and tetranucleotide units, which are distributed throughout the genomes of most eukaryotic species. Microsatellites are codominant in nature, highly polymorphic, easily typed, and Mendelian inherited, all properties which make them very suitable for the study of population structure and pedigree analysis and capable of detecting differences among closely related species. PCR for microsatellites can be automated for identifying simple sequence repeat polymorphism. Small amount of blood samples or alcohol preserved tissue is adequate for analyzing them. Most of the microsatellites are noncoding, and therefore variations are independent of natural selection. These properties make microsatellites ideal genetic markers for conservation genetics and fisheries management. This review addresses the applications of microsatellite markers in conservation genetics and recent advances in population structure analysis in the context of fisheries management.
Collapse
|
48
|
Winter P, Kahl G. Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 2014; 11:438-48. [PMID: 24414752 DOI: 10.1007/bf00364619] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The exploitation of DNA polymorphisms by an ever-increasing number of molecular marker technologies has begun to have an impact on plant genome research and breeding. Restriction fragment length polymorphisms, micro- and mini-satellites and PCR-based approaches are used to determine inter- and intra-specific genetic diversity and construct molecular maps of crops using specially designed mapping populations. Resistance genes and other agronomically important loci are tagged with tightly linked DNA markers and the genes isolated by magabase DNA technology and cloning into yeast artificial chromosomes (YAC). This review discusses some recent developments and results in this field.
Collapse
|
49
|
Fenoglio C. Genetics and Epigenetics: Basic Concepts. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7. BIOMED RESEARCH INTERNATIONAL 2013; 2013:390354. [PMID: 24093095 PMCID: PMC3777172 DOI: 10.1155/2013/390354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Abstract
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.
Collapse
|