1
|
Evans LMP, Gawron J, Sim FJ, Feltri ML, Marziali LN. Human iPSC-derived myelinating organoids and globoid cells to study Krabbe Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604372. [PMID: 39091729 PMCID: PMC11291050 DOI: 10.1101/2024.07.19.604372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here, to understand the pathological mechanisms of Kd, we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia. We show that Kd organoids have no obvious defects in neurogenesis, astrogenesis, and oligodendrogenesis but manifest early myelination defects. Specifically, Kd organoids showed shorter but a similar number of myelin internodes than Controls at the peak of myelination and a reduced number and shorter internodes at a later time point. Interestingly, myelin is affected in the absence of autophagy and mTOR pathway dysregulation, suggesting lack of lysosomal dysfunction which makes this organoid model a very valuable tool to study the early events that drive demyelination in Kd. Kd iPSC-derived microglia show a marginal rate of globoid cell formation under normal culture conditions that is drastically increased upon GalCer feeding. Under normal culture conditions, Kd microglia show a minor LAMP1 content decrease and a slight increase in the autophagy protein LC3B. Upon GalCer feeding, Kd cells show accumulation of autophagy proteins and strong LAMP1 reduction that at a later time point are reverted showing the compensatory capabilities of globoid cells. Altogether, this supports the value of our cultures as tools to study the mechanisms that drive globoid cell formation and the compensatory mechanism in play to overcome GalCer accumulation in Kd.
Collapse
Affiliation(s)
- Lisa Marie P Evans
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Joseph Gawron
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Università degli studi di Milano, Biometra department and IRCcs Carlo Besta, Milano 20133, Italy
| | - Leandro N Marziali
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Mandolfo O, Liao A, Singh E, O'leary C, Holley RJ, Bigger BW. Establishment of the Effectiveness of Early Versus Late Stem Cell Gene Therapy in Mucopolysaccharidosis II for Treating Central Versus Peripheral Disease. Hum Gene Ther 2024; 35:243-255. [PMID: 37427450 DOI: 10.1089/hum.2023.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Mucopolysaccharidosis type II (MPSII) is a rare pediatric X-linked lysosomal storage disease, caused by heterogeneous mutations in the iduronate-2-sulfatase (IDS) gene, which result in accumulation of heparan sulfate (HS) and dermatan sulfate within cells. This leads to severe skeletal abnormalities, hepatosplenomegaly, and cognitive deterioration. The progressive nature of the disease is a huge obstacle to achieve full neurological correction. Although current therapies can only treat somatic symptoms, a lentivirus-based hematopoietic stem cell gene therapy (HSCGT) approach has recently achieved improved central nervous system (CNS) neuropathology in the MPSII mouse model following transplant at 2 months of age. In this study, we evaluate neuropathology progression in 2-, 4- and 9-month-old MPSII mice, and using the same HSCGT strategy, we investigated somatic and neurological disease attenuation following treatment at 4 months of age. Our results showed gradual accumulation of HS between 2 and 4 months of age, but full manifestation of microgliosis/astrogliosis as early as 2 months. Late HSCGT fully reversed the somatic symptoms, thus achieving the same degree of peripheral correction as early therapy. However, late treatment resulted in slightly decreased efficacy in the CNS, with poorer brain enzymatic activity, together with reduced normalization of HS oversulfation. Overall, our findings confirm significant lysosomal burden and neuropathology in 2-month-old MPSII mice. Peripheral disease is readily reversible by LV.IDS-HSCGT regardless of age of transplant, suggesting a viable treatment for somatic disease. However, in the brain, higher IDS enzyme levels are achievable with early HSCGT treatment, and later transplant seems to be less effective, supporting the view that the earlier patients are diagnosed and treated, the better the therapy outcome.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Aiyin Liao
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Esha Singh
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Claire O'leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca J Holley
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Moore TL, Pannuzzo G, Costabile G, Palange AL, Spanò R, Ferreira M, Graziano ACE, Decuzzi P, Cardile V. Nanomedicines to treat rare neurological disorders: The case of Krabbe disease. Adv Drug Deliv Rev 2023; 203:115132. [PMID: 37918668 DOI: 10.1016/j.addr.2023.115132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.
Collapse
Affiliation(s)
- Thomas Lee Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy
| | - Gabriella Costabile
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy; Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples 80131, NA, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy; Facolta di Medicina e Chirurgia, Università degli Studi di Enna "Kore", Enna 94100, EN, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy.
| |
Collapse
|
4
|
Kofler J, Beltran-Quintero ML, Rugari A, Zuccoli G, Klotz S, Escolar ML. Improved Brain Pathology and Progressive Peripheral Neuropathy in a 15 Year Old Survivor of Infantile Krabbe Disease Treated With Umbilical Cord Transplantation. Front Mol Neurosci 2022; 15:888231. [PMID: 35966016 PMCID: PMC9368320 DOI: 10.3389/fnmol.2022.888231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
Objective Krabbe disease is a fatal leukodystrophy caused by deficiency in galactocerebrosidase enzyme activity. The only currently available therapy is hematopoietic stem cell transplantation with bone marrow or umbilical cord blood (UCBT), which leads to increased lifespan and functional abilities when performed in the preclinical stage. While stabilization of white matter disease has been seen on serial MRI studies, neuropathological changes following transplantation have not been documented so far. Materials and Methods We report the first postmortem examination of a 15-year-old female patient with infantile Krabbe disease after UCBT in infancy. Results In contrast to an untreated Krabbe disease brain, which showed severe myelin and oligodendrocyte loss with occasional globoid cells, the transplanted brain displayed markedly improved myelin preservation, but not reaching normal myelination levels. Consistent with the transplanted patient’s clinical presentation of pronounced deficits in gross motor skills, corticospinal tracts were most severely affected. No globoid cells or evidence of active demyelination were observed in the central nervous system, indicative of at least partially successful functional restoration. This was corroborated by the identification of male donor-derived cells in the brain by in situ hybridization. Unlike the observed disease stabilization in the central nervous system, the patient experienced progressive peripheral neuropathy. While diminished macrophage infiltration was seen postmortem, peripheral nerves exhibited edema, myelin and axon loss and persistent Schwann cell ultrastructural inclusions. Conclusion Umbilical cord blood transplantation was able to alter the natural disease progression in the central but less so in the peripheral nervous system, possibly due to limited cross-correction of Schwann cells.
Collapse
Affiliation(s)
- Julia Kofler
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria L. Beltran-Quintero
- Program for the Study of Neurodevelopment in Rare Disorders, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Anne Rugari
- Partners for Krabbe Research, Cincinnati, OH, United States
| | - Giulio Zuccoli
- Program for the Study of Neurodevelopment in Rare Disorders, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sarah Klotz
- Program for the Study of Neurodevelopment in Rare Disorders, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Maria L. Escolar
- Program for the Study of Neurodevelopment in Rare Disorders, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Maria L. Escolar,
| |
Collapse
|
5
|
de Vasconcelos P, Lacerda JF. Hematopoietic Stem Cell Transplantation for Neurological Disorders: A Focus on Inborn Errors of Metabolism. Front Cell Neurosci 2022; 16:895511. [PMID: 35693884 PMCID: PMC9178264 DOI: 10.3389/fncel.2022.895511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem cells have been investigated and applied for the treatment of certain neurological disorders for a long time. Currently, their therapeutic potential is harnessed in autologous and allogeneic hematopoietic stem cell transplantation (HSCT). Autologous HSCT is helpful in immune-mediated neurological diseases such as Multiple Sclerosis. However, clinical benefits derive more from the immunosuppressive conditioning regimen than the interaction between stem cells and the nervous system. Mainly used for hematologic malignancies, allogeneic HSCT explores the therapeutic potential of donor-derived hematopoietic stem cells. In the neurological setting, it has proven to be most valuable in Inborn Errors of Metabolism, a large spectrum of multisystem disorders characterized by congenital deficiencies in enzymes involved in metabolic pathways. Inborn Errors of Metabolism such as X-linked Adrenoleukodystrophy present with brain accumulation of enzymatic substrates that result in progressive inflammatory demyelination. Allogeneic HSCT can halt ongoing inflammatory neural destruction by replacing hematopoietic-originated microglia with donor-derived myeloid precursors. Microglia, the only neural cells successfully transplanted thus far, are the most valuable source of central nervous system metabolic correction and play a significant role in the crosstalk between the brain and hematopoietic stem cells. After transplantation, engrafted donor-derived myeloid cells modulate the neural microenvironment by recapitulating microglial functions and enhancing repair mechanisms such as remyelination. In some disorders, additional benefits result from the donor hematopoietic stem cell secretome that cross-corrects neighboring neural cells via mannose-6-phosphatase paracrine pathways. The limitations of allogeneic HSCT in this setting relate to the slow turnover of microglia and complications such as graft-vs.-host disease. These restraints have accelerated the development of hematopoietic stem cell gene therapy, where autologous hematopoietic stem cells are collected, manipulated ex vivo to overexpress the missing enzyme, and infused back into the patient. With this cellular drug vehicle strategy, the brain is populated by improved cells and exposed to supraphysiological levels of the flawed protein, resulting in metabolic correction. This review focuses on the mechanisms of brain repair resulting from HSCT and gene therapy in Inborn Errors of Metabolism. A brief mention will also be made on immune-mediated nervous system diseases that are treated with this approach.
Collapse
Affiliation(s)
- Pedro de Vasconcelos
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - João F. Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Nasir G, Chopra R, Elwood F, Ahmed SS. Krabbe Disease: Prospects of Finding a Cure Using AAV Gene Therapy. Front Med (Lausanne) 2021; 8:760236. [PMID: 34869463 PMCID: PMC8633897 DOI: 10.3389/fmed.2021.760236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Krabbe Disease (KD) is an autosomal metabolic disorder that affects both the central and peripheral nervous systems. It is caused by a functional deficiency of the lysosomal enzyme, galactocerebrosidase (GALC), resulting in an accumulation of the toxic metabolite, psychosine. Psychosine accumulation affects many different cellular pathways, leading to severe demyelination. Although there is currently no effective therapy for Krabbe disease, recent gene therapy-based approaches in animal models have indicated a promising outlook for clinical treatment. This review highlights recent findings in the pathogenesis of Krabbe disease, and evaluates AAV-based gene therapy as a promising strategy for treating this devastating pediatric disease.
Collapse
Affiliation(s)
- Gibran Nasir
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Rajiv Chopra
- AllianThera Biopharma, Boston, MA, United States
| | - Fiona Elwood
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Seemin S Ahmed
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| |
Collapse
|
7
|
Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D. Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 2021; 69:2309-2331. [PMID: 33851745 PMCID: PMC8502241 DOI: 10.1002/glia.24008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery. Over the years, GLD has garnered a wide range of scientific and medical interests, especially as a model system to study gene therapy and novel preclinical therapeutic approaches to treat the spontaneous murine model for GLD. Here, we review recent findings in the field of Krabbe disease, with particular emphasis on novel aspects of GALC physiology, GLD pathophysiology, and therapeutic strategies.
Collapse
Affiliation(s)
- M. Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Nadav I. Weinstock
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jacob Favret
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Daesung Shin
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Rafi MA, Luzi P, Wenger DA. Can early treatment of twitcher mice with high dose AAVrh10-GALC eliminate the need for BMT? ACTA ACUST UNITED AC 2021; 11:135-146. [PMID: 33842284 PMCID: PMC8022232 DOI: 10.34172/bi.2021.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Krabbe disease (KD) is an autosomal recessive disorder caused by mutations in the galactocerebrosidase (GALC) gene resulting in neuro-inflammation and defective myelination in the central and peripheral nervous systems. Most infantile patients present with clinical features before six months of age and die before two years of age. The only treatment available for pre-symptomatic or mildly affected individuals is hematopoietic stem cell transplantation (HSCT). In the animal models, combining bone marrow transplantation (BMT) with gene therapy has shown the best results in disease outcome. In this study, we examine the outcome of gene therapy alone. Methods: Twitcher (twi) mice used in the study, have a W339X mutation in the GALC gene. Genotype identification of the mice was performed shortly after birth or post-natal day 1 (PND1), using polymerase chain reaction on the toe clips followed by restriction enzyme digestion and electrophoresis. Eight or nine-day-old affected mice were used for gene therapy treatment alone or combined with BMT. While iv injection of 4 × 1013 gc/kg of body weight of viral vector was used originally, different viral titers were also used without BMT to evaluate their outcomes. Results: When the standard viral dose was increased four- and ten-fold (4X and 10X) without BMT, the lifespans were increased significantly. Without BMT the affected mice were fertile, had the same weight and appearance as wild type mice and had normal strength and gait. The brains showed no staining for CD68, a marker for activated microglia/macrophages, and less astrogliosis than untreated twi mice. Conclusion: Our results demonstrate that, it may be possible to treat human KD patients with high dose AAVrh10 without blood stem cell transplantation which would eliminate the side effects of HSCT.
Collapse
Affiliation(s)
- Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Weinstock NI, Shin D, Dhimal N, Hong X, Irons EE, Silvestri NJ, Reed CB, Nguyen D, Sampson O, Cheng YC, Lau JTY, Bongarzone ER, Kofler J, Escolar ML, Gelb MH, Wrabetz L, Feltri ML. Macrophages Expressing GALC Improve Peripheral Krabbe Disease by a Mechanism Independent of Cross-Correction. Neuron 2020; 107:65-81.e9. [PMID: 32375064 PMCID: PMC7924901 DOI: 10.1016/j.neuron.2020.03.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
Many therapies for lysosomal storage disorders rely on cross-correction of lysosomal enzymes. In globoid cell leukodystrophy (GLD), mutations in GALC cause psychosine accumulation, inducing demyelination, a neuroinflammatory "globoid" reaction and neurodegeneration. The efficiency of GALC cross-correction in vivo, the role of the GALC substrate galactosylceramide, and the origin of psychosine are poorly understood. Using a novel GLD model, we show that cross-correction does not occur efficiently in vivo and that Galc-deficient Schwann cells autonomously produce psychosine. Furthermore, macrophages require GALC to degrade myelin, as Galc-deficient macrophages are transformed into globoid cells by exposure to galactosylceramide and produce a more severe GLD phenotype. Finally, hematopoietic stem cell transplantation in patients reduces globoid cells in nerves, suggesting that the phagocytic response of healthy macrophages, rather than cross-correction, contributes to the therapeutic effect. Thus, GLD may be caused by at least two mechanisms: psychosine-induced demyelination and secondary neuroinflammation from galactosylceramide storage in macrophages.
Collapse
Affiliation(s)
- Nadav I Weinstock
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Daesung Shin
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Xinying Hong
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Nicholas J Silvestri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Chelsey B Reed
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Oliver Sampson
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yung-Chih Cheng
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Julia Kofler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Maria L Escolar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Stok M, de Boer H, Huston MW, Jacobs EH, Roovers O, Visser TP, Jahr H, Duncker DJ, van Deel ED, Reuser AJJ, van Til NP, Wagemaker G. Lentiviral Hematopoietic Stem Cell Gene Therapy Corrects Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1014-1025. [PMID: 32462050 PMCID: PMC7240064 DOI: 10.1016/j.omtm.2020.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Pompe disease is an autosomal recessive lysosomal storage disorder characterized by progressive muscle weakness. The disease is caused by mutations in the acid α-glucosidase (GAA) gene. Despite the currently available enzyme replacement therapy (ERT), roughly half of the infants with Pompe disease die before the age of 3 years. Limitations of ERT are immune responses to the recombinant enzyme, incomplete correction of the disease phenotype, lifelong administration, and inability of the enzyme to cross the blood-brain barrier. We previously reported normalization of glycogen in heart tissue and partial correction of the skeletal muscle phenotype by ex vivo hematopoietic stem cell gene therapy. In the present study, using a codon-optimized GAA (GAAco), the enzyme levels resulted in close to normalization of glycogen in heart, muscles, and brain, and in complete normalization of motor function. A large proportion of microglia in the brain was shown to be GAA positive. All astrocytes contained the enzyme, which is in line with mannose-6-phosphate receptor expression and the key role in glycogen storage and glucose metabolism. The lentiviral vector insertion site analysis confirmed no preference for integration near proto-oncogenes. This correction of murine Pompe disease warrants further development toward a cure of the human condition.
Collapse
Affiliation(s)
- Merel Stok
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Helen de Boer
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marshall W Huston
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Edwin H Jacobs
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Onno Roovers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Trudi P Visser
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Holger Jahr
- Department of Orthopaedics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elza D van Deel
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Arnold J J Reuser
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Niek P van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Abstract
Leukodystrophies are a heterogeneous class of genetic diseases affecting the white matter in the central nervous system with a broad range of clinical manifestations and a frequently progressive course. An interest in precision medicine has emerged over the last several decades, and biomedical research in leukodystrophies has made exciting advances along this front through therapeutic target discovery and novel disease model systems. In this review, we discuss current and emerging therapeutic approaches in leukodystrophies, including gene therapy, antisense oligonucleotide therapy, CRISPR/CAS-based gene editing, and cell and stem cell based therapies.
Collapse
Affiliation(s)
- Eliza Gordon-Lipkin
- 1 Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA .,2 Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ali Fatemi
- 1 Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA .,2 Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3 Moser Center for Leukodystrophies and Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
12
|
Yadak R, Cabrera-Pérez R, Torres-Torronteras J, Bugiani M, Haeck JC, Huston MW, Bogaerts E, Goffart S, Jacobs EH, Stok M, Leonardelli L, Biasco L, Verdijk RM, Bernsen MR, Ruijter G, Martí R, Wagemaker G, van Til NP, de Coo IF. Preclinical Efficacy and Safety Evaluation of Hematopoietic Stem Cell Gene Therapy in a Mouse Model of MNGIE. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 8:152-165. [PMID: 29687034 PMCID: PMC5908387 DOI: 10.1016/j.omtm.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp−/−Upp1−/− mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2–3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp−/−Upp1−/− mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Joost C. Haeck
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marshall W. Huston
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elly Bogaerts
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Steffi Goffart
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Edwin H. Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Merel Stok
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lorena Leonardelli
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
- University College of London (UCL), Great Ormond Street Institute of Child Health (ICH), London, UK
| | - Robert M. Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monique R. Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - George Ruijter
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Hacettepe University, Stem Cell Research and Development Center, Ankara, Turkey
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology and Hematology, Saint Petersburg, Russia
| | - Niek P. van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Irenaeus F.M. de Coo
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Corresponding author: Irenaeus F.M. de Coo, Department of Neurology, Erasmus University Medical Center, PO Box 2060, 3000 CB Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Nicaise AM, Bongarzone ER, Crocker SJ. A microglial hypothesis of globoid cell leukodystrophy pathology. J Neurosci Res 2017; 94:1049-61. [PMID: 27638591 DOI: 10.1002/jnr.23773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe's disease, is a fatal demyelinating disease accompanied by the formation of giant, multinucleated cells called globoid cells. Previously believed to be a byproduct of inflammation, these cells can be found early in disease before evidence of any damage. The precise mechanism by which these globoid cells cause oligodendrocyte dysfunction is not completely understood, nor is their cell type defined. This Review outlines the idea that microglial cells are transformed into an unknown and undefined novel M3 phenotype in GLD, which is cytotoxic to oligodendrocytes, leading to disease progression. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
14
|
Wenger DA, Rafi MA, Luzi P. Krabbe disease: One Hundred years from the bedside to the bench to the bedside. J Neurosci Res 2017; 94:982-9. [PMID: 27638583 DOI: 10.1002/jnr.23743] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
This Review summarizes the progress in understanding the pathogenesis and treatment of Krabbe disease from the description of five patients in by Knud Krabbe until 2016. To determine the cause of this genetic disease, pathological and chemical analyses of tissues from the nervous systems of patients were performed. It was determined that these patients had a pathological feature known as globoid cell in the brain and that this consisted partially of galactosylceramide, a major sphingolipid component of myelin. The finding that these patients had a deficiency of galactocerebrosidase (GALC) activity opened the way to relatively simple diagnostic testing with easily obtainable tissue samples, studies leading to the purification of GALC, and cloning of the GALC cDNA and gene. The availability of the gene sequence led to the identification of mutations in patients and to the current studies involving the use of viral vectors containing the GALC cDNA to treat experimentally naturally occurring animal models, such as twitcher mice. Currently, treatment of presymptomatic human patients is limited to hematopoietic stem cell transplantation (HSCT). With recent studies showing successful treatment of animal models with a combination of HSCT and viral gene therapy, it is hoped that more effective treatments will soon be available for human patients. For this Review, it is not possible to reference all of the articles contributing to our current state of knowledge about this disease; however, we have chosen those that have influenced our studies by suggesting research paths to pursue. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Maher KR, Yeager AM. Cellular transplant therapies for globoid cell leukodystrophy: Preclinical and clinical observations. J Neurosci Res 2017; 94:1180-8. [PMID: 27638602 DOI: 10.1002/jnr.23782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
Globoid cell leukodystrophy (GLD) is a progressive neurodegenerative disorder caused by the deficiency of galactocerebrosidase (GALC), resulting in accumulation of toxic metabolites in neural tissues. Clinically variable based on age of onset, infantile GLD is generally a rapidly fatal syndrome of progressive neurologic and cognitive decline, whereas later-onset GLD has a more indolent, protracted clinical course. Animal models, particularly the twitcher mouse, have allowed investigation of both the pathophysiology of and the potential treatment modalities for GLD. Cellular therapy for GLD, notably hematopoietic cell transplantation (HCT; transplantation of bone marrow, peripheral blood stem cells, or umbilical cord blood cells) from a normal related or unrelated allogeneic donor provides a self-renewing source of GALC in donor-derived cells. The only currently available treatment option in human GLD, allogeneic HCT, can slow the progression of the disease and improve survival, especially when performed in presymptomatic infants. Because persistent neurologic dysfunction still occurs after HCT in GLD, preclinical studies are evaluating combinations of HCT with other treatment modalities. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Keri R Maher
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Andrew M Yeager
- University of Arizona Cancer Center, Tucson, Arizona. .,Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona. .,Department of Pediatrics, University of Arizona College of Medicine, Tucson, Arizona.
| |
Collapse
|
16
|
Karumuthil-Melethil S, Gray SJ. Immunological considerations for treating globoid cell leukodystrophy. J Neurosci Res 2017; 94:1349-58. [PMID: 27638617 DOI: 10.1002/jnr.23874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022]
Abstract
Globoid cell leukodystrophy (GLD, or Krabbe's disease) is a severe inherited neurodegenerative disease caused by the lack of a lysosomal enzyme, GALC. The disease has been characterized in humans as well as three naturally occurring animal models, murine, canine, and nonhuman primate. Multiple treatment strategies have been explored for GLD, including enzyme replacement therapy, small-molecule pharmacological approaches, gene therapy, and bone marrow transplant. No single therapeutic approach has proved to be entirely effective, and the reason for this is not well understood. It is unclear whether initiation of a neuroinflammatory cascade in GLD precedes demyelination, a hallmark of the disease, but it does precede overt symptoms. This Review explores what is known about the role of inflammation and the immune response in the progression of GLD as well as how various treatment strategies might interplay with innate and adaptive immune responses involved in GLD. The focus of this Review is on GLD, but these concepts may have relevance for other, related diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina. .,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
17
|
|
18
|
Böttcher C, Priller J. Myeloid cell-based therapies in neurological disorders: How far have we come? Biochim Biophys Acta Mol Basis Dis 2015; 1862:323-8. [PMID: 26455341 DOI: 10.1016/j.bbadis.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023]
Abstract
The pathogenesis of neurological disorders such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) is multifactorial and incompletely understood. The development of therapies for these disorders of the central nervous system (CNS) is thus far very challenging. Neuroinflammation is one of the processes that contribute to the pathogenesis of CNS diseases, and therefore represents an important therapeutic target. Myeloid cells derived from the bone marrow are ideal candidates for cell therapy in the CNS as they are capable of targeting the brain and providing neuroprotective and anti-inflammatory effects. In this review, experimental and clinical evidence for the therapeutic potential of myeloid cells in neurological disorders will be discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Germany.
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Germany; Cluster of Excellence NeuroCure, DZNE and BIH, Berlin, Germany
| |
Collapse
|
19
|
Larochelle A, Bellavance MA, Michaud JP, Rivest S. Bone marrow-derived macrophages and the CNS: An update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim Biophys Acta Mol Basis Dis 2015; 1862:310-22. [PMID: 26432480 DOI: 10.1016/j.bbadis.2015.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is a very unique system with multiple features that differentiate it from systemic tissues. One of the most captivating aspects of its distinctive nature is the presence of the blood brain barrier (BBB), which seals it from the periphery. Therefore, to preserve tissue homeostasis, the CNS has to rely heavily on resident cells such as microglia. These pivotal cells of the mononuclear lineage have important and dichotomous roles according to various neurological disorders. However, certain insults can overwhelm microglia as well as compromising the integrity of the BBB, thus allowing the infiltration of bone marrow-derived macrophages (BMDMs). The use of myeloablation and bone marrow transplantation allowed the generation of chimeric mice to study resident microglia and infiltrated BMDM separately. This breakthrough completely revolutionized the way we captured these 2 types of mononuclear phagocytic cells. We now realize that microglia and BMDM exhibit distinct features and appear to perform different tasks. Since these cells are central in several pathologies, it is crucial to use chimeric mice to analyze their functions and mechanisms to possibly harness them for therapeutic purpose. This review will shed light on the advent of this methodology and how it allowed deciphering the ontology of microglia and its maintenance during adulthood. We will also compare the different strategies used to perform myeloablation. Finally, we will discuss the landmark studies that used chimeric mice to characterize the roles of microglia and BMDM in several neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Antoine Larochelle
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Marc-André Bellavance
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Jean-Philippe Michaud
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada.
| |
Collapse
|
20
|
Long-term Improvements in Lifespan and Pathology in CNS and PNS After BMT Plus One Intravenous Injection of AAVrh10-GALC in Twitcher Mice. Mol Ther 2015; 23:1681-1690. [PMID: 26329589 DOI: 10.1038/mt.2015.145] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/03/2015] [Indexed: 12/24/2022] Open
Abstract
Krabbe disease is an autosomal recessive disorder resulting from defects in the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency leads to severe neurological features. The only treatment for presymptomatic infantile patients and later-onset patients is hematopoietic stem cell transplantation (HSCT). This treatment is less than ideal with most patients eventually developing problems with gait and expressive language. Several naturally occurring animal models are available, including twitcher (twi) mice, which have been used for many treatment trials. Previous studies demonstrated that multiple injections of AAVrh10-GALC into the central nervous system (CNS) of neonatal twi mice resulted in significant improvements. Recently we showed that one i.v. injection of AAVrh10-GALC on PND10 resulted in normal GALC activity in the CNS and high activity in the peripheral nervous system (PNS). In the present study, a single i.v. injection of AAVrh10-GALC was given 1 day after bone marrow transplantation (BMT) on PND10. The mice show greatly extended lifespan and normal behavior with improved CNS and PNS findings. Since HSCT is the standard of care in human patients, adding this single i.v. injection of viral vector may greatly improve the treatment outcome.
Collapse
|
21
|
Wagemaker G. Anniversary issue on gene and cell therapy in the Netherlands. Hum Gene Ther 2015; 25:857-8. [PMID: 25268156 DOI: 10.1089/hum.2014.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gerard Wagemaker
- Erasmus University Rotterdam , 3005 LA Rotterdam, The Netherlands
| |
Collapse
|
22
|
Ricca A, Rufo N, Ungari S, Morena F, Martino S, Kulik W, Alberizzi V, Bolino A, Bianchi F, Del Carro U, Biffi A, Gritti A. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Hum Mol Genet 2015; 24:3372-89. [PMID: 25749991 PMCID: PMC4498152 DOI: 10.1093/hmg/ddv086] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical–pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Nicole Rufo
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Silvia Ungari
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Wilem Kulik
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands and
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Biffi
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy,
| |
Collapse
|
23
|
Rafi MA, Rao HZ, Luzi P, Luddi A, Curtis MT, Wenger DA. Intravenous injection of AAVrh10-GALC after the neonatal period in twitcher mice results in significant expression in the central and peripheral nervous systems and improvement of clinical features. Mol Genet Metab 2015; 114:459-66. [PMID: 25533112 DOI: 10.1016/j.ymgme.2014.12.300] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is an autosomal recessive disorder resulting from the defective lysosomal enzyme galactocerebrosidase (GALC). The lack of GALC enzyme leads to severe neurological symptoms. While most human patients are infants who do not survive beyond 2 years of age, older patients are also diagnosed. In addition to human patients, several naturally occurring animal models, including dog, mouse, and monkey, have also been identified. The mouse model of Krabbe disease, twitcher (twi) mouse has been used for many treatment trials including gene therapy. Using the combination of intracerebroventricular, intracerebellar, and intravenous (iv) injection of the adeno-associated virus serotype rh10 (AAVrh10) expressing mouse GALC in neonate twi mice we previously have demonstrated a significantly extended normal life and exhibition of normal behavior in treated mice. In spite of the prolonged healthy life of these treated mice and improved myelination, it is unlikely that using multiple injection sites for viral administration will be approved for treatment of human patients. In this study, we have explored the outcome of the single iv injection of viral vector at post-natal day 10 (PND10). This has resulted in increased GALC activity in the central nervous system (CNS) and high GALC activity in the peripheral nervous system (PNS). As we have shown previously, an iv injection of AAVrh10 at PND2 results in a small extension of life beyond the typical lifespan of the untreated twi mice (~40 days). In this study, we report that mice receiving a single iv injection at PND10 had no tremor and continued to gain weight until a few weeks before they died. On average, they lived 20-25 days longer than untreated mice. We anticipate that this strategy in combination with other therapeutic options may be beneficial and applicable to treatment of human patients.
Collapse
Affiliation(s)
- Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Han Zhi Rao
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mark T Curtis
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Paintlia MK, Singh I, Singh AK. Effect of vitamin D3 intake on the onset of disease in a murine model of human Krabbe disease. J Neurosci Res 2015; 93:28-42. [PMID: 25236689 PMCID: PMC4237655 DOI: 10.1002/jnr.23476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/07/2014] [Indexed: 12/13/2022]
Abstract
Low vitamin D level is a risk factor for various late-onset CNS demyelinating disorders. We investigated whether vitamin D deficiency influences disease in twitcher mice (GALC(twi/twi) ; twi), a murine model of Krabbe disease (KD), an inherited disorder caused by galactocerebrosidase (GALC) deficiency that leads to psychosine accumulation, oligodendrocyte (OL) loss, and CNS demyelination. We found that the in situ 1,25-dihydroxyvitamin D3 level was reduced, with a parallel increase in the expression of inflammatory cytokines and vitamin D-catabolizing enzymes in the brains of KD and twi mice compared with age-matched controls. Pups maintained on milk from lactating heterozygous (GALC(twi/+) ) mothers that were fed a vitamin D3-supplemented diet until weaning and then fed a vitamin D3-supplemented diet demonstrated delayed body weight loss and development of disease in twi mice. This delayed the onset of tremors and locomotor disabilities that eventually impacted the life span of twi mice (50 ± 2 days). Accordingly, the expression of antioxidant enzymes was increased with delayed psychosine accumulation, lipid peroxidation, and inflammatory response that eventually protected CNS myelin and axonal integrity in twi mice. In vitro studies revealed that 1,25-dihydroxyvitamin D3 enhances antioxidant defenses in OLs deficient for GALC or incubated with psychosine. Together these data provide the first evidence that vitamin D deficiency affects disease development in twi mice and that vitamin D3 supplementation has the potential to improve the efficacy of KD therapeutics.
Collapse
Affiliation(s)
- Manjeet K Paintlia
- Darby Children’s Research Institute, Department of Pediatrics, Pathology and Laboratory Medicine*, Medical University of South Carolina and Ralph H. Johnson VA Medical Center*, Charleston, South Carolina 29425
| | - Inderjit Singh
- Darby Children’s Research Institute, Department of Pediatrics, Pathology and Laboratory Medicine*, Medical University of South Carolina and Ralph H. Johnson VA Medical Center*, Charleston, South Carolina 29425
| | - Avtar K Singh
- Darby Children’s Research Institute, Department of Pediatrics, Pathology and Laboratory Medicine*, Medical University of South Carolina and Ralph H. Johnson VA Medical Center*, Charleston, South Carolina 29425
| |
Collapse
|
25
|
Abstract
BACKGROUND Globoid cell leukodystrophy or Krabbe disease, is a rapidly progressive childhood lysosomal storage disorder caused by a deficiency in galactocerebrosidase. Galactocerebrosidase deficiency leads to the accumulation of galactosylsphingosine (psychosine), a cytotoxic lipid especially damaging to oligodendrocytes and Schwann cells. The progressive loss of cells involved in myelination results in a dysmyelinating phenotype affecting both the central and peripheral nervous systems. Current treatment for globoid cell leukodystrophy is limited to bone marrow or umbilical cord blood transplantation. However, these therapies are not curative and simply slow the progression of the disease. The Twitcher mouse is a naturally occurring biochemically faithful model of human globoid cell leukodystrophy that has been used extensively to study globoid cell leukodystrophy pathophysiology and experimental treatments. In this review, we present the major single and combination experimental therapies targeting specific aspects of murine globoid cell leukodystrophy. METHODS Literature review and analysis. RESULTS The evidence suggests that even with the best available therapies, targeting a single pathogenic mechanism provides minimal clinical benefit. More recently, combination therapies have demonstrated the potential to further advance globoid cell leukodystrophy treatment by synergistically increasing life span. However, such therapies must be designed and evaluated carefully because not all combination therapies yield such positive results. CONCLUSIONS A more complete understanding of the underlying pathophysiology and the interplay between various therapies holds the key to the discovery of more effective treatments for globoid cell leukodystrophy.
Collapse
Affiliation(s)
- Yedda Li
- Department of Internal Medicine, Washington University School of Medicine, Box 8007, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Mark S. Sands
- Department of Internal Medicine, Washington University School of Medicine, Box 8007, 660 South Euclid Avenue, St. Louis, MO, 63110, USA,Department of Genetics, Washington University School of Medicine, Box 8007, 660 South Euclid Avenue, St. Louis, MO, 63110, USA,Address Correspondence to: Mark S. Sands, Ph.D., Washington University School of Medicine, Department of Internal Medicine, Box 8007, 660 South Euclid Avenue, St. Louis, MO 63110, (314) 362-5494 (office), (314) 362-9333 (fax),
| |
Collapse
|
26
|
Graziano ACE, Cardile V. History, genetic, and recent advances on Krabbe disease. Gene 2014; 555:2-13. [PMID: 25260228 DOI: 10.1016/j.gene.2014.09.046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
Krabbe disease or globoid cell leukodystrophy is one of the classic genetic lysosomal storage diseases with autosomal recessive inheritance that affects both central and peripheral nervous systems in several species including humans, rhesus macaques, dogs, mice, and sheep. Since its identification in 1916, lots of scientific investigations were made to define the cause, to evaluate the molecular mechanisms of the damage and to develop more efficient therapies inducing clinical benefit and ameliorating the patients' quality of life. This manuscript gives a historical overview and summarizes the new recent findings about Krabbe disease. Human symptoms and phenotypes, gene encoding for β-galactocerebrosidase and encoded protein were described. Indications about the classical mutations were reported and some specific mutations in restricted geographical area, like the north of Catania City (Italy), were added. Briefly, here we present a mix of past and present investigations on Krabbe disease in order to update the knowledge on its genetic history and molecular mechanisms and to move new scientific investigations.
Collapse
Affiliation(s)
| | - Venera Cardile
- Department of Bio-Medical Science - Physiology Section, University of Catania, Catania, Italy.
| |
Collapse
|
27
|
Wagemaker G. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders. Hum Gene Ther 2014; 25:862-5. [PMID: 25184354 DOI: 10.1089/hum.2014.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease.
Collapse
Affiliation(s)
- Gerard Wagemaker
- Erasmus University Rotterdam, 3005 LA Rotterdam, The Netherlands
| |
Collapse
|
28
|
Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathol 2014; 128:333-45. [PMID: 25056803 PMCID: PMC4131160 DOI: 10.1007/s00401-014-1321-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/17/2014] [Accepted: 07/01/2014] [Indexed: 02/04/2023]
Abstract
Microglia, the tissue-resident macrophages of the brain, are attracting increasing attention as key players in brain homeostasis from development through aging. Recent works have highlighted new and unexpected roles for these once-enigmatic cells in both healthy central nervous system function and in diverse pathologies long thought to be primarily the result of neuronal malfunction. In this review, we have chosen to focus on Rett syndrome, which features early neurodevelopmental pathology, and Alzheimer’s disease, a disorder associated predominantly with aging. Interestingly, receptor-mediated microglial phagocytosis has emerged as a key function in both developmental and late-life brain pathologies. In a mouse model of Rett syndrome, bone marrow transplant and CNS engraftment of microglia-like cells were associated with surprising improvements in pathology—these benefits were abrogated by block of phagocytic function. In Alzheimer’s disease, large-scale genome-wide association studies have been brought to bear as a method of identifying previously unknown susceptibility genes, which highlight microglial receptors as promising novel targets for therapeutic modulation. Multi-photon in vivo microscopy has provided a method of directly visualizing the effects of manipulation of these target genes. Here, we review the latest findings and concepts emerging from the rapidly growing body of literature exemplified for Rett syndrome and late-onset, sporadic Alzheimer’s disease.
Collapse
|
29
|
|
30
|
Autobiography: Kinuko Suzuki, MD. J Neuropathol Exp Neurol 2014; 73:175-87. [PMID: 24423641 DOI: 10.1097/nen.0000000000000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
EDITORS' INTRODUCTION The following reminiscence by Kinuko Suzuki is the 9th autobiography in a series published in the Journal of Neuropathology and Experimental Neurology. These have been solicited from senior members of the neuropathology community who have been noted leaders and contributors to neuroscience and to the American Association of Neuropathologists (AANP) and have a historical perspective of the importance of neuropathology in diagnosis, education, and research. It is hoped that this series will entertain, enlighten, and present members of the AANP with a better sense of the legacy that we have inherited, as well as reintroduce our respected neuroscientists as humans having interesting lives filled with joys and sorrows and allowing them to present their lives in their own words.MNH, RAS.
Collapse
|
31
|
Böttcher C, Fernández-Klett F, Gladow N, Rolfes S, Priller J. Targeting myeloid cells to the brain using non-myeloablative conditioning. PLoS One 2013; 8:e80260. [PMID: 24244666 PMCID: PMC3820653 DOI: 10.1371/journal.pone.0080260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/11/2013] [Indexed: 12/23/2022] Open
Abstract
Bone marrow-derived cells (BMDCs) are able to colonize the central nervous system (CNS) at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI) and by chemotherapy (e.g. busulfan treatment). Unfortunately, both regimens massively disturb the host’s hematopoietic compartment. Here, we established a conditioning protocol to target myeloid cells to sites of brain damage in mice using non-myeloablative focal head irradiation (HI). This treatment was associated with comparatively low inflammatory responses in the CNS despite cranial radiation doses which are identical to TBI, as revealed by gene expression analysis of cytokines/chemokines such as CCL2, CXCL10, TNF-α and CCL5. HI prior to bone marrow transplantation resulted in much lower levels of blood chimerism defined as the percentage of donor-derived cells in peripheral blood (< 5%) compared with TBI (> 95%) or busulfan treatment (>50%). Nevertheless, HI effectively recruited myeloid cells to the area of motoneuron degeneration in the brainstem within 7 days after facial nerve axotomy. In contrast, no donor-derived cells were detected in the lesioned facial nucleus of busulfan-treated animals up to 2 weeks after transplantation. Our findings suggest that myeloid cells can be targeted to sites of brain damage even in the presence of very low levels of peripheral blood chimerism. We established a novel non-myeloablative conditioning protocol with minimal disturbance of the host’s hematopoietic system for targeting BMDCs specifically to areas of pathology in the brain.
Collapse
Affiliation(s)
- Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Francisco Fernández-Klett
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Gladow
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Rolfes
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- * E-mail:
| |
Collapse
|
32
|
Ijichi K, Brown GD, Moore CS, Lee JP, Winokur PN, Pagarigan R, Snyder EY, Bongarzone ER, Crocker SJ. MMP-3 mediates psychosine-induced globoid cell formation: implications for leukodystrophy pathology. Glia 2013; 61:765-77. [PMID: 23404611 DOI: 10.1002/glia.22471] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/31/2012] [Indexed: 01/03/2023]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease, is a fatal demyelinating disease attributed to mutations in the galactocerebrosidase (GALC) gene. Loss of function mutations in GALC result in accumulation of the glycolipid intermediate, galactosylsphingosine (psychosine). Due to the cytotoxicity of psychosine, it has been hypothesized that accumulated psychosine underlie the pathophysiology of GLD. However, the cellular mechanisms of GLD pathophysiology remain unclear. Globoid cells, multinucleated microglia/macrophages in the central nervous system (CNS), are a defining characteristic of GLD. Here we report that exposure of primary glial cultures to psychosine induces the expression and the production of matrix metalloproteinase (MMP)-3 that mediated a morphological transformation of microglia into a multinucleated globoid cell type. Additionally, psychosine-induced globoid cell formation from microglia was prevented by either genetic ablation or chemical inhibition of MMP-3. These effects are microglia-specific as peripheral macrophages exposed to psychosine did not become activated or express increased levels of MMP-3. In the brain from twitcher mice, a murine model of human GLD, elevated MMP-3 expression relative to wild-type littermates was contemporaneous with disease onset and further increased with disease progression. Further, bone marrow transplantation (BMT), currently the only therapeutically beneficial treatment for GLD, did not mitigate the elevated expression of MMP-3 in twitcher mice. Hence, elevated expression of MMP-3 in GLD may promote microglial responses to psychosine that may represent an important pathophysiological process in this disease and its treatment.
Collapse
Affiliation(s)
- Kumiko Ijichi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Derecki NC, Cronk JC, Kipnis J. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol 2012; 34:144-50. [PMID: 23122051 DOI: 10.1016/j.it.2012.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/29/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
The role of microglia in central nervous system (CNS) pathology has been studied extensively, and more recently, examination of microglia in the healthy brain has yielded important insights into their many functions. It was long assumed that microglia were essentially quiescent cells, unless provoked into activation, which was considered a hallmark of disease. More recently, however, it has become increasingly clear that they are extraordinarily dynamic cells, constantly sampling their environment and adjusting to exquisitely delicate stimuli. Along these lines, our laboratory has identified a new and unexpected role for microglial phagocytosis - or lack thereof - in the pathophysiology of Rett syndrome, a neurodevelopmental disease caused by mutation of the gene encoding methyl-CpG binding protein (MECP)2. We have shown that specific expression of wild type Mecp2 in myeloid cells of Mecp2-null mice is sufficient to arrest major symptoms associated with this devastating disease. This beneficial effect, however, is abolished if phagocytic activity of microglia is inhibited. Here, we discuss microglial origins, the role of microglia in brain development and maintenance, and the phenomenon of microglial augmentation by myeloid progenitor cells in the adult brain. Finally, we address in some detail the beneficial roles of microglia as clinical targets in Rett syndrome and other neurological disorders.
Collapse
Affiliation(s)
- Noël C Derecki
- Center for Brain Immunology and Glia and Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
34
|
Miranda CO, Brites P, Mendes Sousa M, Teixeira CA. Advances and pitfalls of cell therapy in metabolic leukodystrophies. Cell Transplant 2012; 22:189-204. [PMID: 23006656 DOI: 10.3727/096368912x656117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leukodystrophies are a group of disorders characterized by myelin dysfunction, either at the level of myelin formation or maintenance, that affect the central nervous system (CNS) and also in some cases, to a lesser extent, the peripheral nervous system (PNS). Although these genetic-based disorders are generally rare, all together they have a significant impact in the society, with an estimated overall incidence of 1 in 7,663 live births. Currently, there is no cure for leukodystrophies, and the development of effective treatments remains challenging. Not only leukodystrophies generally progress very fast, but also most are multifocal needing the simultaneous targeting at multiple sites. Moreover, as the CNS is affected, the blood-brain barrier (BBB) limits the efficacy of treatment. Recently, interest on cell therapy has increased, and the leukodystrophies for which metabolic correction is needed have become first-choice candidates for cell-based clinical trials. In this review, we present and discuss the available cell transplantation therapies in metabolic leukodystrophies including fucosidosis, X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Canavan disease, and Krabbe's disease. We will discuss the latest advances of cell therapy and its pitfalls in this group of disorders, taking into account, among others, the limitations imposed by reduced cell migration in multifocal conditions, the need to achieve corrective enzyme threshold levels, and the growing awareness that not only myelin but also the associated axonopathy needs to be targeted in some leukodystrophies.
Collapse
|
35
|
Qin EY, Hawkins-Salsbury JA, Jiang X, Reddy AS, Farber NB, Ory DS, Sands MS. Bone marrow transplantation increases efficacy of central nervous system-directed enzyme replacement therapy in the murine model of globoid cell leukodystrophy. Mol Genet Metab 2012; 107:186-96. [PMID: 22704480 PMCID: PMC3444533 DOI: 10.1016/j.ymgme.2012.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/30/2022]
Abstract
Globoid cell leukodystrophy (GLD, Krabbe disease), is an autosomal recessive, neurodegenerative disease caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). In the absence of GALC, the toxic metabolite psychosine accumulates in the brain and causes the death of the myelin-producing cells, oligodendrocytes. Currently, the only therapy for GLD is hematopoietic stem cell transplantation using bone marrow (BMT) or umbilical cord blood. However, this is only partially effective. Previous studies have shown that enzyme replacement therapy (ERT) provides some therapeutic benefit in the murine model of GLD, the Twitcher mouse. Experiments have also shown that two disparate therapies can produce synergistic effects when combined. The current study tests the hypothesis that BMT will increase the therapeutic effects of ERT when these two treatments are combined. Twitcher mice were treated with either ERT alone or both ERT and BMT during the first 2-4 days of life. Recombinant enzyme was delivered by intracerebroventricular (ICV) and intrathecal (IT) injections. Twitcher mice receiving ERT had supraphysiological levels of GALC activity in the brain 24h after injection. At 36 days of age, ERT-treated Twitcher mice had reduced psychosine levels, reduced neuroinflammation, improved motor function, and increased lifespan. Twitcher mice receiving both ERT and BMT had significantly increased lifespan, improved motor function, reduced psychosine levels, and reduced neuroinflammation in certain areas of the brain compared to untreated or ERT-treated Twitcher mice. Together, these results indicate that BMT enhances the efficacy of ERT in GLD.
Collapse
Affiliation(s)
- Elizabeth Y. Qin
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jacqueline A. Hawkins-Salsbury
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Adarsh S. Reddy
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Nuri B. Farber
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel S. Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Mark S. Sands
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Correspondence should be addressed to Dr. Mark Sands, Campus Box 8007, 660 S. Euclid Avenue, St. Louis, MO 63110, USA, Tel: +1 3143625494; Fax: +1 3143629333;
| |
Collapse
|
36
|
Rafi MA, Rao HZ, Luzi P, Curtis MT, Wenger DA. Extended normal life after AAVrh10-mediated gene therapy in the mouse model of Krabbe disease. Mol Ther 2012; 20:2031-42. [PMID: 22850681 DOI: 10.1038/mt.2012.153] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). This deficiency results in accumulation of certain galactolipids including psychosine which is cytotoxic for myelin-producing cells. Treatment of human patients at this time is limited to hematopoietic stem cell transplantation (HSCT) that appears to slow the progression of the disease when performed in presymptomatic patients. In this study, adeno-associated virus (AAV) serotype rh10-(AAVrh10) expressing mouse GALC was used in treating twitcher (twi) mice, the mouse model of GLD. The combination of intracerebroventricular, intracerebellar, and intravenous (iv) injection of viral particles in neonate twi mice resulted in high GALC activity in brain and cerebellum and moderate to high GALC activity in spinal cord, sciatic nerve, and some peripheral organs. Successfully treated mice maintained their weight with no or very little twitching, living up to 8 months. The physical activities of the long-lived treated mice were comparable to wild type for most of their lives. Treated mice showed normal abilities to mate, to deliver pups, to nurse and to care for the newborns. This strategy alone or in combination with other therapeutic options may be applicable to treatment of human patients.
Collapse
Affiliation(s)
- Mohammad A Rafi
- Department of Neurology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
37
|
del Zoppo GJ, Frankowski H, Gu YH, Osada T, Kanazawa M, Milner R, Wang X, Hosomi N, Mabuchi T, Koziol JA. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab 2012; 32:919-32. [PMID: 22354151 PMCID: PMC3345906 DOI: 10.1038/jcbfm.2012.11] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemorrhage and edema accompany evolving brain tissue injury after ischemic stroke. In patients, these events have been associated with metalloproteinase (MMP)-9 in plasma. Both the causes and cellular sources of MMP-9 generation in this setting have not been defined. MMP-2 and MMP-9 in nonhuman primate tissue in regions of plasma leakage, and primary murine microglia and astrocytes, were assayed by immunocytochemistry, zymography, and real-time RT-PCR. Ischemia-related hemorrhage was associated with microglial activation in vivo, and with the leakage of plasma fibronectin and vitronectin into the surrounding tissue. In strict serum-depleted primary cultures, by zymography, pro-MMP-9 was generated by primary murine microglia when exposed to vitronectin and fibronectin. Protease secretion was enhanced by experimental ischemia (oxygen-glucose deprivation, OGD). Primary astrocytes, on each matrix, generated only pro-MMP-2, which decreased during OGD. Microglia-astrocyte contact enhanced pro-MMP-9 generation in a cell density-dependent manner under normoxia and OGD. Compatible with observations in a high quality model of focal cerebral ischemia, microglia, but not astrocytes, respond to vitronectin and fibronectin, found when plasma extravasates into the injured region. Astrocytes alone do not generate pro-MMP-9. These events explain the appearance of MMP-9 antigen in association with ischemia-induced cerebral hemorrhage and edema.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Kunihiko Suzuki is a neurologist by training whose research accomplishments range widely from basic research in brain lipids, their metabolism to genetic disorders involving the nervous system. Among them are identification of the enzymatic defect, the pathogenetic mechanism, and animal models of Krabbe's globoid cell leukodystrophy, the chemical and molecular pathologies of many glycosphingolipidoses, discovery of the abnormal accumulation of very long chain fatty acids in adrenoleukodystrophy, and elucidation of the complex metabolic interrelationship among sphingolipids with extensive use of the gene targeting technology. This reflections and perspectives highlight his accomplishments briefly.
Collapse
Affiliation(s)
- Kousaku Ohno
- Division of Child Neurology, Department of Neurological Sciences, Tottori Universiry, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| |
Collapse
|
39
|
Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SBG, Guyenet PG, Kipnis J. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 2012; 484:105-9. [PMID: 22425995 PMCID: PMC3321067 DOI: 10.1038/nature10907] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 01/27/2012] [Indexed: 01/22/2023]
Abstract
Rett syndrome is an X-linked autism spectrum disorder. The disease is characterized in most cases by mutation of the MECP2 gene, which encodes a methyl-CpG-binding protein. Although MECP2 is expressed in many tissues, the disease is generally attributed to a primary neuronal dysfunction. However, as shown recently, glia, specifically astrocytes, also contribute to Rett pathophysiology. Here we examine the role of another form of glia, microglia, in a murine model of Rett syndrome. Transplantation of wild-type bone marrow into irradiation-conditioned Mecp2-null hosts resulted in engraftment of brain parenchyma by bone-marrow-derived myeloid cells of microglial phenotype, and arrest of disease development. However, when cranial irradiation was blocked by lead shield, and microglial engraftment was prevented, disease was not arrested. Similarly, targeted expression of MECP2 in myeloid cells, driven by Lysm(cre) on an Mecp2-null background, markedly attenuated disease symptoms. Thus, through multiple approaches, wild-type Mecp2-expressing microglia within the context of an Mecp2-null male mouse arrested numerous facets of disease pathology: lifespan was increased, breathing patterns were normalized, apnoeas were reduced, body weight was increased to near that of wild type, and locomotor activity was improved. Mecp2(+/-) females also showed significant improvements as a result of wild-type microglial engraftment. These benefits mediated by wild-type microglia, however, were diminished when phagocytic activity was inhibited pharmacologically by using annexin V to block phosphatydilserine residues on apoptotic targets, thus preventing recognition and engulfment by tissue-resident phagocytes. These results suggest the importance of microglial phagocytic activity in Rett syndrome. Our data implicate microglia as major players in the pathophysiology of this devastating disorder, and suggest that bone marrow transplantation might offer a feasible therapeutic approach for it.
Collapse
Affiliation(s)
- Noël C Derecki
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Bone marrow transplantation augments the effect of brain- and spinal cord-directed adeno-associated virus 2/5 gene therapy by altering inflammation in the murine model of globoid-cell leukodystrophy. J Neurosci 2011; 31:9945-57. [PMID: 21734286 DOI: 10.1523/jneurosci.1802-11.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Globoid-cell leukodystrophy (GLD) is an inherited demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC). A previous study in the murine model of GLD (twitcher) demonstrated a dramatic synergy between CNS-directed adeno-associated virus 2/5 (AAV2/5) gene therapy and myeloreductive bone marrow transplantation (BMT). However, the mechanism by which these two disparate therapeutic approaches synergize is not clear. In addition, the therapeutic efficacy may have been limited since the CNS-directed gene therapy was restricted to the forebrain and thalamus. In the current study, intrathecal and intracerebellar injections were added to the therapeutic regimen and the mechanism of synergy between BMT and gene therapy was determined. Although AAV2/5 alone provided supraphysiological levels of GALC activity and reduced psychosine levels in both the brain and spinal cord, it significantly increased CNS inflammation. Bone marrow transplantation alone provided essentially no GALC activity to the CNS and did not reduce psychosine levels. When AAV2/5 is combined with BMT, there are sustained improvements in motor function and the median life span is increased to 123 d (range, 92-282 d) compared with 41 d in the untreated twitcher mice. Interestingly, addition of BMT virtually eliminates both the disease and AAV2/5-associated inflammatory response. These data suggest that the efficacy of AAV2/5-mediated gene therapy is limited by the associated inflammatory response and BMT synergizes with AAV2/5 by modulating inflammation.
Collapse
|
41
|
Tunici P, Pellegatta S, Finocchiaro G. The potential of stem cells for the treatment of brain tumors and globoid cell leukodystrophy. Cytotechnology 2011; 41:93-101. [PMID: 19002946 DOI: 10.1023/a:1024818621377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stem cells of different origin are under careful scrutiny as potential new tools for the treatment of several neurological diseases. The major focus of these reaserches have been neurodegenerative disorders, such as Huntington Chorea or Parkinson Disease (Shihabuddin et al., 1999). More recently attention has been devoted to their use for brain repair after stroke (Savitz et al., 2002). In this review we will focus on the potential of stem cell treatments for glioblastoma multiforme (Holland, 2000), the most aggressive primary brain tumor, and globoid cell leukodystrophy (Krabbe disease), a metabolic disorder of the white matter (Berger et al., 2001). These two diseases may offer a paradigm of what the stem cell approach may offer in term of treatment, alone or in combination with other therapeutic approaches. Two kinds of stem cells will be consideredhere: neural stem cells and hematopoietic stem cells, both obtained after birth. The review will focus on experimental models, with an eye on clinical perspectives.
Collapse
Affiliation(s)
- Patrizia Tunici
- Istituto Nazionale Neurologico Besta, Unit of Neuro-Oncology and Gene Therapy, Milan, Italy (Author for correspondence)
| | | | | |
Collapse
|
42
|
White AB, Galbiati F, Givogri MI, Lopez Rosas A, Qiu X, van Breemen R, Bongarzone ER. Persistence of psychosine in brain lipid rafts is a limiting factor in the therapeutic recovery of a mouse model for Krabbe disease. J Neurosci Res 2010; 89:352-64. [PMID: 21259322 DOI: 10.1002/jnr.22564] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/18/2010] [Accepted: 10/30/2010] [Indexed: 11/10/2022]
Abstract
Sphingolipids are intrinsic components of membrane lipid rafts. The abnormal accumulation of these molecules may introduce architectural and functional changes in these domains, leading to cellular dysfunction. Galactosylsphingosine (psychosine) is a pathogenic lipid raft-associated molecule whose accumulation leads to brain deterioration and irreversible neurological handicap in the incurable leukodystrophy Krabbe disease (KD). The relevance of clearing excessive levels of pathogenic psychosine from lipid rafts in therapy for KD has not been investigated. The work presented here demonstrates that psychosine inhibits raft-mediated endocytosis in neural cells. In addition, although in vitro enzyme reconstitution is sufficient for the reversal of related endocytic defects in affected neural cells, traditional in vivo enzyme therapies in the mouse model of KD appear to be insufficient for complete removal of pathogenic levels of raft-associated psychosine. This work describes a mechanism that may contribute to limiting the in vivo efficacy of traditional therapies for KD.
Collapse
Affiliation(s)
- A B White
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood 2010; 115:5329-37. [PMID: 20385789 DOI: 10.1182/blood-2009-11-252874] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pompe disease (acid alpha-glucosidase deficiency) is a lysosomal glycogen storage disorder characterized in its most severe early-onset form by rapidly progressive muscle weakness and mortality within the first year of life due to cardiac and respiratory failure. Enzyme replacement therapy prolongs the life of affected infants and supports the condition of older children and adults but entails lifelong treatment and can be counteracted by immune responses to the recombinant enzyme. We have explored the potential of lentiviral vector-mediated expression of human acid alpha-glucosidase in hematopoietic stem cells (HSCs) in a Pompe mouse model. After mild conditioning, transplantation of genetically engineered HSCs resulted in stable chimerism of approximately 35% hematopoietic cells that overexpress acid alpha-glucosidase and in major clearance of glycogen in heart, diaphragm, spleen, and liver. Cardiac remodeling was reversed, and respiratory function, skeletal muscle strength, and motor performance improved. Overexpression of acid alpha-glucosidase did not affect overall hematopoietic cell function and led to immune tolerance as shown by challenge with the human recombinant protein. On the basis of the prominent and sustained therapeutic efficacy without adverse events in mice we conclude that ex vivo HSC gene therapy is a treatment option worthwhile to pursue.
Collapse
|
44
|
Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010; 51:1643-75. [PMID: 20211931 DOI: 10.1194/jlr.r003996] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
45
|
Hofling AA, Kim JH, Fantz CR, Sands MS, Song SK. Diffusion tensor imaging detects axonal injury and demyelination in the spinal cord and cranial nerves of a murine model of globoid cell leukodystrophy. NMR IN BIOMEDICINE 2009; 22:1100-1106. [PMID: 19650072 PMCID: PMC2910583 DOI: 10.1002/nbm.1420] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Globoid cell leukodystrophy is an inherited neurodegenerative disorder caused by a deficiency of the lysosomal enzyme galactosylceramidase. In both human patients and the authentic murine Twitcher model, pathological findings include demyelination as well as axonal damage in both the central and peripheral nervous system. Diffusion tensor imaging (DTI) has emerged as a powerful noninvasive technique that is sensitive to these white matter disease processes. Increases in radial diffusivity (lambda perpendicular) and decreases in axial diffusivity (lambda parallel) correlate with histopathological evidence of demyelination and axonal damage, respectively. Compared to age-matched, normal littermates, DTI of optic nerve and trigeminal nerve in end-stage Twitcher mice displayed a statistically significant increase in lambda perpendicular and decrease in lambda parallel, consistent with previously characterized demyelination and axonal damage in these regions. In the Twitcher spinal cord, a statistically significant decrease in lambda parallel was identified in both the dorsal and ventrolateral white matter, relative to normal controls. These results were consistent with immunofluorescence evidence of axonal damage in these areas as detected by staining for nonphosphorylated neurofilaments (SMI32). Increase in lambda perpendicular in Twitcher spinal cord white matter relative to normal controls reached statistical significance in the dorsal columns and approached statistical significance in the ventrolateral region. Correlative reduced levels of myelin basic protein were detected by immunofluorescent staining in both these white matter regions in the Twitcher spinal cord. Fractional anisotropy, a nonspecific but sensitive indicator of white matter disease, was significantly reduced in the optic nerve, trigeminal nerve, and throughout the spinal cord white matter of Twitcher mice, relative to normal controls. This first reported application of spinal cord DTI in the setting of GLD holds potential as a noninvasive, quantitative assay of therapeutic efficacy in future treatment studies.
Collapse
Affiliation(s)
- A Alex Hofling
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Gagliardi C, Bunnell BA. Large animal models of neurological disorders for gene therapy. ILAR J 2009; 50:128-43. [PMID: 19293458 DOI: 10.1093/ilar.50.2.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
he development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinsons disease, Huntingtons disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research.
Collapse
|
47
|
Martino S, Tiribuzi R, Tortori A, Conti D, Visigalli I, Lattanzi A, Biffi A, Gritti A, Orlacchio A. Specific Determination of β-Galactocerebrosidase Activity via Competitive Inhibition of β-Galactosidase. Clin Chem 2009; 55:541-8. [DOI: 10.1373/clinchem.2008.115873] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: The determination of cellular β-galactocerebrosidase activity is an established procedure to diagnose Krabbe disease and monitor the efficacy of gene/stem cell-based therapeutic approaches aimed at restoring defective enzymatic activity in patients or disease models. Current biochemical assays for β-galactocerebrosidase show high specificity but generally require large protein amounts from scanty sources such as hematopoietic or neural stem cells. We developed a novel assay based on the hypothesis that specific measurements of β-galactocerebrosidase activity can be performed following complete inhibition of β-galactosidase activity.
Methods: We performed the assay using 2–7.5 μg of sample proteins with the artificial fluorogenic substrate 4-methylumbelliferone-β-galactopyranoside (1.5 mmol/L) resuspended in 0.1/0.2 mol/L citrate/phosphate buffer, pH 4.0, and AgNO3. Reactions were incubated for 30 min at 37 °C. Fluorescence of liberated 4-methylumbelliferone was measured on a spectrofluorometer (λex 360 nm, λem 446 nm).
Results: AgNO3 was a competitive inhibitor of β-galactosidase [inhibition constant (Ki) = 0.12 μmol/L] and completely inhibited β-galactosidase activity when used at a concentration of 11 μmol/L. Under this condition, the β-galactocerebrosidase activity was preserved and could be specifically and accurately measured. The assay can detect β-galactocerebrosidase activity in as little as 2 μg cell protein extract or 7.5 μg tissue. Assay validation was performed using (a) brain tissues from wild-type and twitcher mice and (b) murine GALC−/− hematopoietic stem cells and neural precursor cells transduced by GALC-lentiviral vectors.
Conclusions: The procedure is straightforward, rapid, and reproducible. Within a clinical context, our method unequivocally discriminated cells from healthy subjects and Krabbe patients and is therefore suitable for diagnostic applications.
Collapse
Affiliation(s)
- Sabata Martino
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
- S. Martino and R. Tiribuzi contributed equally to this work
| | - Roberto Tiribuzi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
- S. Martino and R. Tiribuzi contributed equally to this work
| | - Andrea Tortori
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
| | - Daniele Conti
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
- San Raffaele Telethon Institute for Gene Therapy, Milano, Italy
| | | | | | | | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Milano, Italy
| | - Aldo Orlacchio
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
| |
Collapse
|
48
|
del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2008; 158:972-82. [PMID: 18824084 DOI: 10.1016/j.neuroscience.2008.08.028] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Responses to focal cerebral ischemia by neurons and adjacent microvessels are rapid, simultaneous, and topographically related. Recent observations indicate the simultaneous appearance of proteases by components of nearby microvessels that are also expressed by neurons in the ischemic territory, implying that the events could be coordinated. The structural relationship of neurons to their microvascular supply, the direct functional participation of glial cells, and the observation of a highly ordered microvessel-neuron response to ischemia suggest that these elements are arranged in and behave in a unitary fashion, the neurovascular unit. Their roles as a unit in the stimulation of cellular inflammation and the generation of inflammatory mediators during focal cerebral ischemia have not been explored yet. However, components of the neurovascular unit both generate and respond to these influences under the conditions of ischemia. Here we briefly explore the potential inter-relationships of the components of the neurovascular unit with respect to their potential roles in ischemia-induced inflammatory responses.
Collapse
Affiliation(s)
- G J del Zoppo
- Department of Medicine, University of Washington, Box 359756, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| |
Collapse
|
49
|
Terrell KA, Rasmussen TA, Trygg C, Bunnell BA, Buck WR. Molecular beacon genotyping for globoid cell leukodystrophy from hair roots in the twitcher mouse and rhesus macaque. J Neurosci Methods 2007; 163:60-6. [PMID: 17412425 PMCID: PMC2043377 DOI: 10.1016/j.jneumeth.2007.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 02/12/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Rapid and accurate genotype determination is ideal for the maintenance of breeding colonies of laboratory animal models of genetic disease. The rhesus macaque and murine (twitcher) models of globoid cell leukodystrophy have a dinucleotide deletion or single nucleotide substitution, respectively, which abolish ceramide beta-galactosidase activity and are authentic models of Krabbe disease. We report a molecular beacon PCR assay for each species which allows unambiguous determination of the genotype in under 4h. The assay works reliably with DNA extracted from hair roots using Chelex-100 in a 20 min, 100 degrees C incubation. We demonstrate that genotyping from hair roots is a preferred alternative to collecting blood or tissue for DNA extraction because it reduces animal distress, uses an inexpensive reagent, and is simpler and faster. Following amplification on a standard thermocycler with a 96-well plate format, these molecular beacon assays can be read on a standard laboratory fluorescent plate reader, eliminating the need to use a real-time thermocycler or to open the plate for subsequent restriction enzyme digestion and gel electrophoresis. The multiplexed ratio of fluorescence from wild-type- and mutant-specific beacons reporting at 560 nm and 535 nm wavelengths is distinct for each genotype.
Collapse
Affiliation(s)
- Kimberly A Terrell
- Department of Biology, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.
| | | | | | | | | |
Collapse
|
50
|
Galbiati F, Clementi G, Superchi D, Givogri MI, Bongarzone ER. Effects of irradiation on the postnatal development of the brain in a genetic mouse model of globoid cell leukodystrophy. Neurochem Res 2007; 32:377-88. [PMID: 17203404 DOI: 10.1007/s11064-006-9247-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 07/24/2006] [Indexed: 11/30/2022]
Abstract
Irradiation is one way to condition Twitcher mice--a natural model of globoid cell leukodystrophy (GLD)--prior to receive bone marrow transplantation (BMT). BMT showed to delay but not to completely prevent GLD disease in treated mutants. The reasons why BMT is not completely preventive in Twitchers are unclear but we speculate that irradiation might contribute to worsen the neurological impairments generated by the disease by altering postnatal neurogenesis. To test this hypothesis, we examined proliferation, migration and differentiation of neural precursors in neurogenic areas of the Twitcher brain after exposure of 5 day-old mutant pups to 620 rad, a non-lethal dose that leads to 80-90% of bone-marrow engraftment in classic BMT. Twitchers showed to be sensitive to irradiation, leading to a severe retardation of body growth of irradiated mutants. Irradiated Twitchers had reduced proliferation of neural precursors and increased astrogliosis and microgliosis, with reduced numbers of migratory neuroblasts and significantly less brain myelination. These effects were accompanied by caspase-3 activation and appeared largely irreversible in the lifespan of the Twitcher. Our work confirms that exposure of the neonatal brain to irradiation conditions such as those performed prior to BMT, can lead to long-lasting alterations of postnatal neurogenesis and myelination, which might contribute to worsen the progression of disease in these myelin mutants and to reduce the success of BMT.
Collapse
Affiliation(s)
- Francesca Galbiati
- San Raffaele Scientific Institute, Via Olgettina 58, Milano 20132, Italy
| | | | | | | | | |
Collapse
|