1
|
Peters H, O'Leary BC, Hawkins JP, Carpenter KE, Roberts CM. Conus: first comprehensive conservation red list assessment of a marine gastropod mollusc genus. PLoS One 2013; 8:e83353. [PMID: 24376693 PMCID: PMC3871662 DOI: 10.1371/journal.pone.0083353] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/01/2013] [Indexed: 11/18/2022] Open
Abstract
Marine molluscs represent an estimated 23% of all extant marine taxa, but research into their conservation status has so far failed to reflect this importance, with minimal inclusion on the authoritative Red List of the International Union for the Conservation of Nature (IUCN). We assessed the status of all 632 valid species of the tropical marine gastropod mollusc, Conus (cone snails), using Red List standards and procedures to lay the groundwork for future decadal monitoring, one of the first fully comprehensive global assessments of a marine taxon. Three-quarters (75.6%) of species were not currently considered at risk of extinction owing to their wide distribution and perceived abundance. However, 6.5% were considered threatened with extinction with a further 4.1% near threatened. Data deficiency prevented 13.8% of species from being categorised although they also possess characteristics that signal concern. Where hotspots of endemism occur, most notably in the Eastern Atlantic, 42.9% of the 98 species from that biogeographical region were classified as threatened or near threatened with extinction. All 14 species included in the highest categories of Critically Endangered and Endangered are endemic to either Cape Verde or Senegal, with each of the three Critically Endangered species restricted to single islands in Cape Verde. Threats to all these species are driven by habitat loss and anthropogenic disturbance, in particular from urban pollution, tourism and coastal development. Our findings show that levels of extinction risk to which cone snails are exposed are of a similar magnitude to those seen in many fully assessed terrestrial taxa. The widely held view that marine species are less at risk is not upheld.
Collapse
Affiliation(s)
- Howard Peters
- Environment Department, University of York, York, United Kingdom
| | - Bethan C O'Leary
- Environment Department, University of York, York, United Kingdom
| | - Julie P Hawkins
- Environment Department, University of York, York, United Kingdom
| | - Kent E Carpenter
- International Union for Conservation of Nature, Global Marine Species Assessment, Biological Sciences, Old Dominion University, Norfolk, Virginia, United States Of America
| | - Callum M Roberts
- Environment Department, University of York, York, United Kingdom
| |
Collapse
|
2
|
Bergeron ZL, Chun JB, Baker MR, Sandall DW, Peigneur S, Yu PY, Thapa P, Milisen JW, Tytgat J, Livett BG, Bingham JP. A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications. Peptides 2013; 49:145-58. [PMID: 24055806 PMCID: PMC6013274 DOI: 10.1016/j.peptides.2013.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC. We assign this conopeptide to the 4/7 α-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, α-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 μM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)α-conotoxin TxIC, demonstrates differential selectivity for the α3β2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 ± 0.5 μM. Interestingly its comparative PD50 (3.6 μMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating α-conotoxin TxIC from other α-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of γ-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of α-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.
Collapse
Affiliation(s)
- Zachary L. Bergeron
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Joycelyn B. Chun
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Margaret R. Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - David W. Sandall
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Steve Peigneur
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, Leuven, Belgium, 3000
| | - Peter Y.C. Yu
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Parashar Thapa
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Jeffrey W. Milisen
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Jan Tytgat
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, Leuven, Belgium, 3000
| | - Bruce G. Livett
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
- Corresponding Author: Dr. Jon-Paul Bingham, , Fax: (808) 965-3542, Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, HI, 96822, USA
| |
Collapse
|
3
|
Chun JBS, Baker MR, Kim DH, Leroy M, Toribo P, Bingham JP. Cone snail milked venom dynamics--a quantitative study of Conus purpurascens. Toxicon 2012; 60:83-94. [PMID: 22497788 DOI: 10.1016/j.toxicon.2012.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
Abstract
Milked venom from cone snails represent a novel biological resource with a proven track record for drug discovery. To strengthen this correlation, we undertook a chromatographic and mass spectrometric study of individual milked venoms from Conus purpurascens. Milked venoms demonstrate extensive peptide differentiation amongst individual specimens and during captivity. Individual snails were found to lack a consistent set of described conopeptides, but instead demonstrated the ability to change venom expression, composition and post-translational modification incorporation; all variations contribute to an increase in chemical diversity and prey targeting strategies. Quantitative amino acid analysis revealed that milked venom peptides are expressed at ranges up to 3.51-121.01 μM within single milked venom samples. This provides for a 6.37-20,965 fold-excess of toxin to induce apparent IC₅₀ for individual conopeptides identified in this study. Comparative molecular mass analysis of duct venom, milked venom and radula tooth extracts from single C. purpurascens specimens demonstrated a level of peptide continuity. Numerous highly abundant and unique conopeptides remain to be characterized. This study strengthens the notion that approaches in conopeptide drug lead discovery programs will potentially benefit from a greater understanding of the toxinological nature of the milked venoms of Conus.
Collapse
Affiliation(s)
- Joycelyn B S Chun
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
4
|
Bingham JP, Mitsunaga E, Bergeron ZL. Drugs from slugs--past, present and future perspectives of omega-conotoxin research. Chem Biol Interact 2010; 183:1-18. [PMID: 19800874 DOI: 10.1016/j.cbi.2009.09.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/03/2009] [Accepted: 09/24/2009] [Indexed: 12/18/2022]
Abstract
Peptides from the venom of carnivorous cone shells have provided six decades of intense research, which has led to the discovery and development of novel analgesic peptide therapeutics. Our understanding of this unique natural marine resource is however somewhat limited. Given the past pharmacological record, future investigations into the toxinology of these highly venomous tropical marine snails will undoubtedly yield other highly selective ion channel inhibitors and modulators. With over a thousand conotoxin-derived sequences identified to date, those identified as ion channel inhibitors represent only a small fraction of the total. Here we discuss our present understanding of conotoxins, focusing on the omega-conotoxin peptide family, and illustrate how such a seemingly simple snail has yielded a highly effective clinical drug.
Collapse
Affiliation(s)
- Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
5
|
Gowd KH, Dewan KK, Iengar P, Krishnan KS, Balaram P. Probing peptide libraries from Conus achatinus using mass spectrometry and cDNA sequencing: identification of delta and omega-conotoxins. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:791-805. [PMID: 18286662 DOI: 10.1002/jms.1377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The peptide library present in the venom of the piscivorous marine snail Conus achatinus has been probed using a combination of mass spectrometry and cDNA sequencing methods. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis, before and following global reduction/alkylation of peptide mixtures, permits the rapid classification of individual components on the basis of the number of disulfide bonds. Mass fingerprinting and the reverse phase HPLC retention times permit a further deconvolution of the library in terms of peptide size and hydrophobicity. Sequencing of cDNA derived using O-superfamily specific primers yielded five complete conotoxin precursor sequences, ranging in polypeptide length from 75-87 residues containing six Cys residues at the C-terminus. Sequence analysis permits classification of the five putative mature peptides (Ac 6.1 to Ac 6.5) as delta, omega, and omega-like conotoxins. The presence of these predicted peptides in crude venom was established by direct matrix assisted laser desorption ionization tandem mass spectrometry (MALDI-MS/MS) sequencing following trypsin digestion of the peptide mixture after global reduction/alkylation. The determination of partial peptide sequences and comparison with the predicted sequences resulted in the identification of four of the five predicted conotoxins. The characterization of posttranslationally modified analogs, which are hydroxylated at proline or amidated at the C-terminus is also demonstrated. Crude venom analysis should prove powerful in studying both inter- and intra-species variation in peptide libraries.
Collapse
Affiliation(s)
- Konkallu Hanumae Gowd
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | | | |
Collapse
|
6
|
Grant MA, Shanmugasundaram K, Rigby AC. Conotoxin therapeutics: a pipeline for success? Expert Opin Drug Discov 2007; 2:453-68. [DOI: 10.1517/17460441.2.4.453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Livett BG, Sandall DW, Keays D, Down J, Gayler KR, Satkunanathan N, Khalil Z. Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor. Toxicon 2006; 48:810-29. [PMID: 16979678 DOI: 10.1016/j.toxicon.2006.07.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pain therapeutics discovered by molecular mining of the expressed genome of Australian predatory cone snails are providing lead compounds for the treatment of neurological diseases such as multiple sclerosis, shingles, diabetic neuropathy and other painful neurological conditions. The high specificity exhibited by these novel compounds for neuronal receptors and ion channels in the brain and nervous system indicates the high degree of selectivity that this class of neuropeptides can be expected to show when used therapeutically in humans. A lead compound, ACV1 (conotoxin Vc1.1 from Conus victoriae), has entered Phase II clinical trials and is being developed for the treatment for neuropathic pain. ACV1 will be targeted initially for the treatment of sciatica, shingles and diabetic neuropathy. The compound is a 16 amino acid peptide [Sandall et al., 2003. A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42, 6904-6911], an antagonist of neuronal nicotinic acetylcholine receptors. It has potent analgesic activity following subcutaneous or intramuscular administration in several preclinical animal models of human neuropathic pain [Satkunanathan et al., 2005. Alpha conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurons. Brain. Res. 1059, 149-158]. ACV1 may act as an analgesic by decreasing ectopic excitation in sensory nerves. In addition ACV1 appears to accelerate the recovery of injured nerves and tissues.
Collapse
Affiliation(s)
- Bruce G Livett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Collecting marine organisms for the discovery and development of pharmaceuticals has been perceived variously as sustaining and threatening conservation. Our initial expectations that marine bioprospecting might pose conservation challenges were largely not confirmed. Thousands of marine species have been collected for initial assessment, but usually only in very small amounts. Very few compounds are sufficiently promising to provoke re-collections, where volumes can be much larger. This is where conservation concerns may arise, particularly if the organism is rare, has a restricted distribution, or is targeted in one narrow area. However, industry generally seeks to avoid dependency on small populations, for economic as well as ecological reasons. Alternative supply strategies to wild capture include synthesis and culture. Mandatory collection protocols and environmental impact (stock) assessments are useful routes for management to achieve sustainable use where extraction is desirable. In general, the scanty information available suggests that marine bioprospecting for pharmaceuticals may have minimal impacts on the environment, particularly compared with those created by other pressures.
Collapse
Affiliation(s)
- Bob Hunt
- Project Seahorse, Fisheries Centre, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
9
|
Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR. Intraspecific variation of venom injected by fish-hunting Conus snails. ACTA ACUST UNITED AC 2006; 208:2873-83. [PMID: 16043592 DOI: 10.1242/jeb.01713] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Venom peptides from two species of fish-hunting cone snails (Conus striatus and Conus catus) were characterized using microbore liquid chromatography coupled with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and electrospray ionization-ion trap-mass spectrometry. Both crude venom isolated from the venom duct and injected venom obtained by milking were studied. Based on analysis of injected venom samples from individual snails, significant intraspecific variation (i.e. between individuals) in the peptide complement is observed. The mixture of peptides in injected venom is simpler than that in the crude duct venom from the same snail, and the composition of crude venom is more consistent from snail to snail. While there is animal-to-animal variation in the peptides present in the injected venom, the composition of any individual's injected venom remains relatively constant over time in captivity. Most of the Conus striatus individuals tested injected predominantly a combination of two neuroexcitatory peptides (s4a and s4b), while a few individuals had unique injected-venom profiles consisting of a combination of peptides, including several previously characterized from the venom duct of this species. Seven novel peptides were also putatively identified based on matches of their empirically derived masses to those predicted by published cDNA sequences. Profiling injected venom of Conus catus individuals using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry demonstrates that intraspecific variation in the mixture of peptides extends to other species of piscivorous cone snails. The results of this study imply that novel regulatory mechanisms exist to select specific venom peptides for injection into prey.
Collapse
Affiliation(s)
- Jennifer A Jakubowski
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
10
|
Avila C. Molluscan Natural Products as Biological Models: Chemical Ecology, Histology, and Laboratory Culture. MOLLUSCS 2006; 43:1-23. [PMID: 17153336 DOI: 10.1007/978-3-540-30880-5_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The utility of some natural products from molluscs has been known for centuries. However, only recently have modern technologies and advances in the fields of chemistry, chemical ecology, anatomy, histology, and laboratory culture allowed the exploitation of new, unprecedented applications of natural products. Recent studies have dealt with (a) the role that these compounds have in the sea in protecting the animals (e.g., chemical defense), or in mediating their intraspecific communication (e.g., pheromones), (b) the geographical differences in similar or related species (and the implications of this in chemical ecology and phylogeny), and (c) the localization of these metabolites in molluscan tissues (by means of the most modern technologies), among others. The methodology for the laboratory culture of some species has also been established, thus offering new insights into this interesting field. Further applications of all these challenging studies are currently being developed.
Collapse
Affiliation(s)
- C Avila
- Centre d'Estudis Advançats de Blanes (CEAB-CSIC), C/Accés a la Cala Sant Francesc 14 17300 Blanes (Girona), Catalunya, Spain
| |
Collapse
|
11
|
|