1
|
Battelle BA, Kempler KE, Saraf SR, Marten CE, Dugger DR, Speiser DI, Oakley TH. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. J Exp Biol 2015; 218:466-79. [PMID: 25524988 PMCID: PMC4317242 DOI: 10.1242/jeb.116087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Karen E Kempler
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Spencer R Saraf
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Catherine E Marten
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Donald R Dugger
- Department of Ophthalmology, University of Florida, Gainesville, FL 32080, USA
| | - Daniel I Speiser
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Todd H Oakley
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Battelle BA. What the clock tells the eye: lessons from an ancient arthropod. Integr Comp Biol 2013; 53:144-53. [PMID: 23639718 DOI: 10.1093/icb/ict020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circadian changes in visual sensitivity have been observed in a wide range of species, vertebrates, and invertebrates, but the processes impacted and the underlying mechanisms largely are unexplored. Among arthropods, effects of circadian signals on vision have been examined in most detail in the lateral compound eye (LE) of the American horseshoe crab, Limulus polyphemus, a chelicerate arthropod. As a consequence of processes influenced by a central circadian clock, Limulus can see at night nearly as well as they do during the day. The effects of the clock on horseshoe crab LE retinas are diverse and include changes in structure, gene expression, and rhabdom biochemistry. An examination of the known effects of circadian rhythms on LEs shows that the effects have three important outcomes: an increase in visual sensitivity at night, a rapid decrease in visual sensitivity at dawn, and maintenance of eyes in a relatively low state of sensitivity during the day, even in the dark. All three outcomes may be critically important for species' survival. Specific effects of circadian rhythms on vision will certainly vary with species and according to life styles. Studies of the circadian regulation of Limulus vision have revealed that these effects can be extremely diverse and profound and suggest that circadian clocks can play a critical role in the ability of animals to adapt to the dramatic daily changes in ambient illumination.
Collapse
Affiliation(s)
- B-A Battelle
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, University of Florida, St Augustine, FL 32080, USA.
| |
Collapse
|
3
|
Battelle BA, Kempler KE, Parker AK, Gaddie CD. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock. ACTA ACUST UNITED AC 2013; 216:1837-49. [PMID: 23393287 DOI: 10.1242/jeb.083519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd, St Augustine, FL 32080-8610, USA.
| | | | | | | |
Collapse
|
4
|
Bolbecker AR, Lim-Kessler CCM, Li J, Swan A, Lewis A, Fleets J, Wasserman GS. Visual efference neuromodulates retinal timing: in vivo roles of octopamine, substance P, circadian phase, and efferent activation in Limulus. J Neurophysiol 2009; 102:1132-8. [PMID: 19535477 DOI: 10.1152/jn.91167.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efferent nerves coursing from the brain to the lateral eye of the horseshoe crab, Limulus polyphemus, increase its nighttime sensitivity to light. They release octopamine, which produces a categorical increase of photoreceptor response duration in vitro. Analogous in vivo timing effects on the electroretinogram (ERG) were demonstrated when octopamine was infiltrated into the eye of an otherwise intact animal; nighttime ERGs were longer than daytime ERGs. Related effects on the ERG were produced by daytime electrical stimulation of efferent fibers. Surprisingly, in a departure from effects predicted solely from in vitro octopamine data, nighttime ERG onsets were also accelerated relative to daytime ERG onsets. Drawing on earlier reports, these remarkable accelerations led to an examination of substance P as another candidate neuromodulator. It demonstrated that infiltrations of either modulator into the lateral eyes of otherwise intact crabs increased the amplitude of ERG responses but that each candidate modulator induced daytime responses that specifically mimicked one of the two particular aspects of the timing differences between day- and nighttime ERGs: octopamine increased the duration of daytime ERGs and substance P infiltrated during the day accelerated response onset. These results indicate that, in addition to octopamine's known role as an efferent neuromodulator that increases nighttime ERG amplitudes, octopamine clearly also affects the timing of photoreceptor responses. But these infiltration data go further and strongly suggest that substance P may also be released into the lateral eye at night, thereby accelerating the ERG's onset in addition to increasing its amplitude.
Collapse
Affiliation(s)
- Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Visual efference in Limulus: in vitro temperature-dependent neuromodulation of photoreceptor potential timing by octopamine and substance P. Vis Neurosci 2008; 25:83-94. [PMID: 18282313 DOI: 10.1017/s0952523808080103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 12/04/2007] [Indexed: 11/07/2022]
Abstract
Efferents from the brain of Limulus course toward its lateral eye and release octopamine and substance P into it. These neurotransmitters have previously been found to act as neuromodulators in this visual system by altering the size of its responses to light. We report here that both also modulate the timing of the receptor potentials (RPs) evoked by brief light flashes and that these timing effects are temperature dependent. Specifically: We extend our previous report that octopamine prolongs ambient RPs in a categorical fashion and here demonstrate that it does the same at colder temperatures. Categorical means that a given RP is either clearly prolonged in a dramatic fashion or its duration is otherwise unremarkable. Octopamine also accelerates the onsets of RPs when they are evoked by weak flashes under cold temperatures. Contrariwise, substance P accelerates RPs at all temperatures and this acceleration dramatically reduces the sluggishness that is otherwise typically present at low temperatures. Quantitative analysis of intensity-response functions also demonstrated that light sensitivity under substance P is significantly augmented. The plain temporal antagonism between these two modulators demonstrates that the visual system of Limulus possesses a well-poised mechanism which could be used to adjust the timing of its neural processing to interface well with the temporal characteristics of those visual stimuli that are currently present.
Collapse
|
6
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|
7
|
Battelle BA. The eyes of Limulus polyphemus (Xiphosura, Chelicerata) and their afferent and efferent projections. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:261-74. [PMID: 18089075 DOI: 10.1016/j.asd.2006.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 06/22/2006] [Indexed: 05/16/2023]
Abstract
The visual system of the American horseshoe crab Limulus polyphemus (L. polyphemus) is an important preparation for studying the photoresponse, the circadian modulation of the photoresponse and visual information processing. Given its unique position in phylogeny the structure of its visual system also informs studies of the relationships among arthropods and the characteristics of eurarthropods. Much has been learned about the organization of the relatively simple L. polyphemus visual system, but much remains to be discovered. This review summarizes current knowledge of the structure of L. polyphemus eyes and the organization of their afferent and efferent projections and points to important unanswered questions.
Collapse
Affiliation(s)
- B-A Battelle
- Whitney Laboratory and Department of Neuroscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA
| |
Collapse
|
8
|
Pieprzyk AR, Weiner WW, Chamberlain SC. Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:643-53. [PMID: 12827424 DOI: 10.1007/s00359-003-0437-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Revised: 05/23/2003] [Accepted: 05/24/2003] [Indexed: 11/28/2022]
Abstract
Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes of the same animal in different conditions facilitated direct comparisons of the effects of diurnal lighting and circadian efferent activity on the daily patterns of sensitivity of the eye. Structural changes appear to account for about half of the total electroretinogram excursion. Circadian input begins about 45 min in advance of sunset and the nighttime sensitivity returns to the daytime values 20 min after sunrise. When the optic nerve is cut, the nighttime sensitivity shows exponential decay over the next 5 or 6 days, consistent with a light-triggered structural light adaptation process unopposed by efferent input. Our results suggest that two mechanisms mediate the increase in lateral eye sensitivity at night-physiological dark adaptation and circadian efferent input. Three mechanisms appear to be involved in mediating the decrease in lateral eye sensitivity during daylight-physiological light adaptation, a continuous structural light adaptation process, and a separate light-triggered, efferent-primed structural light adaptation process.
Collapse
Affiliation(s)
- A R Pieprzyk
- Department of Bioengineering and Neuroscience, Institute for Sensory Research, Syracuse University, Syracuse, NY 13244-5290, USA
| | | | | |
Collapse
|
9
|
Maaswinkel H, Li L. Olfactory input increases visual sensitivity in zebrafish: a possible function for the terminal nerve and dopaminergic interplexiform cells. J Exp Biol 2003; 206:2201-9. [PMID: 12771169 DOI: 10.1242/jeb.00397] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Centrifugal innervation of the neural retina has been documented in many species. In zebrafish Danio rerio, the only so-far described centrifugal pathway originates from terminal nerve (TN) cell bodies that are located in the olfactory bulb. Most of the TN axons terminate in the forebrain and midbrain, but some project via the optic nerve to the neural retina, where they synapse onto dopaminergic interplexiform cells (DA-IPCs). While the anatomical pathway between the olfactory and visual organs has been described, it is unknown if and how olfactory signals influence visual system functions. We demonstrate here that olfactory input is involved in the modulation of visual sensitivity in zebrafish. As determined by a behavioral assay and by electroretinographic (ERG) recording, zebrafish visual sensitivity was increased upon presentation of amino acids as olfactory stimuli. This effect, however, was observed only in the early morning hours when zebrafish are least sensitive to light. The effect of olfactory input on vision was eliminated after lesion of the olfactory bulbs or after the destruction of DA-IPCs. Intraocular injections of a dopamine D(2) but not a D(1) receptor antagonist blocked the effect of olfactory input on visual sensitivity. Although we cannot exclude the involvement of other anatomical pathways, our data suggest that the TN and DA-IPCs are the prime candidates for olfactory modulation of visual sensitivity.
Collapse
Affiliation(s)
- Hans Maaswinkel
- Departments of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
10
|
Abstract
Much is known about the anatomy of Limulus retinal efferent neurons and the structural and functional consequences of their activation. Retinal efferent axons arise from cell bodies located in the cheliceral ganglia of the brain, and they project out all of the optic nerves. Their unique neurosecretory-like terminals contact all cell types in lateral eye ommatidia, the retinular cells of the median eye, and the internal rhabdom of ventral photoreceptors. Lateral and median rudimentary photoreceptors are also innervated. The activity of the efferents is circadian. They are active during the subjective night and inactive during the subjective day. Activation of the efferents drives dramatic and diverse changes in the structure and function of Limulus eyes and causes the sensitivity and responsiveness of the eyes to light to increase at night. Relatively little is known about the molecular mechanisms that produce these structural and functional changes, but one efferent-activated biochemical cascade has been identified. The biogenic amine octopamine is released from efferent terminals, and an octopamine-stimulated rise in cAMP in photoreceptors, with a subsequent activation of cAMP-dependent protein kinase, mediates many of the known effects of efferent input. A photoreceptor-specific protein, myosin III, is phosphorylated in response to efferent input; this protein may play a role in the efferent stimulated changes in photoreceptor structure and function. Anatomical, biophysical, biochemical, and molecular approaches are now being effectively combined in studies of Limulus eyes; thus, this preparation should be particularly useful for further detailed investigations of mechanisms underlying the modulation of primary sensory cells by efferent input.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, Florida 32080, USA.
| |
Collapse
|
11
|
Sacunas RB, Papuga MO, Malone MA, Pearson AC, Marjanovic M, Stroope DG, Weiner WW, Chamberlain SC, Battelle BA. Multiple mechanisms of rhabdom shedding in the lateral eye of Limulus polyphemus. J Comp Neurol 2002; 449:26-42. [PMID: 12115691 DOI: 10.1002/cne.10263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rhabdom shedding in horseshoe crab lateral eye photoreceptors was studied with anti-opsin and anti-arrestin immunocytochemistry. Two, possibly three, distinct shedding mechanisms were revealed in animals maintained in natural lighting. Transient rhabdom shedding, triggered by dawn, is a brief, synchronous event that removes up to 10% of the rhabdom membrane. Whorls of rhabdomeral membrane break into vesicles and form compact multivesicular bodies. These debris particles are immunoreactive for opsin and are of a relatively uniform size, averaging approximately 2 microm(2) in area. Transient shedding requires that input from circadian efferent fibers to the retina precedes the light trigger, and cutting the optic nerve blocks efferent input and transient shedding. Light-driven rhabdom shedding is a progressive process. Rhabdomeral membrane is removed by coated vesicles that accumulate into loosely packed multivesicular bodies. These debris particles label with antibodies directed against opsin, arrestin, and adaptin, and they have a large distribution of sizes, averaging almost 6 microm(2) in area and ranging up to 25 microm(2) or more. The amount of rhabdomeral membrane removed by light-driven shedding has seasonal variation and depends on latitude. Light-driven shedding does not require circadian efferent input. A possible third shedding mechanism, light-independent shedding, is observed when transient shedding is blocked either by 48 hours of darkness or by cutting the optic nerve. Small particles, averaging 1.8 microm(2) in area, exhibiting opsin but not arrestin immunoreactivity can then be found in the cytoplasm surrounding the rhabdom. The nature of light-independent shedding is not yet clear.
Collapse
Affiliation(s)
- Robert B Sacunas
- Department of Bioengineering and Neuroscience, Institute for Sensory Research, Syracuse University, Syracuse, NY 13244-5290, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Barlow R. Circadian and efferent modulation of visual sensitivity. PROGRESS IN BRAIN RESEARCH 2001; 131:487-503. [PMID: 11420965 DOI: 10.1016/s0079-6123(01)31039-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Barlow
- Center for Vision Research, Department of Ophthalmology, Upstate Medical University, 750 Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
13
|
Abstract
Phototransduction in Drosophila is mediated by a G-protein-coupled phospholipase C transduction cascade in which each absorbed photon generates a discrete electrical event, the quantum bump. In whole-cell voltage-clamp recordings, cAMP, as well as its nonhydrolyzable and membrane-permeant analogs 8-bromo-cAMP (8-Br-cAMP) and dibutyryl-cAMP, slowed down the macroscopic light response by increasing quantum bump latency, without changes in bump amplitude or duration. In contrast, cGMP or 8-Br-cGMP had no effect on light response amplitude or kinetics. None of the cyclic nucleotides activated any channels in the plasma membrane. The effects of cAMP were mimicked by application of the non-specific phosphodiesterase inhibitor IBMX and the adenylyl cyclase activator forskolin; zaprinast, a specific cGMP-phosphodiesterase inhibitor, was ineffective. Bump latency was also increased by targeted expression of either an activated G(s) alpha subunit, which increased endogenous adenylyl cyclase activity, or an activated catalytic protein kinase A (PKA) subunit. The action of IBMX was blocked by pretreatment with the PKA inhibitor H-89. The effects of cAMP were abolished in mutants of the ninaC gene, suggesting this nonconventional myosin as a possible target for PKA-mediated phosphorylation. Dopamine (10 microM) and octopamine (100 microM) mimicked the effects of cAMP. These results indicate the existence of a G-protein-coupled adenylyl cyclase pathway in Drosophila photoreceptors, which modulates the phospholipase C-based phototransduction cascade.
Collapse
|
14
|
Abstract
The visual system of the fly's compound eye undergoes a number of cyclical day/night changes that have a circadian basis. Such responses are seen in the synaptic terminals of the photoreceptors and in their large monopolar-cell interneurons in the first optic neuropile, or lamina. These changes include, in the photoreceptor terminals, rhythms in the numbers of synapses and the vertical migration of screening pigment; and, in the monopolar cells L1 and L2, a rhythm in the transients of the electroretinogram and in the cyclical swelling of L1 and L2 lamina axons, as well as of the epithelial glia that surround these. Some of these changes are seen in both the housefly and the fruit fly, but the time-course of such changes differs between the two species. Many of the changes are influenced by the injection of various transmitter candidates, in a direction that can be reconciled with the possibility of normal endogenous release of two substances, 5HT from the neurites of 5HT-immunoreactive neurons, and pigment dispersing factor peptide from the neurites of PDH cells. Consistent with this interpretation, the immunoreactive varicosities of PDH cells exhibit size changes attributable to their cyclical release of peptide, or to its cyclical synthesis and/or transport from the PDH cell somata. Thus, neurotransmitter substances not only have rapid electrophysiological actions in the optic lobe, but also longer-lasting, presumably indirect, neuromodulatory actions, which are manifest as structural changes among the lamina's neurons and synapses. These actions involve an interplay between aminergic and peptidergic systems, but the exact role and especially the site of action of each has still to be elucidated.
Collapse
Affiliation(s)
- I A Meinertzhagen
- Neuroscience Institute, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
15
|
Battelle BA, Calman BG, Hart MK. Cellular distributions and functions of histamine, octopamine, and serotonin in the peripheral visual system, brain, and circumesophageal ring of the horseshoe crab Limulus polyphemus. Microsc Res Tech 1999; 44:70-80. [PMID: 10084827 DOI: 10.1002/(sici)1097-0029(19990115/01)44:2/3<70::aid-jemt2>3.0.co;2-v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The data reviewed here show that histamine, octopamine, and serotonin are abundant in the visual system of the horseshoe crab Limulus polyphemus. Anatomical and biochemical evidence, including new biochemical data presented here, indicates that histamine is a neurotransmitter in primary retinal afferents, and that it may be involved in visual information processing within the lateral eye. The presence of histamine in neurons of the central nervous system outside of the visual centers suggests that this amine also has functions unrelated to vision. However, the physiological actions of histamine in the Limulus nervous system are not yet known. Octopamine is present in and released from the axons of neurons that transmit circadian information from the brain to the eyes, and octopamine mimics the actions of circadian input on many retinal functions. In addition, octopamine probably has major functions in other parts of the nervous system as octopamine immunoreactive processes are widely distributed in the central nervous system and in peripheral motor nerves. Indeed, octopamine modulates functions of the heart and exoskeletal muscles as well as the eyes. A surprising finding is that although octopamine is a circulating neurohormone in Limulus, there is no structural evidence for its release into the hemolymph from central sites. The distribution of serotonin in Limulus brain suggests this amine modulates the central processing of visual information. Serotonin modulates cholinergic synapses in the central nervous system, but nothing further is known about its physiological actions.
Collapse
Affiliation(s)
- B A Battelle
- Department of Neuroscience, University of Florida, St. Augustine 32086, USA.
| | | | | |
Collapse
|
16
|
Abstract
The lateral eyes of the horseshoe crab Limulus polyphemus undergo dramatic daily changes in structure and function that lead to enhanced retinal sensitivity and responsiveness to light at night. These changes are controlled by a circadian neural input that alters photoreceptor and pigment cell shape, pigment migration, and phototransduction. Clock input to the eyes also regulates photomechanical movements within photoreceptors, including membrane shedding. The biochemical mechanisms underlying these diverse effects of the clock on the retina are unknown, but a major biochemical consequence of activating clock input to the eyes is a rise in the concentration of cAMP in photoreceptors and the phosphorylation of a 122 kDa visual system-specific protein. We have cloned and sequenced cDNA encoding the clock-regulated 122 kDa phosphoprotein and show here that it is a new member of the myosin III family. We report that Limulus myosin III is similar to other unconventional myosins in that it binds to calmodulin in the absence of Ca2+; it is novel in that it is phosphorylated within its myosin globular head, probably by cAMP-dependent protein kinase. The protein is present throughout the photoreceptor, including the region occupied by the photosensitive rhabdom. We propose that the phosphorylation of Limulus myosin III is involved in one or more of the structural and functional changes that occur in Limulus eyes in response to clock input.
Collapse
|
17
|
Chamberlain SC. Circadian rhythms in the horseshoe crab lateral eye: signal transduction and photostasis. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00077-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
|
19
|
Renninger GH, Farrell CA. Modulation of function in Limulus compound eye photoreceptors by octopamine enantiomers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1996. [DOI: 10.1016/1011-1344(96)07304-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Ford BD, Dorsey WC, Townsel JG. Neurotransmitter and neuropeptide modulation of high affinity choline uptake in Limulus brain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1995; 111:147-53. [PMID: 7735906 DOI: 10.1016/0300-9629(95)98531-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of neurotransmitters in the modulation of the sodium-dependent high affinity choline uptake system (HAChUS) of the horseshoe crab, Limulus polyphemus has been investigated utilizing a tissue slice preparation. Choline uptake was significantly decreased by carbachol but unaffected by atropine and d-tubocurarine. The muscarinic agonist oxotremorine decreased choline uptake by 30.4% while the muscarinic antagonist, pirenzepine, increased uptake by 29.6%. Applied in combination, pirenzepine and oxotremorine abolished their individual effects resulting in control values for choline uptake. The non-cholinergic transmitters octopamine and serotonin significantly enhanced choline uptake. The neuropeptide proctolin elicited a 20% increase in choline transport whereas Phe-Met-Arg-Phe (FMRF) amide was without effect. This study demonstrates that neurotransmitters and neuropeptides modulate the HAChUS, possibly through specific receptor-mediated second messenger systems.
Collapse
Affiliation(s)
- B D Ford
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
21
|
Hornstein EP, Sambursky DL, Chamberlain SC. Histochemical localization of acetylcholinesterase in the lateral eye and brain of Limulus polyphemus: might acetylcholine be a neurotransmitter for lateral inhibition in the lateral eye? Vis Neurosci 1994; 11:989-1001. [PMID: 7947410 DOI: 10.1017/s0952523800003928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The distribution of acetylcholinesterase (AChE) in the lateral eye and brain of the horseshoe crab was investigated with histochemical means using standard controls to eliminate butyrylcholinesterase and nonspecific staining. Intense staining was observed in the neural plexus of the lateral compound eye, in the lateral optic nerve, and in various neuropils of the brain. Nerve fibers with moderate to weak staining were widespread in the brain. No somata were stained in either the lateral eye or the brain. The distribution of acetylcholinesterase in the supraesophageal ganglia and nerves of the giant barnacle was also investigated for comparison. Although both the median optic nerve of the barnacle and the lateral optic nerve of the horseshoe crab appear to contain the fibers of histaminergic neurons, only the lateral optic nerve of the horseshoe crab shows AChE staining. Other parts of the barnacle nervous system, however, showed intense AChE staining. These results along with the histochemical controls eliminate the possibility that some molecule found in histaminergic neurons accounted for the AChE staining but support the possibility that acetylcholine might be involved as a neurotransmitter in lateral inhibition in the horseshoe crab retina. Two reasonable neurotransmitter candidates for lateral inhibition, histamine and acetylcholine, must now be investigated.
Collapse
Affiliation(s)
- E P Hornstein
- Department of Bioengineering and Neuroscience, Syracuse University, NY
| | | | | |
Collapse
|
22
|
Zhang HJ, Jinks RN, Wishart AC, Battelle BA, Chamberlain SC, Fahrenbach WH, Kass L. An enzymatically enhanced recording technique for Limulus ventral photoreceptors: physiology, biochemistry, and morphology. Vis Neurosci 1994; 11:41-52. [PMID: 8011582 DOI: 10.1017/s0952523800011093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enzymatic treatments that facilitated whole-cell electrophysiological recordings were used on Limulus ventral photoreceptor cells. Ventral optic nerves were treated with either collagenase or collagenase, papain, and trypsin. Either treatment greatly increased the ease of making whole-cell recordings of transmembrane potentials. Light responses obtained from enzyme-treated photoreceptor cells were nearly identical to results obtained without enzyme treatment and compared favorably to in vivo recordings of light responses from the compound lateral eye. Enzyme-treated cells also responded to applied octopamine, as do untreated cells, with an increased phosphorylation of a 122-kD protein. This suggests that the external receptors and internal biochemical machinery required for at least one second-messenger cascade are present after enzyme treatment. The morphological integrity of enzyme-treated photoreceptor cells was examined with light microscopy as well as with scanning and transmission electron microscopy. In general, we found that each enzyme treatment greatly reduced the integrity of the layers of glial cells that surround the photoreceptor cells thereby making these cells easily accessible for whole-cell recordings of transmembrane potentials. The morphology of the rhabdomere was normal after enzymatic degradation of the adjacent glial covering.
Collapse
Affiliation(s)
- H J Zhang
- Department of Zoology, University of Maine, Orono 04469
| | | | | | | | | | | | | |
Collapse
|
23
|
Hanna WJ, Johnson EC, Chaves D, Renninger GH. Photoreceptor cells dissociated from the compound lateral eye of the horseshoe crab, Limulus polyphemus, II: Function. Vis Neurosci 1993; 10:609-20. [PMID: 7687862 DOI: 10.1017/s0952523800005319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A combination of enzymatic digestions and mechanical disruption was used to isolate photoreceptor cells from the compound lateral eye of the horseshoe crab, Limulus polyphemus. The cells were maintained in a culture medium and tested for function using whole-cell and cell-attached patch configurations of the gigaseal technique. The cells dissociated from the eye generated spontaneous voltage and current bumps in the dark, and depolarized in a graded fashion to increasing intensities of light over several decades, producing responses similar to those of cells in vivo. Currents evoked during voltage clamp were similar to those in ventral photoreceptor cells of Limulus, although transient currents in the dark- and light-activated currents were smaller in isolated lateral eye cells, perhaps because of the slow speed and spatial nonuniformity of the clamp in these large cells. In addition to isolated cells, dissociation of the compound eye produced small clusters of cells and isolated ommatidia which were also tested for function. Comparison of the electrical characteristics of isolated cells with those of cells in small clusters and in their ommatidial matrix suggests that the electrical junctions normally connecting photoreceptor cells within an ommatidium are functional in the latter groups, but not in isolated cells. Cell-attached patches of rhabdomeral membrane of isolated cells contained light-activated channels, resembling those observed in ventral photoreceptor cells, but no voltage-activated channels. Similar patches of arhabdomeral membrane contained voltage-activated channels, but no light-activated channels. We conclude that this preparation is suitable for studies of processes involved in generating the light response in invertebrate photoreceptor cells.
Collapse
Affiliation(s)
- W J Hanna
- Department of Physics, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Seyfarth EA, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HG. Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 1993; 611:197-206. [PMID: 8334514 DOI: 10.1016/0006-8993(93)90503-f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using antisera directed against octopamine (OA), we identified and mapped octopamine-immunoreactive (OA-ir) neurons and their projections in the fused, central ganglion complex of wandering spiders, Cupiennius salei. Labeled cell bodies are concentrated in the subesophageal ganglion complex (SEG) where they are arranged serially in ventral, midline clusters. OA-ir processes from these cells project dorsally. Some neurites end close to segmental septa; others merge into longitudinal tracts connecting the neuromeres. Labeled collaterals leaving these tracts project into peripheral neuropil. In the brain, OA-ir somata were found only in the two cheliceral hemiganglia, where a cluster of 4-5 relatively large cells (soma diameter 25 microns) lies next to a group of small somata (diameter < 10 microns). Neurites originating from the large somata descend into the SEG and merge into longitudinal tracts. The central body of the brain contains profuse ascending projections. Except for fine varicosities that are confined to the roots of nerves, we found no OA-ir fibers leaving the central nervous system (CNS). Within the CNS, however, OA-ir varicosities are concentrated in neuropil and near hemolymph spaces. This distribution suggests that OA acts as a neurotransmitter and/or local neuromodulator at central synapses, while it is also released into the hemolymph and presumably acts hormonally at peripheral sites. Using high-pressure liquid chromatography measurements, the hemolymph was in fact found to contain 12-40 nM of free octopamine.
Collapse
Affiliation(s)
- E A Seyfarth
- Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
25
|
Kass L, Barlow RB. A circadian clock in the Limulus brain transmits synchronous efferent signals to all eyes. Vis Neurosci 1992; 9:493-504. [PMID: 1450102 DOI: 10.1017/s0952523800011299] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A circadian clock in the brain of the horseshoe crab, Limulus polyphemus, has an important role in the function of the peripheral visual system. At night, the clock transmits neural activity to the lateral, ventral, and median eyes via efferent optic nerve fibers. The activity occurs in synchronous bursts (maximum rate of 2 bursts/s) with individual efferent fibers contributing a single spike in each burst. The circadian efferent activity originates in the protocerebrum. Lateral connections synchronize the efferent activity recorded from the two halves of the protocerebrum, suggesting the existence of bilateral circadian oscillators. Circadian efferent activity survives excision of the brain and isolation of the protocerebrum. We conclude that circadian clock and its complex neural circuitry are fundamental components of the Limulus visual system.
Collapse
Affiliation(s)
- L Kass
- Marine Biological Laboratory, Woods Hole, MA
| | | |
Collapse
|
26
|
Lee HM, Wyse GA. Immunocytochemical localization of octopamine in the central nervous system of Limulus polyphemus: a light and electron microscopic study. J Comp Neurol 1991; 307:683-94. [PMID: 1869636 DOI: 10.1002/cne.903070413] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the distribution and localization of the monoamine octopamine in the prosomal central nervous system of the horseshoe crab, Limulus polyphemus, by light and electron microscopic immunocytochemistry. Sixteen discrete clusters of octopamine-like immunoreactive neurons are situated bilaterally in the tritocerebrum and circumesophageal ring of fused thoracic ganglia. Two pairs of anterior clusters are located laterally in the cheliceral and first pedal ganglia; the remaining six pairs of clusters are located ventromedially in the second through fifth pedal ganglia, chilarial ganglia, and opercular ganglia. The immunoreactive somata range from about 40 to 100 microns in diameter and occur in clusters of 12-24 cells. There is extensive distribution of octopamine-immunoreactive nerve fibers in Limulus; dense fiber tracts course anteroposteriorly through the central nervous system, and most neuropil regions are innervated by immunoreactive processes and terminals. This wide distribution of octopamine-like immunoreactivity provides an anatomical basis for the several effects of octopamine in Limulus. We determined the subcellular localization of octopamine by postembedding immunoelectron microscopy. The immunogold-labelled terminals are morphologically unique; they contain large, distinctively shaped dense-core granules, typically cylindrical with a prominent indentation in one end. These large granules are 100-150 nm in diameter and range from 150-400 nm in length. The dense labelling of these unusual granules with immunogold particles indicates that octopamine is sequestered in or associated with the granules.
Collapse
Affiliation(s)
- H M Lee
- Department of Zoology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
27
|
Calman BG, Battelle BA. Central origin of the efferent neurons projecting to the eyes of Limulus polyphemus. Vis Neurosci 1991; 6:481-95. [PMID: 2069900 DOI: 10.1017/s0952523800001334] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circadian rhythms affect the anatomy, physiology, and biochemistry of the visual cells in the eyes of the horseshoe crab (Limulus polyphemus). These rhythms are mediated by the activity of efferent neurons that project from the central nervous system to all of the eyes. In this study, the optic nerves of Limulus were backfilled with Neurobiotin revealing the location of efferent cell bodies and their projections through the central nervous system. We propose that this efferent system mediates the circadian changes in visual functions in Limulus. Whether these cells are the circadian pacemaker neurons is unknown. The cell bodies of the efferent neurons are ovoid and have a diameter of 40-80 microns. They lie within the cheliceral ganglion of the tritocerebrum, just posterior to the protocerebrum. This ganglion is on the lateral edge of the circumesophageal ring, near the middle of the dorsal-ventral axis of the ring. Each optic nerve contains axons from both ipsilateral and contralateral efferent cells, and some, possibly all, of them project bilaterally and to more than one type of optic nerve. The efferent axons form a tract that projects anteriorly from the cell bodies to the protocerebrum, and bifurcates just lateral to the protocerebral bridge. One branch crosses the midline and projects anteriorly to the optic tract and medulla on the side contralateral to the cell of origin; the other branch follows a symmetric pathway on the ipsilateral side. Small branches arising from the major efferent axons in the optic tract project through the ocellar ganglia to the median optic nerves. The efferent axons branch again in the medulla, and some of these branches innervate the ventral optic nerves. The major branches of the efferent axons continue through the lamina and enter the lateral optic nerve.
Collapse
Affiliation(s)
- B G Calman
- Whitney Laboratory, University of Florida, St. Augustine 32086
| | | |
Collapse
|
28
|
Battelle BA, Calman BG, Andrews AW, Grieco FD, Mleziva MB, Callaway JC, Stuart AE. Histamine: a putative afferent neurotransmitter in Limulus eyes. J Comp Neurol 1991; 305:527-42. [PMID: 1675223 DOI: 10.1002/cne.903050402] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Histamine has been proposed as a photoreceptor neurotransmitter in two major groups of arthropods, the insects and the crustacea. In this study biochemical and immunocytochemical approaches were used to examine the synthesis, endogenous content, and cellular distribution of histamine in the visual system of the horseshoe crab Limulus polyphemus, an ancient chelicerate arthropod. Studies with this animal have been critical to our understanding of the basic processes of vision. High-voltage paper electrophoresis was used to assay for histamine synthesis in Limulus tissues incubated with radiolabeled histidine; histamine synthesis was detected in the lateral, median, and ventral eyes and optic nerves and in the visual centers in the brain. Endogenous histamine, assayed as its orthophthalaldehyde derivative by high-performance liquid chromatography and electrochemical detection, was also detected in these tissues. Immunocytochemical analyses, with an antiserum directed against a protein conjugate of histamine, revealed histamine-like immunoreactivity in the somata of photoreceptors in each of the eyes and in the regions of the brain where the photoreceptors terminate. Histamine-like immunoreactivity was also intense in the cell bodies and axon collaterals of eccentric cells in the lateral eye and in eccentric cell projections in the brain. These results show that histamine is a major biogenic amine in the Limulus visual system, and they suggest that this amine is involved in transmitting visual information from the eyes to the brain and in lateral inhibition, a fundamental mechanism for processing visual information in the lateral eye.
Collapse
Affiliation(s)
- B A Battelle
- Whitney Laboratory, University of Florida, St. Augustine 32086
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The effect of unilateral optic nerve section on the susceptibility of rat photoreceptors to damage by constant light was studied. Optic nerves of albino rats were cut intracranially by a ventral approach, so as not to interfere with structures in the orbit of the eye, with the brain or with the blood supply to the retina. Two separate experiments were performed on unilaterally optic nerve sectioned rats from two different sources. One group was purchased from a commercial supplier and the other group was born and raised in 3 lux cyclic light in our laboratory. For 1-4 weeks after surgery they were exposed to either 1000 lux for 24 hr or 80 lux for 48 hr. Light damage was quantified by measuring the outer nuclear layer area remaining in histological sections through the vertical meridian of the retina. It was found that retinas with optic nerves cut suffered substantially less damage from light than did those with intact optic nerves. Sham operated rats suffered the same amount of damage as did the optic nerve intact retinas of rats with one nerve cut. The extent of protection was greatest in the region previously shown to be most susceptible to damage. The protection afforded by optic nerve section could not be explained on the basis of behavior or rhodopsin photochemistry. The possible role of heat-shock proteins and a neuromodulator is discussed.
Collapse
Affiliation(s)
- R A Bush
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32303-3015
| | | |
Collapse
|
30
|
Herman KG. Light-stimulated rhabdom turnover in Limulus ventral photoreceptors maintained in vitro. J Comp Neurol 1991; 303:11-21. [PMID: 2005235 DOI: 10.1002/cne.903030103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of light in turnover of photosensitive membranes was studied in isolated photoreceptors maintained in vitro. Ventral photoreceptors of the horseshoe crab, Limulus polyphemus, were used since they have been the subjects of many in vitro physiological studies. This study shows that the two classes of ventral photoreceptors, the large and small photoreceptors (Herman: companion paper), differ in their morphological response to light. The rhabdom of small photoreceptors is remarkable for its regularity, independent of lighting condition. The photosensitive microvilli of the rhabdom of small photoreceptors are narrow and almost always tightly packed in a hexagonal arrangement. In contrast, the morphology of the rhabdom of the large ventral photoreceptors is different in the dark and in the light, and the rhabdom undergoes turnover during lighting transitions. When fully dark-adapted, the photosensitive microvilli of large photoreceptors are narrow and well organized, sometimes in a crystalline array. However, in the light-adapted state, the microvilli are much thicker and very irregular. The transitions between the dark and light-adapted states, examined at midday, are rapid. After 5 minutes light exposure, the microvilli are dilated at their bases and shed membranes are present in the cytoplasm. By 30 minutes after light onset, the appearance of the rhabdom of large photoreceptors is indistinguishable from fully light-adapted cells. The transition to the dark-adapted state is equally rapid. Even at 5 or 12 minutes after light offset, most microvilli are narrow and quite regular, and by 30 minutes, the rhabdom usually appears to be fully dark-adapted. These experiments show that both the synthetic and degradative phases of rhabdom renewal take place in isolated photoreceptors. No efferent neural activity is required to initiate turnover; rather, changes in illumination alone are sufficient to generate rhabdom turnover in large ventral photoreceptors in vitro.
Collapse
Affiliation(s)
- K G Herman
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Chapter 12 Regulation of retinal functions by octopaminergic efferent neurons in Limulus. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0278-4327(91)90017-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Abstract
Ventral photoreceptors of the horseshoe crab, Limulus polyphemus, have been important in the study of visual transduction, due to their large size and hardiness in vitro. This study shows that there are two classes of ventral photoreceptors that can be distinguished on the basis of differences in cellular and nuclear dimensions, soma and rhabdom morphology, and axon size. Large protoreceptors, which have been the subject of many physiological studies, have an extensive superficial rhabdom, a nuclear diameter of 20-24 microns, and measure 100-150 microns in length. In contrast, small photoreceptors measure 45-65 microns in length and have a nucleus 13-16 microns across. Small photoreceptors are found singly or in association with large photoreceptors. The rhabdom of isolated small photoreceptors is surrounded by a calyx originating from the soma, so that it appears to be located internally. The rhabdomeral lobe of small photoreceptors associated with large photoreceptors characteristically is divided into several segments, each of which invaginates the rhabdomeral lobe of the adjacent large photoreceptor. The entire external rhabdom of the associated small photoreceptor abuts the rhabdom of the large photoreceptor. Morphometric analysis of the ventral nerves shows that there are two size classes of photoreceptor axons, corresponding to the two classes of photoreceptors. The numbers of axons in each size class are nearly equal. Unlike the ventral eye, none of the other eyes of Limulus have been reported to have more than one morphological class of photoreceptor. Functional differences between the two classes of ventral photoreceptors are suggested by experiments, reported in the accompanying paper (Herman (1991), J. Comp. Neurol. 303:11-21), showing that the large photoreceptors exhibit light-stimulated rhabdom turnover while the small ones do not.
Collapse
Affiliation(s)
- K G Herman
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
33
|
Kaplan E, Barlow RB, Renninger G, Purpura K. Circadian rhythms in Limulus photoreceptors. II. Quantum bumps. J Gen Physiol 1990; 96:665-85. [PMID: 2230712 PMCID: PMC2229002 DOI: 10.1085/jgp.96.3.665] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The light response of the lateral eye of the horseshoe crab, Limulus polyphemus, increases at night, while the frequency of spontaneous discrete fluctuations of its photoreceptor membrane potential (quantum bumps) decreases. These changes are controlled by a circadian clock in the brain, which transmits activity to the eye via efferent optic nerve fibers (Barlow, R. B., S. J. Bolanski, and M. L Brachman. 1977. Science. 197:86-89). Here we report the results of experiments in which we recorded from single Limulus photoreceptors in vivo for several days and studied in detail changes in their physiological and membrane properties. We found that: (a) The shape of (voltage) quantum bumps changes with the time of day. At night, spontaneous bumps and bumps evoked by dim light are prolonged. The return of the membrane potential to its resting level is delayed, but the rise time of the bump is unaffected. On average, the area under a bump is 2.4 times greater at night than during the day. (b) The rate of spontaneous bumps decreases at night by roughly a factor of 3, but their amplitude distribution remains unchanged. (c) The resting potential and resistance of the photoreceptor membrane do not change with the time of day. (d) the relationship between injected current and impulse rate of the second order neuron, the eccentric cell, also remains unchanged with the time of day. Thus the efferent input from the brain to the retina modulates some of the membrane properties of photoreceptor cells. Our findings suggest that the efferent input acts on ionic channels in the membrane to increase the sensitivity of the photoreceptor to light.
Collapse
Affiliation(s)
- E Kaplan
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|
34
|
Kier CK, Chamberlain SC. Dual controls for screening pigment movement in photoreceptors of the Limulus lateral eye: circadian efferent input and light. Vis Neurosci 1990; 4:237-55. [PMID: 2078504 DOI: 10.1017/s0952523800003382] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The radial and longitudinal distribution of retinular screening pigment in the lateral eye of the horseshoe crab Limulus polyphemus was quantified under a variety of experimental conditions. Pigment position was characterized by the center and width of the radial distribution at four levels in the ommatidium. Under diurnal lighting, intact animals show movement of pigment granules from the periphery of the retinular cell at night towards the junction of the arhabdomeral and rhabdomeral segments of the retinular cell in the day. In constant darkness, intact animals exhibit the same circadian rhythm in pigment migration. Animals with bilaterally cut optic nerves do not receive circadian efferent input from the brain and show little pigment movement in diurnal lighting. In all of these cases, pigment was either aggregated in a band just peripheral to the rays of the rhabdom or dispersed to the periphery of the retinular cell. When dark-adapted animals are exposed to a sudden large light increment, pigment moves inward between the rays of the rhabdom. During the day, this inward response begins immediately and reverses as the ommatidial aperture begins to close. At night, the onset of the inward movement is delayed, but then occurs more rapidly than during the day. No significant longitudinal movement of photoreceptor screening pigment was detected under any of these experimental conditions. Two opposing mechanisms control the movement of screening pigment in these cells. Release of neurotransmitters from the circadian efferents causes outward movement; large increments of light cause inward movement. In the absence of sudden changes in light intensity, circadian efferent input, not cyclic lighting, appears to be the major determinant of screening pigment position. A sudden and large increment of light triggers the rapid inward movement which appears to be a protective mechanism optimized for daytime performance.
Collapse
Affiliation(s)
- C K Kier
- Department of Bioengineering, Syracuse University, NY 13244-5290
| | | |
Collapse
|
35
|
Lewandowski TJ, Lehman HK, Chamberlain SC. Immunoreactivity in Limulus: III. Morphological and biochemical studies of FMRFamide-like immunoreactivity and colocalized substance P-like immunoreactivity in the brain and lateral eye. J Comp Neurol 1989; 288:136-53. [PMID: 2477411 DOI: 10.1002/cne.902880111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FMRFamide-like immunoreactivity (FLI) and the colocalization of FMRFamide and substance P-like (SPLI) immunoreactivities were examined in the brain and lateral eye of the horseshoe crab with FITC- and TRITC-labeled secondary antibody techniques. In the brain, fibers with FLI were localized in the neuropils of the lamina, medulla, central body, corpus pedunculatum, optic tract, circumesophageal connective, and central neuropil. An extensive network of reactive fibers innervatives the brain's vascular sheath. Somata with FLI were found in the dorsal medial group, dorsal lateral posterior groups #1 and #2, and ventral posterior lateral groups #1 and #2. Several distinct subgroups of reactive somata were noted in both the medullar and ventral medial groups. The distribution of fibers in the brain with colocalized FLI and SPLI includes those which innervate the vascular sheath and widespread populations of small-diameter beaded fibers in the central neuropil and circumesophageal connective. Somata with colocalized FLI and SPLI constitute minority populations in the medullar and dorsal medial groups but form the majority population of a subgroup in the ventral medial group. Overall localization of SPLI was reevaluated and is reported here according to the nomenclature of the new Chamberlain and Wyse brain atlas. In addition to those previously reported, somata with SPLI were found in the dorsal lateral posterior groups #1 and #2, the ventral lateral posterior groups #1 and #2, and several distinct subgroups of the medial and ventral medial groups. In the retina of the lateral eye, fibers with both FLI and SPLI ramify in the lateral plexus and ultimately innervate the corneal epidermis. Brain homogenates were examined for immunoreactive (ir) FMRFamide and ir-substance P with radioimmunoassay techniques. Ir-FMRFamide and ir-substance P eluted in different fractions from both gel filtration chromatography and HPLC. Furthermore, the binding curves for both substances were similar to those of the corresponding synthetic compounds. Brain homogenates were also bioassayed on the lateral eye. Three gel filtration fractions mimic natural circadian activity by increasing the sensitivity of the lateral eye, but they were not coincident with ir-FMRFamide or ir-substance P. Although it is not completely resolved what the active molecules in these fractions are, it is clear that neither ir-FMRFamide nor ir-substance P is a possible candidate.
Collapse
Affiliation(s)
- T J Lewandowski
- Department of Bioengineering, Syracuse University, New York 13244-5290
| | | | | |
Collapse
|
36
|
Edwards SC, Wishart AC, Wiebe EM, Battelle BA. Light-regulated proteins in Limulus ventral photoreceptor cells. Vis Neurosci 1989; 3:95-105. [PMID: 2487101 DOI: 10.1017/s0952523800004417] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protein intermediates of the photoresponse and the modulation of this response in invertebrate photoreceptors are largely unknown. As a first step toward identifying these proteins, we have examined light-stimulated changes in protein phosphorylation in preparations of Limulus photoreceptors. Here we show that light modulates the level of phosphorylation of three proteins associated with Limulus ventral photoreceptors: the upper band of a 46-kD protein doublet (46A) and a 122-kD protein, which become more heavily phosphorylated in response to light, and the lower component of the 46-kD doublet (46B), which is phosphorylated in dark-adapted cells, but not in cells maintained in the light. In dark-adapted preparations, 46A is phosphorylated within 30 s after a flash of light and dephosphorylates over a period of many minutes. It is also a major substrate for calcium/calmodulin-dependent protein kinase (Wiebe et al., 1989); therefore, we speculate that 46A is involved in some aspect of dark adaptation. Interestingly, the level of phosphorylation of 46A is the same when measured from preparations maintained in complete darkness or ambient light for at least 1.5 h. The 122-kD phosphoprotein is the same protein which becomes phosphorylated in response to efferent innervation to Limulus eyes (Edwards et al., 1988) and the efferent neurotransmitter, octopamine (Edwards and Battelle, 1987). It may be involved in the increase in retinal sensitivity and the enhanced response of photoreceptors to light that is initiated by efferent innervation. Its role in light-stimulated processes is not clear. The level of phosphorylation of 46B may be most relevant to the long-term state of adaptation of the photoreceptor cell to light and dark.
Collapse
Affiliation(s)
- S C Edwards
- Whitney Laboratory, University of Florida, St. Augustine
| | | | | | | |
Collapse
|
37
|
Renninger GH, Schimmel R, Farrell CA. Octopamine modulates photoreceptor function in the Limulus lateral eye. Vis Neurosci 1989; 3:83-94. [PMID: 2487100 DOI: 10.1017/s0952523800004405] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activity at night in efferent nerve fibers from a central circadian clock produces changes in photoreceptor function in the lateral compound eye of Limulus: the response to light is increased; membrane potential fluctuations (bumps) occurring in the dark are suppressed; and the duration of bumps occurring both in the dark and under dim illumination is increased (Barlow et al., 1977; Kaplan & Barlow, 1980; Barlow, 1983; Barlow et al., 1985). Efferent nerve terminals release octopamine when activated (Battelle et al., 1982; Battelle & Evans, 1984, 1986); exogenous octopamine in vitro produces some of the changes resulting from efferent nerve activity in vivo (Kass et al., 1988). We report here that the increase in both on-transient and steady-state response to light induced by octopamine in the lateral eye in vitro are concentration dependent with threshold at or below 100 nM, saturation at or above 100 microM, and half-maximal increase in the range 1-10 microM. Octopamine also reduces bump activity in the dark in a concentration-dependent way. Unlike the increase in light response, the dependence of this effect on octopamine concentration is extremely variable from specimen to specimen. The effects of exogenous octopamine on light response and bump activity can sometimes be reversed by removing octopamine from the medium bathing the in vitro preparation. Octopamine also increases bump duration, apparently in a concentration-dependent manner. We have not succeeded in reversing this increase in bump duration. The concentration dependence of changes in photoreceptor response described here agrees qualitatively with the dependence of cAMP levels on octopamine in Limulus photoreceptors (Kaupp et al., 1982), lending further support to the idea that cAMP acts as a second messenger in the circadian control of photoreceptor function. Our results also suggest that the changes induced in the transient and steady-state response to light by both efferent nerve activity and exogenous octopamine have a common origin, which may differ from that responsible for the modulation of bump activity.
Collapse
Affiliation(s)
- G H Renninger
- Department of Physics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
38
|
Stieve H. On the transduction mechanism of microvillar photoreceptors. JOURNAL OF PROTEIN CHEMISTRY 1989; 8:384-6. [PMID: 2477017 DOI: 10.1007/bf01674291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- H Stieve
- Institut für Biologie II, RWTH Aachen, FRG
| |
Collapse
|
39
|
Pasztor VM, Bush BM. Primary afferent responses of a crustacean mechanoreceptor are modulated by proctolin, octopamine, and serotonin. JOURNAL OF NEUROBIOLOGY 1989; 20:234-54. [PMID: 2569030 DOI: 10.1002/neu.480200406] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modulation of sensory responses recorded intracellularly in primary sensory afferents of a crustacean proprioceptor is described. The neuropeptide proctolin enhances the sensory response, whereas the bioamines octopamine and serotonin depress it. The lobster oval organ of the second maxilla, a simple stretch receptor lacking centrifugal control, provides a useful model for studies on nonsynaptic modulation at peripheral sensory loci. Its three large afferents, X, Y, and Z, were prepared for intracellular recording and tested under five experimental conditions: (1) when fully rested, (2) when adapted to maintained stretch and firing tonically, (3) when showing reduced responses after habituation to repetitive stimulation, (4) not stretched but depolarized with current injections, (5) after TTX blockade. The results, taken together, indicate that conductances contributing to the overall amplitude of the receptor potential are major targets for modulators. Thus proctolin increased receptor potential amplitudes with consequent augmentation of spiking, whereas serotonin and octopamine depressed the receptor potentials, often to subthreshold levels with loss of spiking. Octopamine was a less potent agent than serotonin and failed to act upon fibers under TTX blockade. Fibers Y and Z consistently showed sensitivity to the modulators tested. The largest fiber, X, typically was resistant to proctolin, octopamine, and serotonin. Threshold concentrations of 10(-10)-10(-11) M determined in vitro are well below the circulating levels for serotonin and octopamine found in vivo. Proctolin, however, is usually not detectable in the hemolymph, and it is suggested that a significant site of proctolin release may be the oval organ itself.
Collapse
Affiliation(s)
- V M Pasztor
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
40
|
Rubin LJ, Womble M, Brown JE, Finger TE. Accessibility of colloidal gold and horseradish peroxidase to cytosolic spaces in Limulus ventral photoreceptors. Vis Neurosci 1989; 2:89-96. [PMID: 2487647 DOI: 10.1017/s0952523800011937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies of intracellular messengers frequently employ intracellular injections of large molecules that either monitor or modulate the metabolism of the messenger cascade. Injected molecules have unknown mobility in the cytosol and unknown accessibility to various cytosolic compartments, including those postuiated to be traversed by intracellular messenger molecules. In order to determine whether injected molecules have access to the confined spaces through which messenger molecules must diffuse, we injected 5-nm colloidal gold or horseradish peroxidase, or both, into Limulus ventral photoreceptors. Injections were made by applying pressure pulses to the back of an intracellular micropipette that also monitored membrane voltage. The tissue was fixed at varying times after injection and processed for electron microscopy by conventional techniques. Cells fixed 1-3 min after injection contained HRP reaction product only in the cell body. HRP reaction product was found at varying distances down axons in direct relation to the interval between injection and fixation. Colloidal gold particles were found throughout the cell body but not in axons of tissue fixed 1-3 min after injection. Both HRP reaction product and 5-nm colloidal gold particles were observed within the microvillar projections of internal and external rhabdomere, as well as within the extracisternal spaces of endoplasmic reticulum. We conclude that large molecules injected from an intracellular micropipette into an arbitary locus of ventral photoreceptor cells have access to all of the presumed sites of the phototranduction cascade.
Collapse
Affiliation(s)
- L J Rubin
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
41
|
Kass L, Pelletier JL, Renninger GH, Barlow RB. Efferent neurotransmission of circadian rhythms in Limulus lateral eye. II. Intracellular recordings in vitro. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1988; 164:95-105. [PMID: 2466993 DOI: 10.1007/bf00612723] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated efferent neurotransmission in the Limulus lateral eye by studying the action of pharmacological agents on responses of photoreceptor cells in vitro. We recorded transmembrane potentials from single cells in slices of retina that were excised during the day and maintained for several days in a culture medium. Potentials recorded in the absence of pharmacological agents resemble those recorded from cells in vivo during the day. Octopamine, a putative efferent neurotransmitter, induced changes in photoreceptor potentials that mimicked in part those generated at night by a circadian clock located in the brain. Specifically, octopamine (100 to 500 microM) decreased the frequency of occurrence of quantum bumps in the dark and increased the amplitude of photoreceptor responses to intermediate and high light intensities. Similar actions were produced by naphazoline (25 to 100 microM, potent agonist of octopamine), forskolin (8 to 400 microM, activator of adenylate cyclase), IBMX (1 mM, inhibitor of phosphodiesterase), and 8-bromo-cAMP (500 microM, analogue of cAMP). 8-bromo-cGMP (500 microM, analogue of cGMP) decreased the rate of spontaneous quantum bumps only. Our results support the hypothesis that (1) octopamine is an efferent neurotransmitter of circadian rhythms in the Limulus eye and that (2) it activates adenylate cyclase to increase levels of the second messenger, cAMP, in photoreceptor cells. Circadian changes in photoreceptor responses to moderate intensities may be a specific action of cAMP, since cGMP has no effect. Circadian changes in the rate of spontaneous quantum bumps may involve a less specific intermediate, since both cAMP and cGMP reduce bump rate. Characteristics of the retinal slice preparation precluded a detailed study of the effects of pharmacological agents on retinal morphology.
Collapse
Affiliation(s)
- L Kass
- Department of Zoology, University of Maine, Orono 04469
| | | | | | | |
Collapse
|
42
|
Battelle BA, Edwards SC, Kass L, Maresch HM, Pierce SK, Wishart AC. Identification and function of octopamine and tyramine conjugates in the Limulus visual system. J Neurochem 1988; 51:1240-51. [PMID: 2901464 DOI: 10.1111/j.1471-4159.1988.tb03093.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Major metabolites of octopamine and tyramine in the Limulus nervous system are identified here as gamma-glutamyl octopamine and gamma-glutamyl tyramine. We show that these conjugates are normal products of amine metabolism in Limulus, and that they are normally present in octopamine-rich Limulus tissues. The synthesis of these conjugates is not restricted to nervous tissue, but the highest activity of gamma-glutamyl amine synthetase was measured in the CNS. Our interest in these molecules stems from our previous observations which showed that they were synthesized and stored in, and released from, the efferent fibers to Limulus eyes which modulate the sensitivity of the eyes to light. Here we provide direct evidence for the release of the conjugates from Limulus eyes in response to depolarization, and that gamma-glutamyl octopamine can increase the sensitivity of the lateral eye to light. Our observations lend support to the hypothesis that gamma-glutamyl octopamine may serve as an intercellular messenger in the Limulus visual system.
Collapse
Affiliation(s)
- B A Battelle
- Whitney Laboratory, University of Florida, St. Augustine 32086
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Efferent fibers from a central circadian clock innervate photoreceptors along the ventral nerve of Limulus and release octopamine when active. We have recorded ERG-like responses from the ventral eye in vivo over several day periods. We have also used intracellular microelectrodes to study changes in ventral photoreceptor function during exogenous applications of octopamine (the putative efferent neurotransmitter), IBMX (a phosphodiesterase inhibitor), and forskolin (an adenylate cyclase activator): (1) Responses to light measured at night from ventral photoreceptors in vivo are greater in amplitude than those recorded during the day; (2) Octopamine and agents that increase intracellular levels of cAMP in ventral photoreceptors decrease the rate of spontaneous (dark) bumps, increase photoreceptor response to light without changing threshold, and often increase the bump duration; and (3) These changes in function of ventral photoreceptors are similar to those that have been observed in the photoreceptor of the lateral eye during circadian clock activity at night, and in vitro in the presence of those same pharmacological agents.
Collapse
Affiliation(s)
- L Kass
- Department of Zoology, University of Maine, Orono 04469
| | | |
Collapse
|
44
|
Renninger GH, Kass L, Pelletier JL, Schimmel R. The eccentric cell of theLimulus lateral eye: encoder of circadian changes in visual responses. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1988. [DOI: 10.1007/bf00612435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Kass L, Berent MD. Circadian rhythms in adaptation to light of Limulus photoreception. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1988; 91:229-39. [PMID: 2905224 DOI: 10.1016/0742-8413(88)90190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The lateral eye of Limulus responds differently to light-adaptation depending upon whether the eye is tested during the day, or at night when a central circadian clock is known to activate efferent fibers that terminate in the retina. 2. At night, the decrement in retinal sensitivity due to light-adaptation is less pronounced immediately following a light-flash but is greater at longer times after the flash when compared with responses recorded during the day. 3. In our quantitative description of dark adaptation we find that at least two time constants are needed to describe the time course, and that the two decaying exponentials are differentially altered by circadian clock action. 4. We relate these day-to-night alterations in light-adaptive properties to circadian changes in physiology and morphology studied previously in Limulus photoreceptors.
Collapse
Affiliation(s)
- L Kass
- Department of Zoology, University of Maine, Orono 04469
| | | |
Collapse
|
46
|
Becker U, Nuske J, Stieve H. Phototransduction in the microvillar visual cell of Limulus: Electrophysiology and biochemistry. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0278-4327(88)90027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Mangel SC, Dowling JE. The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B, BIOLOGICAL SCIENCES 1987; 231:91-121. [PMID: 2888119 DOI: 10.1098/rspb.1987.0037] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interplexiform cells contact cone horizontal cells in the fish retina and probably release dopamine at synaptic sites. The effects of dopamine, certain related compounds, and light and dark régimes were tested on the intracellularly recorded activity of horizontal cells in the superfused carp retina to elucidate the functional role of the interplexiform cell. Dopamine application onto retinae kept in the dark for 30-40 min increased the size of the responses of cone horizontal cells to small-spot stimuli but decreased response size to large- and full-field stimuli. Dopamine also altered the response waveform of these cells; the transient at response onset increased in size and the depolarizing afterpotential decreased in size. Haloperidol, a dopamine antagonist, blocked these effects of dopamine application. Forskolin, an adenylate cyclase activator, increased the size of the responses of the cells to small-spot stimuli. Superfusion of vasoactive intestinal peptide did not produce any effects on horizontal cells. The results indicate that dopamine produces multiple physiological effects on cone horizontal cells by activation of an intracellular enzyme system. We propose that some of these effects are probably related to an uncoupling of the gap junctions between horizontal cells, but that other effects are most likely not explained on this basis and reflect additional changes induced in the cells by dopamine. After prolonged periods of darkness (100-110 min), compared with short periods (30-40 min), L-type cone horizontal cells exhibited responses similar to those obtained during dopamine application. Dim flickering or continuous light backgrounds did not mimic the effects of dopamine. Although dopamine application onto retinae after short-term darkness produced dramatic effects on L-type cone horizontal cells, little or no effect was observed when dopamine was applied while the effects of a previous dopamine application were still present or after prolonged darkness. These results suggest that interplexiform cells may release dopamine after prolonged darkness and that interplexiform cells may regulate lateral inhibitory effects mediated by L-type cone horizontal cells as a function of time in the dark.
Collapse
|
48
|
Orchard I, Lange AB. The release of octopamine and proctolin from an insect visceral muscle: effects of high-potassium saline and neural stimulation. Brain Res 1987; 413:251-8. [PMID: 3111640 DOI: 10.1016/0006-8993(87)91015-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The release of octopamine and proctolin from the oviduct visceral muscles of the locust, Locusta migratoria, has been investigated. Salines containing elevated potassium concentrations (100 mM) were capable of releasing both octopamine and proctolin, although the proportion of the total store of octopamine released (19%) was much greater than that of proctolin (0.4%). The high potassium-induced release of octopamine was calcium-dependent. Electrical stimulation of the oviducal nerves also resulted in the release of octopamine and proctolin. The release of both substances was frequency-dependent with maximum release of octopamine occurring at about 5 Hz, and maximum release of proctolin at 30 Hz. Neural stimulation was a more effective means of inducing proctolin release than was high-potassium saline, with 6.3% of the total store of proctolin released with 5 min stimulation at 30 Hz. The neurally stimulated release of proctolin was calcium-dependent. In addition, intrasomatic stimulation of the octopaminergic neurons which project to the oviducts resulted in the release of octopamine. The results clearly indicate that both octopamine and proctolin, which have previously been shown to be associated with locust oviducts, are released in a calcium-dependent manner by physiological stimuli. This strengthens the case for octopamine and proctolin as natural regulators of this insect visceral muscle.
Collapse
|
49
|
Barlow RB, Kaplan E, Renninger GH, Saito T. Circadian rhythms in Limulus photoreceptors. I. Intracellular studies. J Gen Physiol 1987; 89:353-78. [PMID: 3559515 PMCID: PMC2215907 DOI: 10.1085/jgp.89.3.353] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The sensitivity of the lateral eye of the horseshoe crab, Limulus polyphemus, is modulated by efferent optic nerve impulses transmitted from a circadian clock located in the brain (Barlow, R. B., Jr., S. J. Bolanowski, and M. L. Brachman. 1977. Science. 197:86-89). At night, the efferent impulses invade the retinular, eccentric, and pigment cells of every ommatidium, inducing multiple anatomical and physiological changes that combine to increase retinal sensitivity as much as 100,000 times. We developed techniques for recording transmembrane potentials from a single cell in situ for several days to determine what circadian changes in retinal sensitivity originate in the primary phototransducing cell, the retinular cell. We found that the direct efferent input to the photoreceptor cell decreases its noise and increases its response. Noise is decreased by reducing the rate of spontaneous bumps by up to 100%. The response is increased by elevating photon catch (photons absorbed per flash) as much as 30 times, and increasing gain (response per absorbed photon) as much as 40%. The cellular mechanism for reducing the rate of spontaneous quantum bumps is not known. The mechanism for increasing gain appears to be the modulation of ionic conductances in the photoreceptor cell membrane. The mechanism for increasing photon catch is multiple changes in the anatomy of retinal cells. We combine these cellular events in a proposed scheme for the circadian rhythm in the intensity coding of single photoreceptors.
Collapse
|
50
|
Visual adaptation in nocturnal and diurnal ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1987. [DOI: 10.1007/bf00613437] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|