1
|
Haig D. Concerted evolution of ribosomal DNA: Somatic peace amid germinal strife: Intranuclear and cellular selection maintain the quality of rRNA. Bioessays 2021; 43:e2100179. [PMID: 34704616 DOI: 10.1002/bies.202100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022]
Abstract
Most eukaryotes possess many copies of rDNA. Organismal selection alone cannot maintain rRNA function because the effects of mutations in one rDNA are diluted by the presence of many other rDNAs. rRNA quality is maintained by processes that increase homogeneity of rRNA within, and heterogeneity among, germ cells thereby increasing the effectiveness of cellular selection on ribosomal function. A successful rDNA repeat will possess adaptations for spreading within tandem arrays by intranuclear selection. These adaptations reside in the non-coding regions of rDNA. Single-copy genes are predicted to manage processes of intranuclear and cellular selection in the germline to maintain the quality of rRNA expressed in somatic cells of future generations.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Phelps WA, Carlson AE, Lee MT. Optimized design of antisense oligomers for targeted rRNA depletion. Nucleic Acids Res 2021; 49:e5. [PMID: 33221877 PMCID: PMC7797071 DOI: 10.1093/nar/gkaa1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 11/14/2022] Open
Abstract
RNA sequencing (RNA-seq) is extensively used to quantify gene expression transcriptome-wide. Although often paired with polyadenylate (poly(A)) selection to enrich for messenger RNA (mRNA), many applications require alternate approaches to counteract the high proportion of ribosomal RNA (rRNA) in total RNA. Recently, digestion using RNaseH and antisense DNA oligomers tiling target rRNAs has emerged as an alternative to commercial rRNA depletion kits. Here, we present a streamlined, more economical RNaseH-mediated rRNA depletion with substantially lower up-front costs, using shorter antisense oligos only sparsely tiled along the target RNA in a 5-min digestion reaction. We introduce a novel Web tool, Oligo-ASST, that simplifies oligo design to target regions with optimal thermodynamic properties, and additionally can generate compact, common oligo pools that simultaneously target divergent RNAs, e.g. across different species. We demonstrate the efficacy of these strategies by generating rRNA-depletion oligos for Xenopus laevis and for zebrafish, which expresses two distinct versions of rRNAs during embryogenesis. The resulting RNA-seq libraries reduce rRNA to <5% of aligned reads, on par with poly(A) selection, and also reveal expression of many non-adenylated RNA species. Oligo-ASST is freely available at https://mtleelab.pitt.edu/oligo to design antisense oligos for any taxon or to target any abundant RNA for depletion.
Collapse
Affiliation(s)
- Wesley A Phelps
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Tao B, Lo LJ, Peng J, He J. rDNA subtypes and their transcriptional expression in zebrafish at different developmental stages. Biochem Biophys Res Commun 2020; 529:819-825. [PMID: 32571523 DOI: 10.1016/j.bbrc.2020.05.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
Abstract
Eukaryotic 18S, 5.8S and 28S rRNAs are processed from a single transcript transcribed from the 45S rDNA gene, which is normally tandemly arrayed over hundred copies in a genome. Recently, a maternal (M) subtype and a somatic (S) subtype of rDNA were identified in zebrafish, with M-subtype on chromosome 4 and S-subtype on chromosome 5. It appears that the M-subtype is only expressed in eggs whilst the expression of the S-subtype is coupled with the initiation of zygotic gene expression. In this report, we identified three novel but transcriptionally inactive 18S variants in zebrafish genome with chromosome location different from the M- and S-subtype, suggesting translocation of 18S rDNA fragment during zebrafish evolution. Furthermore, we confirmed that the unfertilized eggs only have the M-subtype transcripts while brain, heart and liver have only the S-subtype transcripts. Both the M- and S-subtype transcripts were detected in female gonad. Our results support that the expression of different subtypes of rDNA is differentially regulated to meet the requirement for 'specialized ribosomes' during different developmental stages.
Collapse
Affiliation(s)
- Boxiang Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jin He
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Symonová R. Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome. Genes (Basel) 2019; 10:genes10050345. [PMID: 31067804 PMCID: PMC6562748 DOI: 10.3390/genes10050345] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Nuclear ribosomal RNA (rRNA) genes represent the oldest repetitive fraction universal to all eukaryotic genomes. Their deeply anchored universality and omnipresence during eukaryotic evolution reflects in multiple roles and functions reaching far beyond ribosomal synthesis. Merely the copy number of non-transcribed rRNA genes is involved in mechanisms governing e.g., maintenance of genome integrity and control of cellular aging. Their copy number can vary in response to environmental cues, in cellular stress sensing, in development of cancer and other diseases. While reaching hundreds of copies in humans, there are records of up to 20,000 copies in fish and frogs and even 400,000 copies in ciliates forming thus a literal subgenome or an rDNAome within the genome. From the compositional and evolutionary dynamics viewpoint, the precursor 45S rDNA represents universally GC-enriched, highly recombining and homogenized regions. Hence, it is not accidental that both rDNA sequence and the corresponding rRNA secondary structure belong to established phylogenetic markers broadly used to infer phylogeny on multiple taxonomical levels including species delimitation. However, these multiple roles of rDNAs have been treated and discussed as being separate and independent from each other. Here, I aim to address nuclear rDNAs in an integrative approach to better assess the complexity of rDNA importance in the evolutionary context.
Collapse
Affiliation(s)
- Radka Symonová
- Faculty of Science, Department of Biology, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
5
|
Cook A, Mieczkowski J, Tolstorukov MY. Single-Assay Profiling of Nucleosome Occupancy and Chromatin Accessibility. ACTA ACUST UNITED AC 2017; 120:21.34.1-21.34.18. [PMID: 28967996 DOI: 10.1002/cpmb.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This unit describes a method for determining the accessibility of chromatinized DNA and nucleosome occupancy in the same assay. Enzymatic digestion of chromatin using micrococcal nuclease (MNase) is optimized for liberation, retrieval, and characterization of DNA fragments from chromatin. MNase digestion is performed in a titration series, and the DNA fragments are isolated and sequenced for each individual digest independently. These sequenced fragments are then collectively analyzed in a novel bioinformatics pipeline to produce a metric describing MNase accessibility of chromatin (MACC) and nucleosome occupancy. This approach allows profiling of the entire genome including regions of open and closed chromatin. Moreover, the MACC protocol can be supplemented with a histone immunoprecipitation step to estimate and compare both histone and non-histone DNA protection components. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- April Cook
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Current address: Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jakub Mieczkowski
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Current address: Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Locati MD, Pagano JFB, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Zhu K, Spaink HP, Girard G, Rauwerda H, Jonker MJ, Dekker RJ, Breit TM. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA (NEW YORK, N.Y.) 2017; 23:446-456. [PMID: 28003516 PMCID: PMC5340908 DOI: 10.1261/rna.059642.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/03/2016] [Indexed: 05/31/2023]
Abstract
5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci.
Collapse
Affiliation(s)
- Mauro D Locati
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Johanna F B Pagano
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Wim A Ensink
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Marina van Olst
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Selina van Leeuwen
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Ulrike Nehrdich
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Kongju Zhu
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Geneviève Girard
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Han Rauwerda
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Rob J Dekker
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| |
Collapse
|
7
|
Mao P, Wyrick JJ, Roberts SA, Smerdon MJ. UV-Induced DNA Damage and Mutagenesis in Chromatin. Photochem Photobiol 2016; 93:216-228. [PMID: 27716995 DOI: 10.1111/php.12646] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
UV radiation induces photolesions that distort the DNA double helix and, if not repaired, can cause severe biological consequences, including mutagenesis or cell death. In eukaryotes, both the formation and repair of UV damage occur in the context of chromatin, in which genomic DNA is packaged with histones into nucleosomes and higher order chromatin structures. Here, we review how chromatin impacts the formation of UV photoproducts in eukaryotic cells. We describe the initial discovery that nucleosomes and other DNA binding proteins induce characteristic "photofootprints" during the formation of UV photoproducts. We also describe recent progress in genomewide methods for mapping UV damage, which echoes early biochemical studies, and highlights the role of nucleosomes and transcription factors in UV damage formation and repair at unprecedented resolution. Finally, we discuss our current understanding of how the distribution and repair of UV-induced DNA damage influence mutagenesis in human skin cancers.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA
| |
Collapse
|
8
|
MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 2016; 7:11485. [PMID: 27151365 PMCID: PMC4859066 DOI: 10.1038/ncomms11485] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.
Collapse
|
9
|
Abstract
In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, 175 S. University Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
10
|
Morgan GT, Jones P, Bellini M. Association of modified cytosines and the methylated DNA-binding protein MeCP2 with distinctive structural domains of lampbrush chromatin. Chromosome Res 2013; 20:925-42. [PMID: 23149574 PMCID: PMC3565088 DOI: 10.1007/s10577-012-9324-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We have investigated the association of DNA methylation and proteins interpreting methylation state with the distinctive closed and open chromatin structural domains that are directly observable in the lampbrush chromosomes (LBCs) of amphibian oocytes. To establish the distribution in LBCs of MeCP2, one of the key proteins binding 5-methylcytosine-modified DNA (5mC), we expressed HA-tagged MeCP2 constructs in Xenopus laevis oocytes. Full-length MeCP2 was predominantly targeted to the closed, transcriptionally inactive chromomere domains in a pattern proportional to chromomeric DNA density and consistent with a global role in determining chromatin state. A minor fraction of HA-MeCP2 was also found to associate with a distinctive structural domain, namely a short region at the bases of some of the extended lateral loops. Expression in oocytes of deleted constructs and of point mutants derived from Rett syndrome patients demonstrated that the association of MeCP2 with LBCs was determined by its 5mC-binding domain. We also examined more directly the distribution of 5mC by immunostaining Xenopus and axolotl LBCs and confirmed the pattern suggested by MeCP2 targeting of intense staining of the chromomeres and of some loop bases. In addition, we found in the longer loops of axolotl LBCs that short interstitial regions could also be clearly stained for 5mC. These 5mC regions corresponded precisely to unusual segments of active transcription units from which RNA polymerase II (pol II) and nascent transcripts were simultaneously absent. We also examined by immunostaining the distribution in lampbrush chromatin of the oxidized 5mC derivative, 5-hydroxymethylcytosine (5hmC). Although in general, the pattern resembled that obtained for 5mC, one antibody against 5hmC produced intense staining of restricted chromosomal foci. These foci corresponded to a third type of lampbrush chromatin domain, the transcriptionally active but less extended structures formed by clusters of genes transcribed by pol III. This raises the possibility that 5hmC may play a role in establishing the distinctive patterns of gene repression and activation that characterize specific pol III-transcribed gene families in amphibian genomes.
Collapse
Affiliation(s)
- Garry T Morgan
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| | | | | |
Collapse
|
11
|
Layat E, Cotterell S, Vaillant I, Yukawa Y, Tutois S, Tourmente S. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:35-44. [PMID: 22353599 DOI: 10.1111/j.1365-313x.2012.04948.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA.
Collapse
Affiliation(s)
- Elodie Layat
- CNRS, UMR 6293 GReD, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, 63171 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Rodrigues DS, Rivera M, Lourenço LB. Molecular organization and chromosomal localization of 5S rDNA in Amazonian Engystomops (Anura, Leiuperidae). BMC Genet 2012; 13:17. [PMID: 22433220 PMCID: PMC3342222 DOI: 10.1186/1471-2156-13-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/20/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND For anurans, knowledge of 5S rDNA is scarce. For Engystomops species, chromosomal homeologies are difficult to recognize due to the high level of inter- and intraspecific cytogenetic variation. In an attempt to better compare the karyotypes of the Amazonian species Engystomops freibergi and Engystomops petersi, and to extend the knowledge of 5S rDNA organization in anurans, the 5S rDNA sequences of Amazonian Engystomops species were isolated, characterized, and mapped. RESULTS Two types of 5S rDNA, which were readily differentiated by their NTS (non-transcribed spacer) sizes and compositions, were isolated from specimens of E. freibergi from Brazil and E. petersi from two Ecuadorian localities (Puyo and Yasuní). In the E. freibergi karyotypes, the entire type I 5S rDNA repeating unit hybridized to the pericentromeric region of 3p, whereas the entire type II 5S rDNA repeating unit mapped to the distal region of 6q, suggesting a differential localization of these sequences. The type I NTS probe clearly detected the 3p pericentromeric region in the karyotypes of E. freibergi and E. petersi from Puyo and the 5p pericentromeric region in the karyotype of E. petersi from Yasuní, but no distal or interstitial signals were observed. Interestingly, this probe also detected many centromeric regions in the three karyotypes, suggesting the presence of a satellite DNA family derived from 5S rDNA. The type II NTS probe detected only distal 6q regions in the three karyotypes, corroborating the differential distribution of the two types of 5S rDNA. CONCLUSIONS Because the 5S rDNA types found in Engystomops are related to those of Physalaemus with respect to their nucleotide sequences and chromosomal locations, their origin likely preceded the evolutionary divergence of these genera. In addition, our data indicated homeology between Chromosome 5 in E. petersi from Yasuní and Chromosomes 3 in E. freibergi and E. petersi from Puyo. In addition, the chromosomal location of the type II 5S rDNA corroborates the hypothesis that the Chromosomes 6 of E. petersi and E. freibergi are homeologous despite the great differences observed between the karyotypes of the Yasuní specimens and the others.
Collapse
Affiliation(s)
- Débora Silva Rodrigues
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-863, Brazil
| | - Miryan Rivera
- Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador
| | - Luciana Bolsoni Lourenço
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-863, Brazil
| |
Collapse
|
13
|
Lim CK, Kelley RL. Autoregulation of the Drosophila Noncoding roX1 RNA Gene. PLoS Genet 2012; 8:e1002564. [PMID: 22438819 PMCID: PMC3305356 DOI: 10.1371/journal.pgen.1002564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/15/2012] [Indexed: 01/17/2023] Open
Abstract
Most genes along the male single X chromosome in Drosophila are hypertranscribed about two-fold relative to each of the two female X chromosomes. This is accomplished by the MSL (male-specific lethal) complex that acetylates histone H4 at lysine 16. The MSL complex contains two large noncoding RNAs, roX1 (RNA on X) and roX2, that help target chromatin modifying enzymes to the X. The roX RNAs are functionally redundant but differ in size, sequence, and transcriptional control. We wanted to find out how roX1 production is regulated. Ectopic DC can be induced in wild-type (roX1(+) roX2(+)) females if we provide a heterologous source of MSL2. However, in the absence of roX2, we found that roX1 expression failed to come on reliably. Using an in situ hybridization probe that is specific only to endogenous roX1, we found that expression was restored if we introduced either roX2 or a truncated but functional version of roX1. This shows that pre-existing roX RNA is required to positively autoregulate roX1 expression. We also observed massive cis spreading of the MSL complex from the site of roX1 transcription at its endogenous location on the X chromosome. We propose that retention of newly assembled MSL complex around the roX gene is needed to drive sustained transcription and that spreading into flanking chromatin contributes to the X chromosome targeting specificity. Finally, we found that the gene encoding the key male-limited protein subunit, msl2, is transcribed predominantly during DNA replication. This suggests that new MSL complex is made as the chromatin template doubles. We offer a model describing how the production of roX1 and msl2, two key components of the MSL complex, are coordinated to meet the dosage compensation demands of the male cell.
Collapse
Affiliation(s)
- Chiat Koo Lim
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
14
|
Visualizing protein interactions involved in the formation of the 42S RNP storage particle of Xenopus oocytes. Biol Cell 2012; 102:469-78. [DOI: 10.1042/bc20100034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
RNA polymerase III (pol III) transcribes many essential, small, noncoding RNAs, including the 5S rRNAs and tRNAs. While most pol III-transcribed genes are found scattered throughout the linear chromosome maps or in multiple linear clusters, there is increasing evidence that many of these genes prefer to be spatially clustered, often at or near the nucleolus. This association could create an environment that fosters the coregulation of transcription by pol III with transcription of the large ribosomal RNA repeats by RNA polymerase I (pol I) within the nucleolus. Given the high number of pol III-transcribed genes in all eukaryotic genomes, the spatial organization of these genes is likely to affect a large portion of the other genes in a genome. In this Survey and Summary we analyze the reports regarding the spatial organization of pol III genes and address the potential influence of this organization on transcriptional regulation.
Collapse
Affiliation(s)
| | - David R. Engelke
- To whom correspondence should be addressed. Tel: +1 734 763 0641; Fax:+1 734 763 7799;
| |
Collapse
|
17
|
Wintersberger E. Biochemical events controlling initiation and propagation of the S phase of the cell cycle. Rev Physiol Biochem Pharmacol 2005; 118:49-95. [PMID: 1754800 DOI: 10.1007/bfb0031481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Wintersberger
- Institut für Molekularbiologie der Universität Wien, Austria
| |
Collapse
|
18
|
Yang Z, Zheng C, Thiriet C, Hayes JJ. The core histone N-terminal tail domains negatively regulate binding of transcription factor IIIA to a nucleosome containing a 5S RNA gene via a novel mechanism. Mol Cell Biol 2005; 25:241-9. [PMID: 15601846 PMCID: PMC538782 DOI: 10.1128/mcb.25.1.241-249.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reconstitution of a DNA fragment containing a 5S RNA gene from Xenopus borealis into a nucleosome greatly restricts binding of the primary 5S transcription factor, TFIIIA. Consistent with transcription experiments using reconstituted templates, removal of the histone tail domains stimulates TFIIIA binding to the 5S nucleosome greater than 100-fold. However, we show that tail removal increases the probability of 5S DNA unwrapping from the core histone surface by only approximately fivefold. Moreover, using site-specific histone-to-DNA cross-linking, we show that TFIIIA binding neither induces nor requires nucleosome movement. Binding studies with COOH-terminal deletion mutants of TFIIIA and 5S nucleosomes reconstituted with native and tailless core histones indicate that the core histone tail domains play a direct role in restricting the binding of TFIIIA. Deletion of only the COOH-terminal transcription activation domain dramatically stimulates TFIIIA binding to the native nucleosome, while further C-terminal deletions or removal of the tail domains does not lead to further increases in TFIIIA binding. We conclude that the unmodified core histone tail domains directly negatively influence TFIIIA binding to the nucleosome in a manner that requires the C-terminal transcription activation domain of TFIIIA. Our data suggest an additional mechanism by which the core histone tail domains regulate the binding of trans-acting factors in chromatin.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Donald D Brown
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| |
Collapse
|
20
|
Vitolo JM, Yang Z, Basavappa R, Hayes JJ. Structural features of transcription factor IIIA bound to a nucleosome in solution. Mol Cell Biol 2004; 24:697-707. [PMID: 14701742 PMCID: PMC343799 DOI: 10.1128/mcb.24.2.697-707.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Assembly of a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene into a nucleosome greatly restricts binding of the 5S gene-specific transcription factor IIIA (TFIIIA) to the 5S internal promoter. However, TFIIIA binds with high affinity to 5S nucleosomes lacking the N-terminal tail domains of the core histones or to nucleosomes in which these domains are hyperacetylated. The degree to which tail acetylation or removal improves TFIIIA binding cannot be simply explained by a commensurate change in the general accessibility of nucleosomal DNA. In order to investigate the molecular basis of how TFIIIA binds to the nucleosome and to ascertain if binding involves all nine zinc fingers and/or displacement of histone-DNA interactions, we examined the TFIIIA-nucleosome complex by hydroxyl radical footprinting and site-directed protein-DNA cross-linking. Our data reveal that the first six fingers of TFIIIA bind and displace approximately 20 bp of histone-DNA interactions at the periphery of the nucleosome, while binding of fingers 7 to 9 appears to overlap with histone-DNA interactions. Molecular modeling based on these results and the crystal structures of a nucleosome core and a TFIIIA-DNA cocomplex yields a precise picture of the ternary complex and a potentially important intermediate in the transition from naïve chromatin structure to productive polymerase III transcription complex.
Collapse
Affiliation(s)
- Joseph M Vitolo
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14625, USA
| | | | | | | |
Collapse
|
21
|
Yang Z, Hayes JJ. Xenopus transcription factor IIIA and the 5S nucleosome: development of a useful in vitro system. Biochem Cell Biol 2003; 81:177-84. [PMID: 12897852 DOI: 10.1139/o03-043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5S RNA genes in Xenopus are regulated during development via a complex interplay between assembly of repressive chromatin structures and productive transcription complexes. Interestingly, 5S genes have been found to harbor powerful nucleosome positioning elements and therefore have become an important model system for reconstitution of eukaryotic genes into nucleosomes in vitro. Moreover, the structure of the primary factor initiating transcription of 5S DNA, transcription factor IIIA, has been extensively characterized. This has allowed for numerous studies of the effect of nucleosome assembly and histone modifications on the DNA binding activity of a transcription factor in vitro. For example, linker histones bind 5S nucleosomes and repress TFIIIA binding in vitro in a similar manner to that observed in vivo. In addition, TFIIIA binding to nucleosomes assembled with 5S DNA is stimulated by acetylation or removal of the core histone tail domains. Here we review the development of the Xenopus 5S in vitro system and discuss recent results highlighting new aspects of transcription factor - nucleosome interactions,
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14625, USA
| | | |
Collapse
|
22
|
Jean-Joseph B, Flisser A, Martinez A, Metzenberg S. The U5/U6 snRNA genomic repeat of Taenia solium. J Parasitol 2003; 89:329-35. [PMID: 12760649 DOI: 10.1645/0022-3395(2003)089[0329:tusgro]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The U6 and U5 snRNA (small nuclear ribonucleic acid) genes were identified in Taenia solium with the aim of characterizing their sequence and genomic structures. They are contained within a shared 1,009-nt tandem genomic repeat and present at approximately 3 copies per haploid genome. The U6 snRNA gene shares 92 and 95% sequence similarity with the U6 homologs from humans and Schistosoma mansoni, respectively. The U5 snRNA gene of T. solium is 70% similar to the human U5 sequence in the 5' stem and loop 1 domains. The U6 and U5 snRNA genes are on complementary genomic strands and separated by 458 nt at their "heads" and 306 nt at their "tails." The nucleotides upstream of the U6 gene lack a recognizable TATA box and proximal sequence elements (PSEs), and the putative gene promoter for U5 snRNA does not resemble vertebrate examples. There are short blocks of similarity between the sequences upstream of the U5 and U6 snRNA genes, and these may be sites of shared transcription factor binding at the respective RNA polymerase II and III promoters. It is possible that this unusual allied U5/U6 snRNA genomic repeat may help mediate coordinated regulation of expression of the 2 snRNAs.
Collapse
Affiliation(s)
- Bernadette Jean-Joseph
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8303, USA
| | | | | | | |
Collapse
|
23
|
Kafanas A, Wang BY, Kalir T, Gan L, Bodian C, Fish H, Kohtz DS, Burstein DE. Immunohistochemical visualization of histone H1 phosphorylation in squamous intraepithelial lesions of the gynecologic tract. Hum Pathol 2003; 34:166-73. [PMID: 12612885 DOI: 10.1053/hupa.2003.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Immunohistochemical staining was performed on gynecologic tract squamous intraepithelial lesions using a novel phosphorylation-specific monoclonal antibody (designated 12D11) that detects histone H1 when phosphorylated at a cyclin-dependent kinase (CDK)-responsive epitope. Findings were compared to immunostaining by MIB-1, an extensively studied antibody probe of proliferation. Routinely fixed and processed archival sections were subjected to distinct antigen retrieval and staining protocols for each antibody and were processed for immunodetection of either Ki-67 (with MIB-1) or phosphohistone H1, using a streptavidin-biotin kit and diaminobenzidine as chromagen. For 12D11 staining, antigen retrieval was performed at pH 4.0, and the antibody incubation buffer was supplemented with 1.0 M NaCl. Both 12D11 and MIB-1 stained parabasal cells in normal squamous epithelium. Staining by 12D11 and MIB-1 of cells in progressively higher strata was found to correlate with the severity of lesions. The mean proportion of positively stained cells was higher in MIB-1-stained sections than in 12D11-stained sections in normal squamous epithelium and in all grades of squamous intraepithelial lesions. We conclude that the changes in expression patterns of CDK-phosphorylated histone H1 in the spectrum of gynecologic squamous intraepithelial lesions are similar to staining patterns obtained with the proliferation probe MIB-1. The differing proportion of cells stained by MIB-1 and 12D11 suggests that phosphohistone H1 may be a useful alternative proliferation marker that detects a different subpopulation of cycling cells in premalignant squamous lesions.
Collapse
Affiliation(s)
- Antonis Kafanas
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A variety of posttranscriptional mechanisms affects the processing, subcellular localization, and translation of messenger RNAs (mRNAs). Translational control appears to occur primarily at the initiation rather than the elongation stage. It has been suggested that translation is mediated largely by means of a cap-binding/scanning mechanism. On the basis of recent findings, we propose here that differential binding of particular mRNAs to eukaryotic 40S ribosomal subunits before translation may also selectively affect rates of polypeptide chain production. In this view, ribosomal subunits themselves are considered to be regulatory elements or filters that mediate interactions between particular mRNAs and components of the translation machinery. Differences in these interactions affect how efficiently individual mRNAs compete for ribosomal subunits. These competitive interactions would depend in part on the complementarity between sequences in mRNA and rRNA, as well as on structural differences among ribosomes in different cell types. By these means, translation may either be enhanced through increased recruitment of ribosomes or inhibited through strong interactions that sequester mRNAs. We propose that ribosomal filters may be important in cell differentiation and describe experimental tests for the filter hypothesis.
Collapse
Affiliation(s)
- Vincent P Mauro
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
25
|
Westmark CJ, Ghose R, Huber PW. Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. Biochem J 2002; 362:375-82. [PMID: 11853545 PMCID: PMC1222397 DOI: 10.1042/0264-6021:3620375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transcription factor IIIA (TFIIIA), isolated from the cytoplasmic 7 S ribonucleoprotein complex of Xenopus oocytes, is phosphorylated when incubated with [gamma-(32)P]ATP. This modification is due to a trace kinase activity that remains associated with the factor through several steps of purification. The kinase can use either ATP or GTP, and will phosphorylate casein and phosvitin to the exclusion of TFIIIA. The kinase is reactive with a ten-amino-acid peptide that is a specific substrate for protein kinase CK2 (CK2; formerly casein kinase II). In addition, inhibition of phosphorylation by heparin and stimulation by spermidine indicate that the activity can be ascribed to CK2. Phospho amino acid analysis established that serine is the sole phosphoryl acceptor in TFIIIA. There are four consensus sites for CK2 in TFIIIA; all contain serine residues at the putative site of phosphorylation. TFIIIA immunoprecipitated from oocytes, which were incubated with [(32)P]orthophosphate, is also phosphorylated exclusively on serine residues. Only the cyanogen bromide fragment, which was derived from the N-terminal end of TFIIIA, is labelled in vivo. A recognition sequence for CK2, located at Ser(16) in the beta-turn of the first zinc-finger domain, is the only protein kinase consensus sequence present in this peptide. Assays in vitro with site-specific mutants of TFIIIA established that Ser(16) is the preferred site of phosphorylation, with some secondary modification at Ser(314).
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
26
|
Miura T, Okada A, Kaneta M, Urayama Y, Takeuchi H. The third zinc finger of TFIIIA stabilizes a hairpin structure of the non-coding strand in the internal control region of 5S RNA gene. J Inorg Biochem 2000; 82:207-13. [PMID: 11132629 DOI: 10.1016/s0162-0134(00)00150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structures of non-coding and coding strands in box C of the internal control region (ICR) of Xenopus laevis somatic 5S RNA gene have been examined by circular dichroism (CD) and Raman spectroscopy in the absence and presence of the third zinc finger of transcription factor IIIA (TFIIIA), which binds to the ICR. The non-coding strand exhibits CD signals assignable to a hairpin and an unfolded structure. The presence of the hairpin structure is supported by Raman spectra, gel electrophoresis, and nucleotide deletion experiments. Binding of the zinc finger to the non-coding strand increases the CD signal of hairpin structure, indicating stabilization of the hairpin structure by the zinc finger. In contrast, the corresponding coding strand remains unfolded even in the presence of the zinc finger. The TFIIIA-ICR complex is not only required for initiation of transcription but also lasts during many rounds of transcription of the 5S RNA gene including the ICR (Bogenhagen et al., Cell 28 (1982) 413). TFIIIA may play a role in promoting the transcription by maintaining the unwound non-coding strand in the hairpin structure and leaving the coding strand available for transcription by RNA polymerase.
Collapse
Affiliation(s)
- T Miura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai, Japan
| | | | | | | | | |
Collapse
|
27
|
Kobayashi S, Agui K, Kamo S, Li Y, Anzai K. Neural BC1 RNA associates with pur alpha, a single-stranded DNA and RNA binding protein, which is involved in the transcription of the BC1 RNA gene. Biochem Biophys Res Commun 2000; 277:341-7. [PMID: 11032728 DOI: 10.1006/bbrc.2000.3683] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BC1 RNA is preferentially expressed in neural cells by RNA polymerase III (Pol III) and forms ribonucleoprotein particles (RNP) in the somatodendritic domain of neurons. Our previous studies have suggested that, in the nucleus, BC1 RNA forms an RNP containing a nuclear protein(s) that participates in the transcription of the BC1 RNA gene. In this study, we have shown that newly synthesized BC1 RNA in purified brain nuclear extracts is immunoprecipitated by an antibody against Pur alpha. Pur alpha is a protein that binds single-stranded DNA and RNA and is known to regulate transcription of Pol II system. Although BC1 RNA is transcribed by Pol III, the BC1 RNA gene has two putative Pur alpha binding sites, which Pur alpha specifically recognizes. Point mutations within these sites reduced transcriptional activity in vitro. Furthermore, transcription was inhibited by depletion of Pur alpha from the nuclear extracts, either by the coexistence of its binding region of BC1 RNA or by the antibody that was able to precipitate the nuclear BC1 RNP. These observations suggest that BC1 RNA associates with Pur alpha which is involved in the transcription of the BC1 RNA gene.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Cell Nucleus/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Models, Genetic
- Molecular Sequence Data
- Neurons/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- RNA/metabolism
- RNA, Long Noncoding
- RNA, Untranslated
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Ribonucleoproteins, Small Cytoplasmic/genetics
- Ribonucleoproteins, Small Cytoplasmic/metabolism
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- S Kobayashi
- Department of Biochemistry, College of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | | | | | | | | |
Collapse
|
28
|
Vassetzky Y, Hair A, Méchali M. Rearrangement of chromatin domains during development in Xenopus. Genes Dev 2000. [DOI: 10.1101/gad.14.12.1541] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A dynamic change in the organization of different gene domains transcribed by RNA polymerase I, II, or III occurs during the progression from quiescent [pre-midblastula transition (pre-MBT)] to active (post-MBT) embryos during Xenopus development. In the rDNA, c-myc, and somatic 5S gene domains, a transition from random to specific anchorage to the nuclear matrix occurs when chromatin domains become active. The keratin gene domain was also randomly associated to the nuclear matrix before MBT, whereas a defined attachment site was found in keratinocytes. In agreement with this specification, ligation-mediated (LM)-PCR genomic footprinting carried out on the subpopulation of 5S domains specifically attached to the matrix reveals the hallmarks of determined chromatin after the midblastula transition. In contrast, the same analysis performed on the total 5S gene population does not reveal specific chromatin organization, validating the use of nuclear matrix fractionation to unveil active chromatin domains. These data provide a means for the determination of active chromosomal territories in the embryo and emphasize the role of nuclear architecture in regulated gene expression during development.
Collapse
|
29
|
Vitolo JM, Thiriet C, Hayes JJ. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol Cell Biol 2000; 20:2167-75. [PMID: 10688663 PMCID: PMC110833 DOI: 10.1128/mcb.20.6.2167-2175.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reconstitution of a DNA fragment containing a Xenopus borealis somatic type 5S rRNA gene into a nucleosome greatly restricts the binding of transcription factor IIIA (TFIIIA) to its cognate DNA sequence within the internal promoter of the gene. Removal of all core histone tail domains by limited trypsin proteolysis or acetylation of the core histone tails significantly relieves this inhibition and allows TFIIIA to exhibit high-affinity binding to nucleosomal DNA. Since only a single tail or a subset of tails may be primarily responsible for this effect, we determined whether removal of the individual tail domains of the H2A-H2B dimer or the H3-H4 tetramer affects TFIIIA binding to its cognate DNA site within the 5S nucleosome in vitro. The results show that the tail domains of H3 and H4, but not those of H2A and/or H2B, directly modulate the ability of TFIIIA to bind nucleosomal DNA. In vitro transcription assays carried out with nucleosomal templates lacking individual tail domains show that transcription efficiency parallels the binding of TFIIIA. In addition, we show that the stoichiometry of core histones within the 5S DNA-core histone-TFIIIA triple complex is not changed upon TFIIIA association. Thus, TFIIIA binding occurs by displacement of H2A-H2B-DNA contacts but without complete loss of the dimer from the nucleoprotein complex. These data, coupled with previous reports (M. Vettese-Dadey, P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman, EMBO J. 15:2508-2518, 1996; L. Howe, T. A. Ranalli, C. D. Allis, and J. Ausio, J. Biol. Chem. 273:20693-20696, 1998), suggest that the H3/H4 tails are the primary arbiters of transcription factor access to intranucleosomal DNA.
Collapse
Affiliation(s)
- J M Vitolo
- Department of Biochemistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
30
|
Abstract
In developing Xenopus laevis embryos the multiple-copy oocyte-type 5S RNA genes are progressively shut down. Results presented in three recent articles 1-3 together demonstrate that replacement of the cleavage stage linker histone B4 by somatic H1 leads to chromatosomes positioned directly over these genes and adjacent sequences so as to occlude the binding site for the critical transcription factor TFIIIA. In contrast, on the somatic-type 5S genes the somatic H1 positions chromatosomes about 65 bp further upstream, thereby leaving the TFIIIA binding site exposed and the genes active. The somatic linker histone thus functions as a specific gene repressor.
Collapse
|
31
|
Smerdon MJ, Conconi A. Modulation of DNA damage and DNA repair in chromatin. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:227-55. [PMID: 9932456 DOI: 10.1016/s0079-6603(08)60509-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA is packaged in the highly compact and dynamic structure of chromatin in eukaryotic cells. It is generally accepted that DNA processing events in the nucleus, such as transcription, replication, recombination, and repair, are restricted by this packaging. For some processes (e.g., transcription), the chromatin fiber is "preset" in a more open structure to allow access of proteins to specific regions of DNA within this structural hierarchy. These regions contain modified nucleosomes that accommodate a less compact state of chromatin and allow access to specific regions of DNA. DNA repair proteins, however, must access DNA lesions in all structural domains of chromatin after sudden insult to the genome. Damaged DNA must be recognized, removed, and replaced by repair enzymes at all levels of chromatin packaging. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potential mutagenic and carcinogenic lesions in DNA. In this review, we discuss the modulation of DNA damage and DNA repair by chromatin structure, and the modulation of chromatin structure by these events.
Collapse
Affiliation(s)
- M J Smerdon
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164, USA
| | | |
Collapse
|
32
|
Abstract
A protein responsible for enhanced transcription by RNA polymerase III was identified in extracts from Xenopus oocytes. This protein, called EP3, interacts with a specific DNA sequence adjacent to the 3'-end of a Xenopus somatic 5S RNA gene and forms a distinct band shift complex with a unique DNase I footprint. Enhanced transcription was observed from both 5S RNA and tRNA reporter genes when EP3 binding sites were inserted at different locations and orientations. Removal of the EP3 protein from an oocyte extract abolished this enhanced transcription. In addition, EP3 was shown to stimulate transcription by increasing the rate of transcription complex assembly. EP3 directly discriminates between the somatic and oocyte 5S RNA gene families and may play a significant role in their differential expression during early Xenopus development.
Collapse
Affiliation(s)
- M R Sturges
- California Institute of Technology, Division of Biology, 147-75, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
33
|
Labbé JC, Hekimi S, Rokeach LA. The levels of the RoRNP-associated Y RNA are dependent upon the presence of ROP-1, the Caenorhabditis elegans Ro60 protein. Genetics 1999; 151:143-50. [PMID: 9872955 PMCID: PMC1460465 DOI: 10.1093/genetics/151.1.143] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ro ribonucleoproteins (RoRNP) consist of at least one major protein of 60 kD, Ro60, and one small associated RNA, designated Y RNA. Although RoRNP have been found in all vertebrate species examined so far, their function remains unknown. The Caenorhabditis elegans rop-1 gene previously has been identified as encoding a Ro60 homologue. We report here the phenotypic characterization of a C. elegans strain in which rop-1 has been disrupted. This is the first report regarding the inactivation of a major RoRNP constituent in any organism. The rop-1 mutant worms display no visible defects. However, at the molecular level, the disruption of rop-1 results in a dramatic decrease in the levels of the ROP-1-associated RNA (CeY RNA). Moreover, transgenic expression of wild-type rop-1 partially rescues the levels of CeY RNA. Considering that transgenes are poorly expressed in the germline, the fact that the rescue is only partial is most likely related to the high abundance of the CeY RNA in the adult germline and in embryos. The developmental expression pattern and localization of CeY RNA suggest a role for this molecule during embryogenesis. We conclude that, under laboratory culture conditions, ROP-1 does not play a crucial role in C. elegans.
Collapse
Affiliation(s)
- J C Labbé
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
34
|
Westmark CJ, Ghose R, Huber PW. Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity. Nucleic Acids Res 1998; 26:4758-64. [PMID: 9753746 PMCID: PMC147894 DOI: 10.1093/nar/26.20.4758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ribosomes prepared from somatic tissue of Xenopus laevis inhibit transcription by RNA polymerase III. This observation parallels an earlier report that a high speed fraction from activated egg extract, which is enrichedin ribosomes, inhibits RNA polymerase III activityand destabilizes putative transcription complexes assembled on oocyte 5S rRNA genes. Transcription of somatic- and oocyte-type 5S rRNA genes and a tRNA gene are all repressed in the present experiments. We find that 5S rRNA genes incubated in S150 extract prepared from immature oocytes exhibit an extensive DNase I protection pattern that is nearly identical to that of the ternary complex of TFIIIA and TFIIIC bound to a somatic 5S rRNA gene. The complexes formed in this extract are stable at concentrations of ribosomes that completely repress transcription, indicating that formation of the TFIII(A+C) complex is not the target of inhibition. Ribosomes taken through a high salt treatment no longer repress transcription of class III genes, establishing that the inhibition is due to an associated factor and not the particle itself. The inhibitory activity released from ribosomes is inactivated by treatment with proteinase K, but not micrococcal nuclease. Preincubation of ribosomes with a general protein kinase inhibitor, 6-dimethylaminopurine, eliminates repression of transcription. Western blot analysis demonstrates that p34(cdc2), which is known to mediate repression of transcription by RNA polymerase III, is present in these preparations of ribosomes and can be released from the particles upon extraction with high salt. These results establish that a kinase activity, possibly p34(cdc2), is the actual agent responsible for the observed inhibition of transcription by ribosomes.
Collapse
Affiliation(s)
- C J Westmark
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame,IN 46556-5670, USA
| | | | | |
Collapse
|
35
|
Panetta G, Buttinelli M, Flaus A, Richmond TJ, Rhodes D. Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression. J Mol Biol 1998; 282:683-97. [PMID: 9737930 DOI: 10.1006/jmbi.1998.2087] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus somatic cells histone H1 effects the transcriptional repression of oocyte type 5 S RNA genes, without altering the transcription of the somatic type 5 S RNA genes. Using an unambiguous nucleosome mapping method we find substantial differences between the multiple in vitro nucleosome positions on the two types of genes. These nucleosome positions determine both transcription factor and H1 binding, allowing TFIIIA to bind more efficiently to nucleosomes containing the somatic 5 S RNA gene than to nucleosomes on the oocyte 5 S RNA gene. Significantly, in a binding competition between TFIIIA and H1, TFIIIA preferentially binds to the somatic nucleosome whereas H1 preferentially binds to the oocyte nucleosome, excluding TFIIIA binding. These results strongly suggest that nucleosome positioning plays a key role in the regulation of transcription of 5 S RNA genes and provide a molecular mechanism for the selective repression of the oocyte 5 S RNA genes by H1.
Collapse
Affiliation(s)
- G Panetta
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | | | | | | | |
Collapse
|
36
|
Howe L, Ranalli TA, Allis CD, Ausió J. Transcriptionally active Xenopus laevis somatic 5 S ribosomal RNA genes are packaged with hyperacetylated histone H4, whereas transcriptionally silent oocyte genes are not. J Biol Chem 1998; 273:20693-6. [PMID: 9694810 DOI: 10.1074/jbc.273.33.20693] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relationship between histone acetylation and transcription of the Xenopus laevis oocyte and somatic 5 S ribosomal RNA genes was investigated. Chromatin fragments from a X. laevis kidney cell line were immunoprecipitated with an antibody specific for hyperacetylated histone H4. The DNA from the hyperacetylated chromatin was probed with both oocyte- and somatic gene-specific sequences, and the results showed that the upstream, nontranscribed region of the transcriptionally active somatic genes is packaged with acetylated histone H4. In contrast, the corresponding region of the transcriptionally silent oocyte genes is packaged with hypoacetylated histone H4 in this cells line. Further study also showed that this region of the oocyte genes was less sensitive to digestion with the enzyme, micrococcal nuclease. Together these results suggest that, as described for both RNA polymerase I and II transcribed genes, there is a correlation between histone acetylation and transcription of the RNA polymerase III transcribed 5 S ribosomal RNA genes in X. laevis.
Collapse
Affiliation(s)
- L Howe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | |
Collapse
|
37
|
Abstract
The quantitative fluorescence in situ hybridization (Q-FISH) technique enables an accurate estimate of individual telomere lengths, a possibility beyond the resolution of conventional techniques. So far, Q-FISH has been used for the estimate of individual telomere lengths in human, mouse and Chinese hamster chromosomes. This analysis revealed large variations in the size of individual telomeres and a specific intra-chromosomal distribution of telomere lengths; telomeres closer to centromeres appear to be shorter than their counterparts more distant from centromeres. This observation suggests that individual telomere length may be affected by centromere position, a possibility consistent with the theory of chromosome field postulated more than 40 years ago by Lima-de-Faria. The link between the theory of chromosome field and the role of telomere-centromere relationships in the regulation of telomere length is discussed in this article.
Collapse
Affiliation(s)
- P Slijepcevic
- School of Biomedical Sciences, Bute Medical Buildings, University of St. Andrews, St. Andrews KY16 9TS, UK.
| |
Collapse
|
38
|
Sera T, Wolffe AP. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Mol Cell Biol 1998; 18:3668-80. [PMID: 9632749 PMCID: PMC108949 DOI: 10.1128/mcb.18.7.3668] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 04/09/1998] [Indexed: 02/07/2023] Open
Abstract
We explore the role of histone H1 as a DNA sequence-dependent architectural determinant of chromatin structure and of transcriptional activity in chromatin. The Xenopus laevis oocyte- and somatic-type 5S rRNA genes are differentially transcribed in embryonic chromosomes in vivo depending on the incorporation of somatic histone H1 into chromatin. We establish that this effect can be reconstructed at the level of a single nucleosome. H1 selectively represses oocyte-type 5S rRNA genes by directing the stable positioning of a nucleosome such that transcription factors cannot bind to the gene. This effect does not occur on the somatic-type genes. Histone H1 binds to the 5' end of the nucleosome core on the somatic 5S rRNA gene, leaving key regulatory elements in the promoter accessible, while histone H1 binds to the 3' end of the nucleosome core on the oocyte 5S rRNA genes, specifically blocking access to a key promoter element (the C box). TFIIIA can bind to the somatic 5S rRNA gene assembled into a nucleosome in the presence of H1. Because H1 binds with equivalent affinities to nucleosomes containing either gene, we establish that it is the sequence-selective assembly of a specific repressive chromatin structure on the oocyte 5S rRNA genes that accounts for differential transcriptional repression. Thus, general components of chromatin can determine the assembly of specific regulatory nucleoprotein complexes.
Collapse
Affiliation(s)
- T Sera
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5431, USA
| | | |
Collapse
|
39
|
Ghavidel A, Schultz MC. Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein. Genes Dev 1997; 11:2780-9. [PMID: 9353248 PMCID: PMC316665 DOI: 10.1101/gad.11.21.2780] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1997] [Accepted: 09/05/1997] [Indexed: 02/05/2023]
Abstract
The highly conserved protein kinase casein kinase II (CKII) is required for efficient Pol III transcription of the tRNA and 5S rRNA genes in Saccharomyces cerevisiae. Using purified factors from wild-type cells to complement transcription extracts from a conditional lethal mutant of CKII we show that TFIIIB is the CKII-responsive component of the Pol III transcription machinery. Dephosphorylation of TFIIIB eliminated its ability to complement CKII-depleted extract, and a single TFIIIB subunit, the TATA-binding protein (TBP), is a preferred substrate of CKII in vitro. Recombinant TBP purified from Escherichia coli is phosphorylated efficiently by CKII and, in the presence of a limiting amount of CKII, is able to substantially rescue transcription in CKII-deficient extract. Our results establish that TBP is a key component of the pathway linking CKII activity and Pol III transcription and suggest that TBP is the target of a CKII-mediated regulatory mechanism that can modulate Pol III transcription.
Collapse
Affiliation(s)
- A Ghavidel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
40
|
Zhao Y, Miyagi S, Kikawada T, Tsutsumi K. Sequence requirement for replication initiation at the rat aldolase B locus implicated in its functional correlation with transcriptional regulation. Biochem Biophys Res Commun 1997; 237:707-13. [PMID: 9299431 DOI: 10.1006/bbrc.1997.7216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription promoter of the aldolase B gene was previously shown to be centered on an initiation region of DNA replication in rat hepatoma cells in vivo. Here, we defined an essential region required for replication in a plasmid form upon transfection. Deletion analyses around the origin region revealed that the proximal 200 bp promoter was necessary, but not sufficient for replication as flanking sequence restored replication activity. Therefore, the 200 bp region seemed to cooperate with the flanking sequence to play an important role in replication. Electrophoretic mobility shift assays using nuclear extracts from synchronously growing hepatoma cells showed that some protein factors bound to this region in a cell cycle-regulated manner. Since transcription of the aldolase B gene is repressed in the hepatoma cells, the cell cycle-regulated protein-binding is considered to be involved in regulation of replication initiation.
Collapse
Affiliation(s)
- Y Zhao
- Institute for Cell Biology and Genetics, Faculty of Agriculture, Iwate University, Japan
| | | | | | | |
Collapse
|
41
|
Hoffmann A, Oelgeschläger T, Roeder RG. Considerations of transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc Natl Acad Sci U S A 1997; 94:8928-35. [PMID: 9256411 PMCID: PMC33761 DOI: 10.1073/pnas.94.17.8928] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The general transcription initiation factor TFIID was originally identified, purified, and characterized with a biochemical assay in which accurate transcription initiation is reconstituted with multiple, chromatographically separable activities. Biochemical analyses have demonstrated that TFIID is a multiprotein complex that directs preinitiation complex assembly on both TATA box-containing and TATA-less promoters, and some TFIID subunits have been shown to be molecular targets for activation domains in DNA-binding regulatory proteins. These findings have most commonly been interpreted to support the view that transcriptional activation by upstream factors is the result of enhanced TFIID recruitment to the core promoter. Recent insights into the architecture and cell-cycle regulation of the multiprotein TFIID complex prompt both a reassessment of the functional role of TFIID in gene activation and a review of some of the less well-appreciated literature on TFIID. We present a speculative model for diverse functional roles of TFIID in the cell, explore the merits of the model in the context of published data, and suggest experimental approaches to resolve unanswered questions. Finally, we point out how the proposed functional roles of TFIID in eukaryotic class II transcription fit into a model for promoter recognition and activation that applies to both eubacteria and eukaryotes.
Collapse
Affiliation(s)
- A Hoffmann
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
42
|
Abstract
RNA molecules synthesized in the nucleus are transported to their sites of function throughout the eukaryotic cell by specific transport pathways. This review focuses on transport of messenger RNA, small nuclear RNA, ribosomal RNA, and transfer RNA between the nucleus and the cytoplasm. The general molecular mechanisms involved in nucleocytoplasmic transport of RNA are only beginning to be understood. However, during the past few years, substantial progress has been made. A major theme that emerges from recent studies of RNA transport is that specific signals mediate the transport of each class of RNA, and these signals are provided largely by the specific proteins with which each RNA is associated.
Collapse
Affiliation(s)
- S Nakielny
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
43
|
Ramakrishnan V. Histone structure and the organization of the nucleosome. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:83-112. [PMID: 9241414 DOI: 10.1146/annurev.biophys.26.1.83] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromatin structure is now believed to be dynamic and intimately related with cellular processes such as transcription. Over the past few years, high-resolution structures for the histones have become available. These structures and their implications for nucleosome organization are reviewed here.
Collapse
Affiliation(s)
- V Ramakrishnan
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84103, USA.
| |
Collapse
|
44
|
Matsumoto K, Meric F, Wolffe AP. Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition. J Biol Chem 1996; 271:22706-12. [PMID: 8798444 DOI: 10.1074/jbc.271.37.22706] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have examined the determinants of the translational repression of mRNA by the Xenopus oocyte-specific Y-box protein FRGY2 using in vitro and in vivo assays. In vitro reconstitution of messenger ribonucleoprotein (mRNP) complexes demonstrates that the sequence-specific RNA-binding cold shock domain is not required for translational repression, whereas the RNA-binding C-terminal tail domain is essential. However, microinjection of reconstituted mRNPs into Xenopus oocytes demonstrates that although translational repression occurs in the absence of consensus RNA binding sequences for FRGY2, the presence of FRGY2 recognition elements within mRNA potentiates translational repression. Analysis of the in vivo assembly of mRNP shows that the cold shock domain alone is not stably incorporated into mRNP, whereas the C-terminal tail domain is sufficient for stable incorporation. We suggest that translational repression of mRNA by FRGY2 is favored by sequence-selective recognition of RNA sequences by the cold shock domain. However, translational repression in vitro and the assembly of mRNP in vivo requires the relatively nonspecific interaction of the C-terminal tail domain with mRNA. Thus two distinct domains of FRGY2 are likely to contribute to translational control.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2710, USA
| | | | | |
Collapse
|
45
|
Kingston RE, Bunker CA, Imbalzano AN. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev 1996; 10:905-20. [PMID: 8608939 DOI: 10.1101/gad.10.8.905] [Citation(s) in RCA: 350] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.
Collapse
Affiliation(s)
- R E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | | | | |
Collapse
|
46
|
Abstract
Transcription factor IIIA is a very extensively studied eukaryotic gene specific factor. It is a special member of the zinc finger family of nucleic acid binding proteins with multiple functions. Its N-terminal polypeptide (280 amino acid residue containing peptide; finger containing region) carries out sequence specific DNA and RNA binding and the C-terminal peptide (65 amino acid residue containing peptide; non-finger region) is involved in the transactivation process possibly by interacting with other general factors. It is a unique factor in the sense that it binds to two structurally different nucleic acids, DNA and RNA. It accomplishes this function through its zinc fingers, which are arranged into a cluster of nine motifs. Over the past three years there has been considerable interest in determining the structural features of zinc fingers, identifying the fingers that preferentially recognize DNA and RNA, defining the role of metal binding ligands and the linker region in promotor recognition and the role of C-terminal amino acid sequence in the gene activation. This article briefly reviews our current knowledge on this special protein in these areas.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, MI 48309-4401, USA
| |
Collapse
|
47
|
Su S, Bird RC. Cell Cycle, Differentiation and Tissue-Independent Expression of Ribosomal Protein L37. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20874.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Lee NH, Weinstock KG, Kirkness EF, Earle-Hughes JA, Fuldner RA, Marmaros S, Glodek A, Gocayne JD, Adams MD, Kerlavage AR. Comparative expressed-sequence-tag analysis of differential gene expression profiles in PC-12 cells before and after nerve growth factor treatment. Proc Natl Acad Sci U S A 1995; 92:8303-7. [PMID: 7667285 PMCID: PMC41145 DOI: 10.1073/pnas.92.18.8303] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nerve growth factor-induced differentiation of adrenal chromaffin PC-12 cells to a neuronal phenotype involves alterations in gene expression and represents a model system to study neuronal differentiation. We have used the expressed-sequence-tag approach to identify approximately 600 differentially expressed mRNAs in untreated and nerve growth factor-treated PC-12 cells that encode proteins with diverse structural and biochemical functions. Many of these mRNAs encode proteins belonging to cellular pathways not previously known to be regulated by nerve growth factor. Comparative expressed-sequence-tag analysis provides a basis for surveying global changes in gene-expression patterns in response to biological signals at an unprecedented scale, is a powerful tool for identifying potential interactions between different cellular pathways, and allows the gene-expression profiles of individual genes belonging to a particular pathway to be followed.
Collapse
Affiliation(s)
- N H Lee
- Institute for Genomic Research, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Drew PD, Nagle JW, Canning RD, Ozato K, Biddison WE, Becker KG. Cloning and expression analysis of a human cDNA homologous to Xenopus TFIIIA. Gene 1995; 159:215-8. [PMID: 7622052 DOI: 10.1016/0378-1119(95)00145-v] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report here the nucleotide sequence of a clone, C2H2-34.10, isolated from a human brain cDNA library using degenerate oligodeoxyribonucleotide hybridization. C2H2-34.10 has extensive homology to the Xenopus laevis 5S DNA/RNA-binding protein, TFIIIA. The deduced amino acid (aa) sequence of the human clone gives a protein of 363 aa with identity to TFIIIA from both X. laevis (57%) and Rana pipiens (59%). This human clone contains nine C2H2-type zinc fingers like frog TFIIIA. Northern blot analysis indicates that the C2H2-34.10 RNA is expressed in human ovary, as well as human neuronal cell lines.
Collapse
Affiliation(s)
- P D Drew
- Neuroimmunology Branch-Molecular Immunology Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
50
|
Matthews JL, Zwick MG, Paule MR. Coordinate regulation of ribosomal component synthesis in Acanthamoeba castellanii: 5S RNA transcription is down regulated during encystment by alteration of TFIIIA activity. Mol Cell Biol 1995; 15:3327-35. [PMID: 7760828 PMCID: PMC230566 DOI: 10.1128/mcb.15.6.3327] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription of large rRNA precursor and 5S RNA were examined during encystment of Acanthamoeba castellanii. Both transcription units are down regulated almost coordinately during this process, though 5S RNA transcription is not as completely shut down as rRNA transcription. The protein components necessary for transcription of 5S RNA and tRNA were determined, and fractions containing transcription factors comparable to TFIIIA, TFIIIB, and TFIIIC, as well as RNA polymerase III and a 3'-end processing activity, were identified. Regulation of 5S RNA transcription could be recapitulated in vitro, and the activities of the required components were compared. In contrast to regulation of precursor rRNA, there is no apparent change during encystment in the activity of the polymerase dedicated to 5S RNA expression. Similarly, the transcriptional and promoter-binding activities of TFIIIC are not altered in parallel with 5S RNA regulation. TFIIIB transcriptional activity is unaltered in encysting cells. In contrast, both the transcriptional and DNA-binding activities of TFIIIA are strongly reduced in nuclear extracts from transcriptionally inactive cells. These results were analyzed in terms of mechanisms for coordinate regulation of rRNA and 5S RNA expression.
Collapse
Affiliation(s)
- J L Matthews
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | | | |
Collapse
|