1
|
Kwon S, Park HH. Structural Consideration of the Working Mechanism of Fold Type I Transaminases From Eubacteria: Overt and Covert Movement. Comput Struct Biotechnol J 2019; 17:1031-1039. [PMID: 31452855 PMCID: PMC6698932 DOI: 10.1016/j.csbj.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022] Open
Abstract
Transaminases (TAs) reversibly catalyze the transfer reaction of an amino group between an amino group donor and an amino group acceptor, using pyridoxal 5′-phosphate (PLP) as a cofactor. TAs are categorized according to the amino group position of the donor substrate and respective TAs recognize their own specific substrates. Over the past decade, a number of TA structures have been determined by X-ray crystallography. On the basis of the structural information, the detailed mechanism of substrate recognition by TAs has also been elucidated. In this review, fold type I TAs are addressed intensively. Comparative studies on structural differences between the apo and holo forms of fold type I TAs have demonstrated that regions containing the active site exhibit structural plasticity in the apo form, facilitating PLP insertion into the active site. In addition, given that TAs recognize two different kinds of substrates, they possess dual substrate specificity. It is known that spatial rearrangements of active site residues occur upon binding of the substrates. Intriguingly, positively charged residues are predominantly distributed at the active site cavity. The electric field generated by such charge distributions may attract negatively charged molecules, such as PLP and amino group acceptors, into the active site. Indeed, TAs show remarkable dynamics in diverse aspects. In this review, we describe the comprehensive working mechanism of fold type I TAs, with a focus on conformational changes.
Collapse
Affiliation(s)
| | - Hyun Ho Park
- Corresponding author at: College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Jangam SS, Wankhede SB, Chitlange SS. Molecular docking, synthesis and anticonvulsant activity of some novel 3-(2-substituted)-4-oxothiazolidine-3-yl)-2-phenylquinazoline-4(3H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3612-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
3
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 499] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
4
|
Chen J, Almo SC, Wu Y. General principles of binding between cell surface receptors and multi-specific ligands: A computational study. PLoS Comput Biol 2017; 13:e1005805. [PMID: 29016600 PMCID: PMC5654264 DOI: 10.1371/journal.pcbi.1005805] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/20/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022] Open
Abstract
The interactions between membrane receptors and extracellular ligands control cell-cell and cell-substrate adhesion, and environmental responsiveness by representing the initial steps of cell signaling pathways. These interactions can be spatial-temporally regulated when different extracellular ligands are tethered. The detailed mechanisms of this spatial-temporal regulation, including the competition between distinct ligands with overlapping binding sites and the conformational flexibility in multi-specific ligand assemblies have not been quantitatively evaluated. We present a new coarse-grained model to realistically simulate the binding process between multi-specific ligands and membrane receptors on cell surfaces. The model simplifies each receptor and each binding site in a multi-specific ligand as a rigid body. Different numbers or types of ligands are spatially organized together in the simulation. These designs were used to test the relation between the overall binding of a multi-specific ligand and the affinity of its cognate binding site. When a variety of ligands are exposed to cells expressing different densities of surface receptors, we demonstrated that ligands with reduced affinities have higher specificity to distinguish cells based on the relative concentrations of their receptors. Finally, modification of intramolecular flexibility was shown to play a role in optimizing the binding between receptors and ligands. In summary, our studies bring new insights to the general principles of ligand-receptor interactions. Future applications of our method will pave the way for new strategies to generate next-generation biologics. In order to adapt to surrounding environments, multiple signaling pathways have been evolved in cells. The first step of these pathways is to detect external stimuli, which is conducted by the dynamic interactions between cell surface receptors and extracellular ligands. As a result, recognition of extracellular ligands by cell surface receptors is an indispensable component of many physiological or pathological activities. In both natural selection and drug design, the presence of multiple binding sites in extracellular ligand complexes (so-called multi-specific ligands) is a common strategy to target different receptors on surface of the same cell. Such spatial organization of ligand binding sites can elaborately modulate the downstream signaling pathways. However, our understanding to the interactions between multi-specific ligands and membrane receptors is largely limited by the fact that these interactions are difficult to quantify and they have only been successfully measured in a very small number of cases in vivo. Using a simple computational model, we can realistically simulate the binding process between specially designed multi-specific ligands and membrane receptors on cell surfaces. This study therefore provides a useful pathway to unravel basic mechanisms of ligand-receptor interactions and design principles for new drug candidates.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Barroso daSilva FL, Dias LG. Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems. Biophys Rev 2017; 9:699-728. [PMID: 28921104 PMCID: PMC5662048 DOI: 10.1007/s12551-017-0311-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
pH is a critical parameter for biological and technological systems directly related with electrical charges. It can give rise to peculiar electrostatic phenomena, which also makes them more challenging. Due to the quantum nature of the process, involving the forming and breaking of chemical bonds, quantum methods should ideally by employed. Nevertheless, due to the very large number of ionizable sites, different macromolecular conformations, salt conditions, and all other charged species, the CPU time cost simply becomes prohibitive for computer simulations, making this a quite complex problem. Simplified methods based on Monte Carlo sampling have been devised and will be reviewed here, highlighting the updated state-of-the-art of this field, advantages, and limitations of different theoretical protocols for biomolecular systems (proteins and nucleic acids). Following a historical perspective, the discussion will be associated with the applications to protein interactions with other proteins, polyelectrolytes, and nanoparticles.
Collapse
Affiliation(s)
- Fernando Luís Barroso daSilva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do café, s/no. - Universidade de São Paulo, BR-14040-903, Ribeirão Preto, SP, Brazil.
- UCD School of Physics, UCD Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland.
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Luis Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes, 3900 - Universidade de São Paulo, BR-14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Tsai MY, Zheng W, Balamurugan D, Schafer NP, Kim BL, Cheung MS, Wolynes PG. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding. Protein Sci 2015; 25:255-69. [PMID: 26183799 DOI: 10.1002/pro.2751] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022]
Abstract
While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes.
Collapse
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005.,Department of Physics, University of Houston, Houston, Texas, 77204
| | - Weihua Zheng
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
| | - D Balamurugan
- Computation Institute, University of Chicago, Chicago, Illinois, 60637
| | - Nicholas P Schafer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Bobby L Kim
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
| | - Margaret S Cheung
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005.,Department of Physics, University of Houston, Houston, Texas, 77204
| | - Peter G Wolynes
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005.,Physics and Astronomy, Rice University, Houston, Texas, 77005
| |
Collapse
|
7
|
Hirakawa K, Ito H. Rhodamine-6G can photosensitize folic acid decomposition through electron transfer. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Abstract
The quest for ever more selective kinase inhibitors as potential future drugs has yielded a large repertoire of chemical probes that are selective for specific kinase conformations. These probes have been useful tools to obtain structural snapshots of kinase conformational plasticity. Similarly, kinetic and thermodynamic inhibitor binding experiments provide glimpses at the time scales and energetics of conformational interconversions. These experimental insights are complemented by computational predictions of conformational energy landscapes and simulations of conformational transitions and of the process of inhibitors binding to the protein kinase domain. A picture emerges in which highly selective inhibitors capitalize on the dynamic nature of kinases.
Collapse
Affiliation(s)
- Michael Tong
- Department
of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Markus A. Seeliger
- Department
of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
9
|
Wang N, Zhou S, Kekenes-Huskey PM, Li B, McCammon JA. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers. J Phys Chem B 2014; 118:14827-32. [PMID: 25426875 PMCID: PMC4280115 DOI: 10.1021/jp511702w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Mean-field
methods, such as the Poisson–Boltzmann equation
(PBE), are often used to calculate the electrostatic properties of
molecular systems. In the past two decades, an enhancement of the
PBE, the size-modified Poisson–Boltzmann equation (SMPBE),
has been reported. Here, the PBE and the SMPBE are reevaluated for
realistic molecular systems, namely, lipid bilayers, under eight different
sets of input parameters. The SMPBE appears to reproduce the molecular
dynamics simulation results better than the PBE only under specific
parameter sets, but in general, it performs no better than the Stern
layer correction of the PBE. These results emphasize the need for
careful discussions of the accuracy of mean-field calculations on
realistic systems with respect to the choice of parameters and call
for reconsideration of the cost-efficiency and the significance of
the current SMPBE formulation.
Collapse
Affiliation(s)
- Nuo Wang
- Department of Chemistry and Biochemistry, ‡Department of Mathematics, §Department of Pharmacology, ⊥Howard Hughes Medical Institute, University of California-San Diego , La Jolla, California 92093, United States
| | - Shenggao Zhou
- Department of Chemistry and Biochemistry, ‡Department of Mathematics, §Department of Pharmacology, ⊥Howard Hughes Medical Institute, University of California-San Diego , La Jolla, California 92093, United States
| | - Peter M Kekenes-Huskey
- Department of Chemistry and Biochemistry, ‡Department of Mathematics, §Department of Pharmacology, ⊥Howard Hughes Medical Institute, University of California-San Diego , La Jolla, California 92093, United States
| | - Bo Li
- Department of Chemistry and Biochemistry, ‡Department of Mathematics, §Department of Pharmacology, ⊥Howard Hughes Medical Institute, University of California-San Diego , La Jolla, California 92093, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, ‡Department of Mathematics, §Department of Pharmacology, ⊥Howard Hughes Medical Institute, University of California-San Diego , La Jolla, California 92093, United States
| |
Collapse
|
10
|
Xie ZR, Chen J, Wu Y. Linking 3D and 2D binding kinetics of membrane proteins by multiscale simulations. Protein Sci 2014; 23:1789-99. [PMID: 25271078 DOI: 10.1002/pro.2574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/29/2014] [Indexed: 01/26/2023]
Abstract
Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse-grained Monte-Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all-atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100-fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins.
Collapse
Affiliation(s)
- Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, 10461
| | | | | |
Collapse
|
11
|
Chen J, Xie ZR, Wu Y. A multiscale model for simulating binding kinetics of proteins with flexible linkers. Proteins 2014; 82:2512-22. [DOI: 10.1002/prot.24614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx New York 10461
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx New York 10461
| | - Yinghao Wu
- Department of Systems and Computational Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx New York 10461
| |
Collapse
|
12
|
γ-Amino butyric acid analogs as novel potent GABA-AT inhibitors: molecular docking, synthesis, and biological evaluation. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0023-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Arai M, Ferreon JC, Wright PE. Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP. J Am Chem Soc 2012; 134:3792-803. [PMID: 22280219 DOI: 10.1021/ja209936u] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Determination of affinities and binding sites involved in protein-ligand interactions is essential for understanding molecular mechanisms in biological systems. Here we combine singular value decomposition and global analysis of NMR chemical shift perturbations caused by protein-protein interactions to determine the number and location of binding sites on the protein surface and to measure the binding affinities. Using this method we show that the isolated AD1 and AD2 binding motifs, derived from the intrinsically disordered N-terminal transactivation domain of the tumor suppressor p53, both interact with the TAZ2 domain of the transcriptional coactivator CBP at two binding sites. Simulations of titration curves and line shapes show that a primary dissociation constant as small as 1-10 nM can be accurately estimated by NMR titration methods, provided that the primary and secondary binding processes are coupled. Unexpectedly, the site of binding of AD2 on the hydrophobic surface of TAZ2 overlaps with the binding site for AD1, but AD2 binds TAZ2 more tightly. The results highlight the complexity of interactions between intrinsically disordered proteins and their targets. Furthermore, the association rate of AD2 to TAZ2 is estimated to be 1.7 × 10(10) M(-1) s(-1), approaching the diffusion-controlled limit and indicating that intrinsic disorder plus complementary electrostatics can significantly accelerate protein binding interactions.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
14
|
Wong-Deyrup SW, Prasannan C, Dupureur CM, Franklin SJ. DNA targeting and cleavage by an engineered metalloprotein dimer. J Biol Inorg Chem 2011; 17:387-98. [PMID: 22116546 DOI: 10.1007/s00775-011-0861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/08/2011] [Indexed: 11/27/2022]
Abstract
Nature has illustrated through numerous examples that protein dimerization has structural and functional advantages. We previously reported the design and characterization of an engineered "metallohomeodomain" protein (C2) based on a chimera of the EF-hand Ca-binding motif and the helix-turn-helix motif of homeodomains (Lim and Franklin in Protein Sci. 15:2159-2165, 2004). This small metalloprotein binds the hard metal ions Ca(II) and Ln(III) and interacts with DNA with modest sequence preference and affinity, yet exhibits only residual DNA cleavage activity. Here we have achieved substantial improvement in function by constructing a covalent dimer of this C2 module (F2) to create a larger multidomain protein. As assayed via fluorescence spectroscopy, this F2 protein binds Ca(II) more avidly (25-fold) than C2 on a per-domain basis; in gel shift selection experiments, metallated F2 exhibits a specificity toward 5'-TAATTA-3' sequences. Finally, Ca(2)F2 cleaves plasmid DNA and generates a linear product in a Ca(II)-dependent way, unlike the CaC2 monomer. To the best of our knowledge this activation of Ca(II) in the context of an EF-hand binding motif is unique and represents a significant step forward in the design of artificial metallonucleases by utilizing biologically significant metal ions.
Collapse
|
15
|
Docking-based virtual screening of Schiff’s bases of GABA: a prospective to novel GABA-AT inhibitors. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9843-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Affiliation(s)
- Roberto Cao
- a Laboratorio de Química Bioinorgánica, Facultad de Química , Universidad de La Habana , 10400, La Habana, Cuba
| | - Alex Fragoso
- a Laboratorio de Química Bioinorgánica, Facultad de Química , Universidad de La Habana , 10400, La Habana, Cuba
| | - Eduardo Almirall
- a Laboratorio de Química Bioinorgánica, Facultad de Química , Universidad de La Habana , 10400, La Habana, Cuba
| | - Reynaldo Villalonga
- b Centro de Biotecnología, Facultad de Agronomía , Universidad de Matanzas , 44470, Matanzas, Cuba
| |
Collapse
|
17
|
Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 2011; 108:13118-23. [PMID: 21778406 DOI: 10.1073/pnas.1104614108] [Citation(s) in RCA: 574] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How drugs bind to their receptors--from initial association, through drug entry into the binding pocket, to adoption of the final bound conformation, or "pose"--has remained unknown, even for G-protein-coupled receptor modulators, which constitute one-third of all marketed drugs. We captured this pharmaceutically critical process in atomic detail using the first unbiased molecular dynamics simulations in which drug molecules spontaneously associate with G-protein-coupled receptors to achieve final poses matching those determined crystallographically. We found that several beta blockers and a beta agonist all traverse the same well-defined, dominant pathway as they bind to the β(1)- and β(2)-adrenergic receptors, initially making contact with a vestibule on each receptor's extracellular surface. Surprisingly, association with this vestibule, at a distance of 15 Å from the binding pocket, often presents the largest energetic barrier to binding, despite the fact that subsequent entry into the binding pocket requires the receptor to deform and the drug to squeeze through a narrow passage. The early barrier appears to reflect the substantial dehydration that takes place as the drug associates with the vestibule. Our atomic-level description of the binding process suggests opportunities for allosteric modulation and provides a structural foundation for future optimization of drug-receptor binding and unbinding rates.
Collapse
|
18
|
Crystal Structure of Type III Glutamine Synthetase: Surprising Reversal of the Inter-Ring Interface. Structure 2011; 19:471-83. [DOI: 10.1016/j.str.2011.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
|
19
|
Strieder W. Effects of electrostatic potential and shape on diffusion-controlled reaction at an elliptic site. J Chem Phys 2011; 134:044529. [DOI: 10.1063/1.3529941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Antosiewicz JM, Shugar D. Poisson–Boltzmann continuum-solvation models: applications to pH-dependent properties of biomolecules. MOLECULAR BIOSYSTEMS 2011; 7:2923-49. [DOI: 10.1039/c1mb05170a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Lin B, Pettitt BM. Electrostatic solvation free energy of amino acid side chain analogs: implications for the validity of electrostatic linear response in water. J Comput Chem 2010; 32:878-85. [PMID: 20941733 DOI: 10.1002/jcc.21668] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/12/2010] [Indexed: 11/10/2022]
Abstract
Electrostatic free energies of solvation for 15 neutral amino acid side chain analogs are computed. We compare three methods of varying computational complexity and accuracy for three force fields: free energy simulations, Poisson-Boltzmann (PB), and linear response approximation (LRA) using AMBER, CHARMM, and OPLS-AA force fields. We find that deviations from simulation start at low charges for solutes. The approximate PB and LRA produce an overestimation of electrostatic solvation free energies for most of molecules studied here. These deviations are remarkably systematic. The variations among force fields are almost as large as the variations found among methods. Our study confirms that success of the approximate methods for electrostatic solvation free energies comes from their ability to evaluate free energy differences accurately.
Collapse
Affiliation(s)
- Bin Lin
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
22
|
Sinha R, Sara UVS, Khosa RL, Stables J, Jain J. Nicotinic acid hydrazones: a novel anticonvulsant pharmacophore. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9396-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Novel GABA-AT inhibitors: QSAR and docking based virtual screening of phenyl substituted β-phenyl ethylidene hydrazine analogues. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9390-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Electrostatic interactions of fluorescent molecules with dielectric interfaces studied by total internal reflection fluorescence correlation spectroscopy. Int J Mol Sci 2010; 11:386-406. [PMID: 20386645 PMCID: PMC2852845 DOI: 10.3390/ijms11020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/17/2010] [Accepted: 01/21/2010] [Indexed: 01/24/2023] Open
Abstract
Electrostatic interactions between dielectric surfaces and different fluorophores used in ultrasensitive fluorescence microscopy are investigated using objective-based Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS). The interfacial dynamics of cationic rhodamine 123 and rhodamine 6G, anionic/dianionic fluorescein, zwitterionic rhodamine 110 and neutral ATTO 488 are monitored at various ionic strengths at physiological pH. As analyzed by means of the amplitude and time-evolution of the autocorrelation function, the fluorescent molecules experience electrostatic attraction or repulsion at the glass surface depending on their charges. Influences of the electrostatic interactions are also monitored through the triplet-state population and triplet relaxation time, including the amount of detected fluorescence or the count-rate-per-molecule parameter. These TIR-FCS results provide an increased understanding of how fluorophores are influenced by the microenvironment of a glass surface, and show a promising approach for characterizing electrostatic interactions at interfaces.
Collapse
|
25
|
Zhang Y, Levin M. Particle tracking model of electrophoretic morphogen movement reveals stochastic dynamics of embryonic gradient. Dev Dyn 2009; 238:1923-35. [PMID: 19618466 DOI: 10.1002/dvdy.22016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Some developmental events rely on an electrophoretic force to produce morphogenetic gradients. To quantitatively explore the dynamics of this process, we constructed a stochastic model of an early phase of left-right patterning: serotonin movement through the gap junction-coupled blastomeres of the Xenopus embryo. Particle-tracking simulations showed that a left-right gradient is formed rapidly, quickly reaching a final stable level. The voltage difference was critical for producing a morphogen gradient of the right steepness; gap junctional connectivity and morphogen mass determined the timing of the gradient. Endogenous electrophoresis drives approximately 50% of the particles across more than one cell width, and approximately 20% can travel across half the embryo. The stochastic behavior of the resulting gradients exhibited unexpected complexity among blastomeres' morphogen content, and showed how spatiotemporal variability within individual cells resulted in robust and consistent gradients across the embryonic left-right axis. Analysis of the distribution profile of gradient gain values made quantitative predictions about the conditions that result in the observed background level of laterality defects in unperturbed frog embryos. This work provides a general model that can be used to quantitatively analyze the unexpectedly complex dynamics of morphogens in a wide variety of systems.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Regenerative and Developmental Biology, The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
26
|
Dissection of the high rate constant for the binding of a ribotoxin to the ribosome. Proc Natl Acad Sci U S A 2009; 106:6974-9. [PMID: 19346475 DOI: 10.1073/pnas.0900291106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Restrictocin belongs to a family of site-specific ribonucleases that kill cells by inactivating the ribosome. The restrictocin-ribosome binding rate constant was observed to exceed 10(10) M(-1) s(-1). We have developed a transient-complex theory to model the binding rates of protein-protein and protein-RNA complexes. The theory predicts the rate constant as k(a) = k(a0) exp(-DeltaG(el)*/k(B)T), where k(a0) is the basal rate constant for reaching the transient complex, located at the outer boundary of the bound state, by random diffusion, and DeltaG(el)* is the average electrostatic interaction free energy of the transient complex. Here, we applied the transient-complex theory to dissect the high restrictocin-ribosome binding rate constant. We found that the binding rate of restrictocin to the isolated sarcin/ricin loop is electrostatically enhanced by approximately 300-fold, similar to results found in other protein-protein and protein-RNA complexes. The ribosome provides an additional 10,000-fold rate enhancement because of two synergistic mechanisms afforded by the distal regions of the ribosome. First, they provide additional electrostatic attraction with restrictocin. Second, they reposition the transient complex into a region where local electrostatic interactions of restrictocin with the sarcin/ricin loop are particularly favorable. Our calculations rationalize a host of experimental observations and identify a strategy for designing proteins that bind their targets with high speed.
Collapse
|
27
|
1,3-Propanediol dehydrogenase from Klebsiella pneumoniae: decameric quaternary structure and possible subunit cooperativity. J Bacteriol 2008; 191:1143-51. [PMID: 19011020 DOI: 10.1128/jb.01077-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen frequently isolated from opportunistic infections, especially in clinical environments. In spite of its potential pathogenicity, this microorganism has several metabolic potentials that could be used in biotechnology applications. K. pneumoniae is able to metabolize glycerol as a sole source of carbon and energy. 1,3-Propanediol dehydrogenase is the core of the metabolic pathway for the use of glycerol. We have determined the crystallographic structure of 1,3-propanediol dehydrogenase, a type III Fe-NAD-dependent alcohol dehydrogenase, at 2.7-A resolution. The structure of the enzyme monomer is closely related to that of other alcohol dehydrogenases. The overall arrangement of the enzyme showed a decameric structure, formed by a pentamer of dimers, which is the catalytic form of the enzyme. Dimers are associated by strong ionic interactions that are responsible for the highly stable in vivo packing of the enzyme. Kinetic properties of the enzyme as determined in the article would suggest that this decameric arrangement is related to the cooperativity between monomers.
Collapse
|
28
|
Svensson B, Jönsson B, Woodward C. Electrostatic contributions to the binding of Ca2+ in calbindin mutants. A Monte Carlo study. Biophys Chem 2008; 38:179-83. [PMID: 17056439 DOI: 10.1016/0301-4622(90)80053-a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1990] [Accepted: 06/28/1990] [Indexed: 10/18/2022]
Abstract
Monte Carlo simulation is used to calculate the free energy of binding of calcium ions to the native and several mutant forms of bovine calbindin D(9K) in salt solution. The simulations are performed in the canonical ensemble wherein free energies are calculated with a modified Widom method. The protein is modelled as a set of fixed hard spheres of fractional or unit charge with the surrounding solution as a dielectric continuum containing counterions and added salt particles. The interior of the protein is assumed to have the same dielectric permittivity as the solvent, which turns out to be an excellent approximation. Indeed, this simple model is able to predict accurately experimentally measured shifts in the calcium binding constants of up to five orders of magnitude, due to mutations and added salt.
Collapse
Affiliation(s)
- B Svensson
- Physical Chemistry 2, Chemical Centre, PO Box 124, S-22100 Lund, Sweden
| | | | | |
Collapse
|
29
|
Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS. Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 2008; 51:769-79. [PMID: 18215013 DOI: 10.1021/jm070549+] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental data on the transfer of small molecules between vacuum and water are relatively sparse. This makes it difficult to assess whether computational methods are truly predictive of this important quantity or merely good at explaining what has been seen. To explore this, a prospective test was performed of two different methods for estimating solvation free energies: an implicit solvent approach based on the Poisson-Boltzmann equation and an explicit solvent approach using alchemical free energy calculations. For a set of 17 small molecules, root mean square errors from experiment were between 1.3 and 2.6 kcal/mol, with the explicit solvent free energy approach yielding somewhat greater accuracy but at greater computational expense. Insights from outliers and suggestions for future prospective challenges of this kind are presented.
Collapse
Affiliation(s)
- Anthony Nicholls
- OpenEye Scientific Software, Inc., Santa Fe, New Mexico 87508,USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
de Carvalho SJ, Ghiotto RCT, da Silva FLB. Monte Carlo and modified Tanford-Kirkwood results for macromolecular electrostatics calculations. J Phys Chem B 2007; 110:8832-9. [PMID: 16640442 DOI: 10.1021/jp054891e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The understanding of electrostatic interactions is an essential aspect of the complex correlation between structure and function of biological macromolecules. It is also important in protein engineering and design. Theoretical studies of such interactions are predominantly done within the framework of Debye-Hückel theory. A classical example is the Tanford-Kirkwood (TK) model. Besides other limitations, this model assumes an infinitesimally small macromolecule concentration. By comparison to Monte Carlo (MC) simulations, it is shown that TK predictions for the shifts in ion binding constants upon addition of salt become less reliable even at moderately macromolecular concentrations. A simple modification based on colloidal literature is suggested to the TK scheme. The modified TK models suggested here satisfactorily predict MC and experimental shifts in the calcium binding constant as a function of protein concentration for the calbindin D(9k) mutant and calmodulin.
Collapse
Affiliation(s)
- Sidney Jurado de Carvalho
- Departmento de Física, Instituto de Biociências, Letras e Ciências Extras, Universidade Estadual Paulista, 15054-000 - Rua Cristovão Colombo, 2265, Jd. Nazareth, São José do Rio Preto, SP, Brazil
| | | | | |
Collapse
|
31
|
Abstract
The effects of salt on the intermolecular interactions between polar/charged amino acids are investigated through molecular dynamics simulations. The mean forces and associated potentials are calculated for NaCl salt in the 0-2 M concentration range at 298 K. It is found that the addition of salt may stabilize or destabilize the interactions, depending on the nature of the interacting molecules. The degree of (de)stabilization is quantified, and the origin of the salt-dependent modulation is discussed based upon an analysis of solvent density profiles. To gain insight into the molecular origin of the salt modulation, spatial distribution functions (sdf's) are calculated, revealing a high degree of solvent structuredness in all cases. The peaks in the sdf's are consistent with long-range hydrogen-bonding networks connecting the solute hydrophilic groups, and that contribute to their intermolecular solvent-induced forces. The restructuring of water around the solutes as they dissociate from close contact is analyzed. This analysis offers clues on how the solvent structure modulates the effective intermolecular interactions in complex solutes. This modulation results from a critical balance between bulk electrostatic forces and those exerted by (i) the water molecules in the structured region between the monomers, which is disrupted by ions that transiently enter the hydration shells, and (ii) the ions in the hydration shells in direct interactions with the solutes. The implications of these findings in protein/ligand (noncovalent) association/dissociation mechanisms are briefly discussed.
Collapse
Affiliation(s)
- Sergio A Hassan
- Center for Molecular Modeling, Division of Computational Bioscience, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| |
Collapse
|
32
|
Johnson RJ, McCoy JG, Bingman CA, Phillips GN, Raines RT. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 2007; 368:434-49. [PMID: 17350650 PMCID: PMC1993901 DOI: 10.1016/j.jmb.2007.02.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/27/2007] [Accepted: 02/02/2007] [Indexed: 11/26/2022]
Abstract
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.
Collapse
Affiliation(s)
- R Jeremy Johnson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | |
Collapse
|
33
|
Madura JD, Davist ME, Gilson MK, Wades RC, Luty BA, McCammon JA. Biological Applications of Electrostatic Calculations and Brownian Dynamics Simulations. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470125823.ch4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Fragoso A, Cao R, Díz A, Sånchez I, Sånchez L. Influence of Electrostatic Interactions and Hydrogen Bonding on the Activity of Cyclodextrin-based Superoxide Dismutase Models. Supramol Chem 2006. [DOI: 10.1080/10610270108039795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Alex Fragoso
- a Laboratory of Bioinorganic Chemistry, Faculty of Chemistry , University of Havana , Havana, 10400, Cuba
| | - Roberto Cao
- a Laboratory of Bioinorganic Chemistry, Faculty of Chemistry , University of Havana , Havana, 10400, Cuba
| | - Alicia Díz
- a Laboratory of Bioinorganic Chemistry, Faculty of Chemistry , University of Havana , Havana, 10400, Cuba
| | - Ileana Sånchez
- a Laboratory of Bioinorganic Chemistry, Faculty of Chemistry , University of Havana , Havana, 10400, Cuba
| | - Leticia Sånchez
- a Laboratory of Bioinorganic Chemistry, Faculty of Chemistry , University of Havana , Havana, 10400, Cuba
| |
Collapse
|
35
|
Ferron F, Bussetta C, Dutartre H, Canard B. The modeled structure of the RNA dependent RNA polymerase of GBV-C virus suggests a role for motif E in Flaviviridae RNA polymerases. BMC Bioinformatics 2005; 6:255. [PMID: 16225688 PMCID: PMC1283970 DOI: 10.1186/1471-2105-6-255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022] Open
Abstract
Background The Flaviviridae virus family includes major human and animal pathogens. The RNA dependent RNA polymerase (RdRp) plays a central role in the replication process, and thus is a validated target for antiviral drugs. Despite the increasing structural and enzymatic characterization of viral RdRps, detailed molecular replication mechanisms remain unclear. The hepatitis C virus (HCV) is a major human pathogen difficult to study in cultured cells. The bovine viral diarrhea virus (BVDV) is often used as a surrogate model to screen antiviral drugs against HCV. The structure of BVDV RdRp has been recently published. It presents several differences relative to HCV RdRp. These differences raise questions about the relevance of BVDV as a surrogate model, and cast novel interest on the "GB" virus C (GBV-C). Indeed, GBV-C is genetically closer to HCV than BVDV, and can lead to productive infection of cultured cells. There is no structural data for the GBV-C RdRp yet. Results We show in this study that the GBV-C RdRp is closest to the HCV RdRp. We report a 3D model of the GBV-C RdRp, developed using sequence-to-structure threading and comparative modeling based on the atomic coordinates of the HCV RdRp structure. Analysis of the predicted structural features in the phylogenetic context of the RNA polymerase family allows rationalizing most of the experimental data available. Both available structures and our model are explored to examine the catalytic cleft, allosteric and substrate binding sites. Conclusion Computational methods were used to infer evolutionary relationships and to predict the structure of a viral RNA polymerase. Docking a GTP molecule into the structure allows defining a GTP binding pocket in the GBV-C RdRp, such as that of BVDV. The resulting model suggests a new proposition for the mechanism of RNA synthesis, and may prove useful to design new experiments to implement our knowledge on the initiation mechanism of RNA polymerases.
Collapse
Affiliation(s)
- François Ferron
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille Cedex 09, France
- Boston Biomedical Research Institute, 64, Grove St, Watertown 02472, MA, USA
| | - Cécile Bussetta
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Hélène Dutartre
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
36
|
Tworowski D, Feldman AV, Safro MG. Electrostatic potential of aminoacyl-tRNA synthetase navigates tRNA on its pathway to the binding site. J Mol Biol 2005; 350:866-82. [PMID: 15964014 DOI: 10.1016/j.jmb.2005.05.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/17/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
In the first stage of a diffusion-controlled enzymatic reaction, aminoacyl-tRNA synthetases (aaRSs) interact with cognate tRNAs forming non-specific encounters. The aaRSs catalyzing the same overall aminoacylation reaction vary greatly in subunit organization, structural domain composition and amino acid sequence. The diffusional association of aaRS and tRNA was found to be governed by long-range electrostatic interactions when the homogeneous negative potential of tRNA fits to the patches of positive potential produced by aaRS; one patch for each tRNA substrate molecule. Considering aaRS as a molecule with anisotropic reactivity and on the basis of continuum electrostatics and Smoluchowski's theory, the reaction conditions for tRNA-aaRS diffusional encounters were formulated. The domains, categorized as enzymatically relevant, appeared to be non-essential for field sculpturing at long distances. On the other hand, a set of complementary domains exerts primary control on the aaRS isopotential surface formation. Subdividing the aaRS charged residues into native, conservative and non-conservative subsets, we evaluated the contribution of each group to long-range electrostatic potential. Surprisingly, the electrostatic potential landscapes generated by native and non-conservative subsets are fairly similar, thus suggesting the non-conservative subset is developed specifically for efficient tRNA attraction.
Collapse
Affiliation(s)
- Dmitry Tworowski
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
37
|
Banci L, Benvenuti M, Bertini I, Cabelli DE, Calderone V, Fantoni A, Mangani S, Migliardi M, Viezzoli MS. From an Inactive Prokaryotic SOD Homologue to an Active Protein through Site-Directed Mutagenesis. J Am Chem Soc 2005; 127:13287-92. [PMID: 16173759 DOI: 10.1021/ja052790o] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is known that several prokaryotic protein sequences, characterized by high homology with the eukaryotic Cu,ZnSODs, lack some of the metal ligands. In the present work, we have stepwise reintroduced the two missing copper ligands in the SOD-like protein of Bacillus subtilis, through site-directed mutagenesis. The mutant with three out of the four His that bind copper is not active, whereas the fully reconstituted mutant displays an activity of about 10% that of human Cu,ZnSOD. The mutated proteins have been characterized in solution and in the solid state. In solution, the proteins experience conformational disorder, which is believed to be partly responsible for the decreased enzymatic activity and sheds light on the tendency of several human SOD mutants to introduce mobility in the protein frame. In the crystal, on the contrary, the protein has a well-defined conformation, giving rise to dimers through the coordination of an exogenous zinc ion. The catalytic properties of the double mutant, which might be regarded as a step in an artificial evolution from a nonactive SOD to a fully functioning enzyme, are discussed on the basis of the structural and dynamical properties.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry and Centro Risonanze Magnetiche, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
D'Avanzo N, Cho HC, Tolokh I, Pekhletski R, Tolokh I, Gray C, Goldman S, Backx PH. Conduction through the inward rectifier potassium channel, Kir2.1, is increased by negatively charged extracellular residues. ACTA ACUST UNITED AC 2005; 125:493-503. [PMID: 15824191 PMCID: PMC2217506 DOI: 10.1085/jgp.200409175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ion channel conductance can be influenced by electrostatic effects originating from fixed “surface” charges that are remote from the selectivity filter. To explore whether surface charges contribute to the conductance properties of Kir2.1 channels, unitary conductance was measured in cell-attached recordings of Chinese hamster ovary (CHO) cells transfected with Kir2.1 channels over a range of K+ activities (4.6–293.5 mM) using single-channel measurements as well as nonstationary fluctuation analysis for low K+ activities. K+ ion concentrations were shown to equilibrate across the cell membrane in our studies using the voltage-sensitive dye DiBAC4(5). The dependence of γ on the K+ activity (aK) was fit well by a modified Langmuir binding isotherm, with a nonzero intercept as aK approaches 0 mM, suggesting electrostatic surface charge effects. Following the addition of 100 mM N-methyl-d-glucamine (NMG+), a nonpermeant, nonblocking cation or following pretreatment with 50 mM trimethyloxonium (TMO), a carboxylic acid esterifying agent, the γ–aK relationship did not show nonzero intercepts, suggesting the presence of surface charges formed by glutamate or aspartate residues. Consistent with surface charges in Kir2.1 channels, the rates of current decay induced by Ba2+ block were slowed with the addition of NMG or TMO. Using a molecular model of Kir2.1 channels, three candidate negatively charged residues were identified near the extracellular mouth of the pore and mutated to cysteine (E125C, D152C, and E153C). E153C channels, but not E125C or D152C channels, showed hyperbolic γ–aK relationships going through the origin. Moreover, the addition of MTSES to restore the negative charges in E53C channels reestablished wild-type conductance properties. Our results demonstrate that E153 contributes to the conductance properties of Kir2.1 channels by acting as a surface charge.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Physiology and Medicine, Richard Lewar Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jamal S, Nurizzo D, Boraston AB, Davies GJ. X-ray Crystal Structure of a Non-crystalline Cellulose-specific Carbohydrate-binding Module: CBM28. J Mol Biol 2004; 339:253-8. [PMID: 15136030 DOI: 10.1016/j.jmb.2004.03.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 03/22/2004] [Accepted: 03/26/2004] [Indexed: 11/28/2022]
Abstract
Natural cellulose exists as a composite of different forms, which have historically been broadly characterized as "crystalline" or "amorphous". The recognition of both of these forms of cellulose by the carbohydrate-binding modules (CBM) of microbial glycoside hydrolases is central to natural and efficient biotechnological conversion of plant cell wall biomass. There is increasing evidence that, at least some, individual binding modules target distinct and different regions of non-crystalline "amorphous" cellulose. Competition experiments show that CBM28 modules do not compete with CBM17 modules when binding to non-crystalline cellulose. The structure of the BspCBM28 (http://afmb.cnrs-mrs.fr/CAZY/) module from the Bacillus sp. 1139 family GH5 endoglucanase, comprising a 191 amino acid protein, has therefore been determined at 1.4A resolution using single isomorphous replacement with anomalous scattering methods. The structure reveals a "beta-jelly roll" topology, with high degree of similarity to the structure of CBM17 domains. Sequence and structural conservation strongly suggests that these two families of domains have evolved through gene duplication and subsequent divergence. The ligand-binding site "topographies" of CBMs from families 28, 17 and 4 begins to shed light on the differential recognition of non-crystalline cellulose by multi-modular plant cell wall-degrading enzymes.
Collapse
Affiliation(s)
- Sheelan Jamal
- Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5YW, UK
| | | | | | | |
Collapse
|
40
|
Zhou Q, Cheng Y, Lü H, Zhou W, Li Z. Inhibition of T-cell activation with HLA-DR1/DR4 restricted Non-T-cell stimulating peptides. Hum Immunol 2003; 64:857-65. [PMID: 12941540 DOI: 10.1016/s0198-8859(03)00143-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It has been reported that collagen II (CII) derived peptide CII263-272 induced T-cell activation via its amino acids responsible for T-cell receptor (TCR) recognition. The impact of substitution of the TCR contacting amino acids of CII263-272 on T-cell activation was evaluated in this study using a panel of altered CII263-272 peptides. Computer modeling revealed that the side chains of 263F and 266E in CII263-272 were coupled with amino acids on alpha1 and beta1 chains of HLA-DR1 or -DR4, mainly via hydrogen bonds, whereas the side chains of 267Q and 270K protrude out of the cleft and might be recognized by TCR. Intracellular delivery of the altered peptides, and their binding to HLA-DR1 and -DR4 molecules on cell surface, were demonstrated by confocal microscopy and flow cytometry. The results also revealed that the substitution of 267Q, 268G, 269P, and 270K individually or consecutively by alanine (A) or glycine (G) led to weak or non-T-cell responses. Furthermore, the altered peptides with 270K substitution (270A) or with consecutive substitution of 268G, 269P, and 270K (sub268-270) dramatically inhibited T-cell activation. It is suggested that the altered peptides derived from CII263-272 with substitution of amino acids responsible for TCR contact might be of inhibitory effect on T-cell responses.
Collapse
Affiliation(s)
- Qiang Zhou
- Arthritis Research Institute, People's Hospital, Peking University Medical School, Beijing, China
| | | | | | | | | |
Collapse
|
41
|
Ferreiro DU, de Prat-Gay G. A protein-DNA binding mechanism proceeds through multi-state or two-state parallel pathways. J Mol Biol 2003; 331:89-99. [PMID: 12875838 DOI: 10.1016/s0022-2836(03)00720-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA-binding mechanism of the dimeric C-terminal domain of the papillomavirus E2 protein with its specific DNA target was investigated and shown to proceed through two parallel pathways. A sequential multi-step reaction is initiated by the diffusion-controlled formation of an encounter complex, with no evidence of base sequence discrimination capacity. Following a substantial conformational rearrangement of the protein, a solvent exclusion step leading to the formation of a final protein-DNA complex was identified. This last step involves the largest burial of surface area from the interface and involves the consolidation of the direct readout of the DNA bases. Double-jump stopped-flow experiments allowed us to characterize the sequence of events and demonstrated that a fast-formed consolidated complex can take place through a parallel route. We present the simplest model for the overall mechanism with a description of all the intermediate species in energetic terms.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET. Patricias Argentinas 435, (1405), Buenos Aires, Argentina
| | | |
Collapse
|
42
|
Vincent F, Charnock SJ, Verschueren KHG, Turkenburg JP, Scott DJ, Offen WA, Roberts S, Pell G, Gilbert HJ, Davies GJ, Brannigan JA. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9A resolution. J Mol Biol 2003; 330:593-606. [PMID: 12842474 DOI: 10.1016/s0022-2836(03)00632-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Esterases and deacetylases active on carbohydrate ligands have been classified into 14 families based upon amino acid sequence similarities. Enzymes from carbohydrate esterase family seven (CE-7) are unusual in that they display activity towards both acetylated xylooligosaccharides and the antibiotic, cephalosporin C. The 1.9A structure of the multifunctional CE-7 esterase (hereinafter CAH) from Bacillus subtilis 168 reveals a classical alpha/beta hydrolase fold encased within a 32 hexamer. This is the first example of a hexameric alpha/beta hydrolase and is further evidence of the versatility of this particular fold, which is used in a wide variety of biological contexts. A narrow entrance tunnel leads to the centre of the molecule, where the six active-centre catalytic triads point towards the tunnel interior and thus are sequestered away from cytoplasmic contents. By analogy to self-compartmentalising proteases, the tunnel entrance may function to hinder access of large substrates to the poly-specific active centre. This would explain the observation that the enzyme is active on a variety of small, acetylated molecules. The structure of an active site mutant in complex with the reaction product, acetate, reveals details of the putative oxyanion binding site, and suggests that substrates bind predominantly through non-specific contacts with protein hydrophobic residues. Protein residues involved in catalysis are tethered by interactions with protein excursions from the canonical alpha/beta hydrolase fold. These excursions also mediate quaternary structure maintenance, so it would appear that catalytic competence is only achieved on protein multimerisation. We suggest that the acetyl xylan esterase (EC 3.1.1.72) and cephalosporin C deacetylase (EC 3.1.1.41) enzymes of the CE-7 family represent a single class of proteins with a multifunctional deacetylase activity against a range of small substrates.
Collapse
Affiliation(s)
- Florence Vincent
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
A simple assumption allows the prediction of the numerical value for a 'universal' limiting kinetic rate for wholly diffusion-limited reactions between small neutral molecules and macromolecules. This prediction is compared with appropriate experimental data for binding of ligands to myoglobin and to enzymes. It is shown that in the absence of electrostatic effects, this limit is approached but not exceeded. The model also makes very specific predictions concerning the viscosity and temperature dependence of such reactions.
Collapse
Affiliation(s)
- K E van Holde
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
44
|
Vagedes P, Saenger W, Knapp EW. Driving forces of protein association: the dimer-octamer equilibrium in arylsulfatase A. Biophys J 2002; 83:3066-78. [PMID: 12496078 PMCID: PMC1302386 DOI: 10.1016/s0006-3495(02)75311-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The enzyme arylsulfatase A (ASA) occurs in solution as dimer (alpha(2)) above pH 6 and associates to octamers (alpha(2))(4) below pH 6. The crystal structure of ASA suggests that the (alpha(2))-(alpha(2))(4) equilibrium is regulated by protonation/deprotonation of Glu-424 located at the interface between (alpha(2)) dimers in the octamer. The reason for this assumption is that Glu-424 can be in two different conformers where it forms an intra or intermolecular hydrogen bond, respectively. In the present study we investigate this protein association process theoretically. The electrostatic energies are evaluated by solving the Poisson-Boltzmann equation for the inhomogeneous dielectric of the protein-water system for the dimer and octamer configurations. If a conventional surface energy term is used for the nonelectrostatic interactions, the absolute value of free energy of association fails to agree with experiment. A more detailed treatment that explicitly accounts for hydrophilic and hydrophobic character of the amino acids in the dimer-dimer interface of the octamer can explain this discrepancy qualitatively. The pH dependence of the computed association energy clearly demonstrates that the octamer is more stable at low pH if Glu-424 becomes protonated and forms an intermolecular hydrogen bond. We found a slight preference of Glu-424 to be in a conformation where its acidic group is fully solvent-exposed in the dimer state to form hydrogen bonds with water molecules. Application of the proton linkage model to calculate the association energy from the simulated data yielded results identical to the one obtained from the corresponding direct method.
Collapse
Affiliation(s)
- Peter Vagedes
- Institut für Chemie, Fachbereich Biologie, Pharmazie, Chemie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | | | |
Collapse
|
45
|
Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. CHEMISTRY & BIOLOGY 2002; 9:1337-46. [PMID: 12498887 DOI: 10.1016/s1074-5521(02)00292-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Trehalose is a nonreducing disaccharide that plays a major role in many organisms, most notably in survival and stress responses. In Mycobacterium tuberculosis, it plays a central role as the carbohydrate core of numerous immunogenic glycolipids including "cord factor" (trehalose 6,6'-dimycolate). The classical pathway for trehalose synthesis involves the condensation of UDP-glucose and glucose-6-phosphate to afford trehalose-6-phosphate, catalyzed by the retaining glycosyltransferase OtsA. The configurations of two anomeric positions are set simultaneously, resulting in the formation of a double glycoside. The three-dimensional structure of the Escherichia coli OtsA, in complex with both UDP and glucose-6-phosphate, reveals the active site at the interface of two beta/alpha/beta domains. The overall structure and the intimate details of the catalytic machinery reveal a striking similarity to glycogen phosphorylase, indicating a strong evolutionary link and suggesting a common catalytic mechanism.
Collapse
Affiliation(s)
- Robert P Gibson
- Department of Chemistry, The University of York, York YO10 5YW, Heslington, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Fogolari F, Brigo A, Molinari H. The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 2002; 15:377-92. [PMID: 12501158 DOI: 10.1002/jmr.577] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrostatics plays a fundamental role in virtually all processes involving biomolecules in solution. The Poisson-Boltzmann equation constitutes one of the most fundamental approaches to treat electrostatic effects in solution. The theoretical basis of the Poisson-Boltzmann equation is reviewed and a wide range of applications is presented, including the computation of the electrostatic potential at the solvent-accessible molecular surface, the computation of encounter rates between molecules in solution, the computation of the free energy of association and its salt dependence, the study of pKa shifts and the combination with classical molecular mechanics and dynamics. Theoretical results may be used for rationalizing or predicting experimental results, or for suggesting working hypotheses. An ever-increasing body of successful applications proves that the Poisson-Boltzmann equation is a useful tool for structural biology and complementary to other established experimental and theoretical methodologies.
Collapse
Affiliation(s)
- F Fogolari
- Dipartimento Scientifico Tecnologico, Università degli Studi di Verona, Cá Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | |
Collapse
|
47
|
Charnock SJ, Brown IE, Turkenburg JP, Black GW, Davies GJ. Convergent evolution sheds light on the anti-beta -elimination mechanism common to family 1 and 10 polysaccharide lyases. Proc Natl Acad Sci U S A 2002; 99:12067-72. [PMID: 12221284 PMCID: PMC129399 DOI: 10.1073/pnas.182431199] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Accepted: 07/19/2002] [Indexed: 11/18/2022] Open
Abstract
Enzyme-catalyzed beta-elimination of sugar uronic acids, exemplified by the degradation of plant cell wall pectins, plays an important role in a wide spectrum of biological processes ranging from the recycling of plant biomass through to pathogen virulence. The three-dimensional crystal structure of the catalytic module of a "family PL-10" polysaccharide lyase, Pel10Acm from Cellvibrio japonicus, solved at a resolution of 1.3 A, reveals a new polysaccharide lyase fold and is the first example of a polygalacturonic acid lyase that does not exhibit the "parallel beta-helix" topology. The "Michaelis" complex of an inactive mutant in association with the substrate trigalacturonate/Ca2+ reveals the catalytic machinery harnessed by this polygalacturonate lyase, which displays a stunning resemblance, presumably through convergent evolution, to the tetragalacturonic acid complex observed for a structurally unrelated polygalacturonate lyase from family PL-1. Common coordination of the -1 and +1 subsite saccharide carboxylate groups by a protein-liganded Ca2+ ion, the positioning of an arginine catalytic base in close proximity to the alpha-carbon hydrogen and numerous other conserved enzyme-substrate interactions, considered in light of mutagenesis data for both families, suggest a generic polysaccharide anti-beta-elimination mechanism.
Collapse
Affiliation(s)
- Simon J Charnock
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Carvalho AL, Sanz L, Barettino D, Romero A, Calvete JJ, Romão MJ. Crystal structure of a prostate kallikrein isolated from stallion seminal plasma: a homologue of human PSA. J Mol Biol 2002; 322:325-37. [PMID: 12217694 DOI: 10.1016/s0022-2836(02)00705-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prostate-specific kallikrein, a member of the gene family of serine proteases, was initially discovered in semen and is the most useful serum marker for prostate cancer diagnosis and prognosis. We report the crystal structure at 1.42A resolution of horse prostate kallikrein (HPK). This is the first structure of a serine protease purified from seminal plasma. HPK shares extensive sequence homology with human prostate-specific antigen (PSA), including a predicted chymotrypsin-like specificity, as suggested by the presence of a serine residue at position S1 of the specificity pocket. In contrast to other kallikreins, HPK shows a structurally distinct specificity pocket. Its entrance is blocked by the kallikrein loop, suggesting a possible protective or substrate-selective role for this loop. The HPK structure seems to be in an inactivated state and further processing might be required to allow the binding of substrate molecules. Crystal soaking experiments revealed a binding site for Zn(2+) and Hg(2+), two known PSA inhibitors.
Collapse
Affiliation(s)
- Ana L Carvalho
- REQUIMTE/CQFB, Departamento de Química, Fac de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Boraston AB, Nurizzo D, Notenboom V, Ducros V, Rose DR, Kilburn DG, Davies GJ. Differential oligosaccharide recognition by evolutionarily-related beta-1,4 and beta-1,3 glucan-binding modules. J Mol Biol 2002; 319:1143-56. [PMID: 12079353 DOI: 10.1016/s0022-2836(02)00374-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enzymes active on complex carbohydrate polymers frequently have modular structures in which a catalytic domain is appended to one or more carbohydrate-binding modules (CBMs). Although CBMs have been classified into a number of families based upon sequence, many closely related CBMs are specific for different polysaccharides. In order to provide a structural rationale for the recognition of different polysaccharides by CBMs displaying a conserved fold, we have studied the thermodynamics of binding and three-dimensional structures of the related family 4 CBMs from Cellulomonas fimi Cel9B and Thermotoga maritima Lam16A in complex with their ligands, beta-1,4 and beta-1,3 linked gluco-oligosaccharides, respectively. These two CBMs use a structurally conserved constellation of aromatic and polar amino acid side-chains that interact with sugars in two of the five binding subsites. Differences in the length and conformation of loops in non-conserved regions create binding-site topographies that complement the known solution conformations of their respective ligands. Thermodynamics interpreted in the light of structural information highlights the differential role of water in the interaction of these CBMs with their respective oligosaccharide ligands.
Collapse
Affiliation(s)
- Alisdair B Boraston
- Protein Engineering Network of Centres of Excellence, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | | | |
Collapse
|
50
|
Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002; 47:409-43. [PMID: 12001221 DOI: 10.1002/prot.10115] [Citation(s) in RCA: 771] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The docking field has come of age. The time is ripe to present the principles of docking, reviewing the current state of the field. Two reasons are largely responsible for the maturity of the computational docking area. First, the early optimism that the very presence of the "correct" native conformation within the list of predicted docked conformations signals a near solution to the docking problem, has been replaced by the stark realization of the extreme difficulty of the next scoring/ranking step. Second, in the last couple of years more realistic approaches to handling molecular flexibility in docking schemes have emerged. As in folding, these derive from concepts abstracted from statistical mechanics, namely, populations. Docking and folding are interrelated. From the purely physical standpoint, binding and folding are analogous processes, with similar underlying principles. Computationally, the tools developed for docking will be tremendously useful for folding. For large, multidomain proteins, domain docking is probably the only rational way, mimicking the hierarchical nature of protein folding. The complexity of the problem is huge. Here we divide the computational docking problem into its two separate components. As in folding, solving the docking problem involves efficient search (and matching) algorithms, which cover the relevant conformational space, and selective scoring functions, which are both efficient and effectively discriminate between native and non-native solutions. It is universally recognized that docking of drugs is immensely important. However, protein-protein docking is equally so, relating to recognition, cellular pathways, and macromolecular assemblies. Proteins function when they are bound to other molecules. Consequently, we present the review from both the computational and the biological points of view. Although large, it covers only partially the extensive body of literature, relating to small (drug) and to large protein-protein molecule docking, to rigid and to flexible. Unfortunately, when reviewing these, a major difficulty in assessing the results is the non-uniformity in the formats in which they are presented in the literature. Consequently, we further propose a way to rectify it here.
Collapse
Affiliation(s)
- Inbal Halperin
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|