1
|
Dai C, Li D, Velkov T, Shen J, Hao Z. The Detoxification Effects of Melatonin on Aflatoxin-Caused Toxic Effects and Underlying Molecular Mechanisms. Antioxidants (Basel) 2024; 13:1528. [PMID: 39765856 PMCID: PMC11726890 DOI: 10.3390/antiox13121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Aflatoxins (AFTs) are a form of mycotoxins mainly produced by Aspergillus flavus and Aspergillus parasiticus, which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. AFB1 undergoes bioactivation into AFB1-8,9-epoxide, then leads to diverse harmful effects such as neurotoxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, nephrotoxicity, and immunotoxicity, with specific molecular mechanisms varying in different pathologies. The detoxification of AFB1 is of great importance for safeguarding the health of animals and humans and has increasingly attracted global attention. Recent research has shown that melatonin supplementation can effectively mitigate AFB1-induced multiple toxic effects. The protection mechanisms of melatonin involve the inhibition of oxidative stress, the upregulation of antioxidant enzyme activity, the reduction of mitochondrial dysfunction, the inactivation of the mitochondrial apoptotic pathway, the blockade of inflammatory responses, and the attenuation of cytochrome P450 enzymes' expression and activities. In summary, this review sheds new light on the potential role of melatonin as a potential detoxifying agent against AFB1. Further exploration of the precise molecular mechanisms and clinical efficacy of this promising treatment is urgently needed.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Daowen Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Parkville, VIC 3052, Australia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Chen L, Chen G, Gai T, Zhou X, Zhu J, Wang R, Wang X, Guo Y, Wang Y, Xie Z. L-Theanine Prolongs the Lifespan by Activating Multiple Molecular Pathways in Ultraviolet C-Exposed Caenorhabditis elegans. Molecules 2024; 29:2691. [PMID: 38893565 PMCID: PMC11173996 DOI: 10.3390/molecules29112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
L-theanine, a unique non-protein amino acid, is an important bioactive component of green tea. Previous studies have shown that L-theanine has many potent health benefits, such as anti-anxiety effects, regulation of the immune response, relaxing neural tension, and reducing oxidative damage. However, little is known concerning whether L-theanine can improve the clearance of mitochondrial DNA (mtDNA) damage in organisms. Here, we reported that L-theanine treatment increased ATP production and improved mitochondrial morphology to extend the lifespan of UVC-exposed nematodes. Mechanistic investigations showed that L-theanine treatment enhanced the removal of mtDNA damage and extended lifespan by activating autophagy, mitophagy, mitochondrial dynamics, and mitochondrial unfolded protein response (UPRmt) in UVC-exposed nematodes. In addition, L-theanine treatment also upregulated the expression of genes related to mitochondrial energy metabolism in UVC-exposed nematodes. Our study provides a theoretical basis for the possibility that tea drinking may prevent mitochondrial-related diseases.
Collapse
Affiliation(s)
- Liangwen Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| | - Tingting Gai
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| | - Jinchi Zhu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Ruiyi Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Xuemei Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Yujie Guo
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Yun Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| |
Collapse
|
3
|
Li M, Tang S, Peng X, Sharma G, Yin S, Hao Z, Li J, Shen J, Dai C. Lycopene as a Therapeutic Agent against Aflatoxin B1-Related Toxicity: Mechanistic Insights and Future Directions. Antioxidants (Basel) 2024; 13:452. [PMID: 38671900 PMCID: PMC11047733 DOI: 10.3390/antiox13040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.
Collapse
Affiliation(s)
- Meng Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, China;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Shutao Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China;
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| |
Collapse
|
4
|
Minko I, Luzadder M, Vartanian V, Rice SM, Nguyen M, Sanchez-Contreras M, Van P, Kennedy S, McCullough A, Lloyd R. Frequencies and spectra of aflatoxin B 1-induced mutations in liver genomes of NEIL1-deficient mice as revealed by duplex sequencing. NAR MOLECULAR MEDICINE 2024; 1:ugae006. [PMID: 38779538 PMCID: PMC11105970 DOI: 10.1093/narmme/ugae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B1 (AFB1) to a reactive epoxide generates highly mutagenic AFB1-Fapy-dG adducts. Previously, we demonstrated that repair of AFB1-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male Neil1-/- mice were significantly more susceptible to AFB1-induced HCC relative to wild-type mice. To investigate the mechanisms underlying this enhanced carcinogenesis, WT and Neil1-/- mice were challenged with a single, 4 mg/kg dose of AFB1 and frequencies and spectra of mutations were analyzed in liver DNAs 2.5 months post-injection using duplex sequencing. The analyses of DNAs from AFB1-challenged mice revealed highly elevated mutation frequencies in the nuclear genomes of both males and females, but not the mitochondrial genomes. In both WT and Neil1-/- mice, mutation spectra were highly similar to the AFB1-specific COSMIC signature SBS24. Relative to wild-type, the NEIL1 deficiency increased AFB1-induced mutagenesis with concomitant elevated HCCs in male Neil1-/- mice. Our data establish a critical role of NEIL1 in limiting AFB1-induced mutagenesis and ultimately carcinogenesis.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sean P M Rice
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- School of Public Health, Oregon Health & Science University - Portland State University, Portland, OR, USA
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Leuthner T, Benzing L, Kohrn B, Bergemann C, Hipp M, Hershberger K, Mello D, Sokolskyi T, Stevenson K, Merutka I, Seay S, Gregory S, Kennedy S, Meyer J. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res 2022; 50:8626-8642. [PMID: 35947695 PMCID: PMC9410910 DOI: 10.1093/nar/gkac666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura Benzing
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Tymofii Sokolskyi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin Stevenson
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ilaria R Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Sarah A Seay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA,Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joel N Meyer
- To whom correspondence should be addressed. Tel: +1 919 613 8109;
| |
Collapse
|
6
|
Gramantieri L, Gnudi F, Vasuri F, Mandrioli D, Fornari F, Tovoli F, Suzzi F, Vornoli A, D’Errico A, Piscaglia F, Giovannini C. Aflatoxin B1 DNA-Adducts in Hepatocellular Carcinoma from a Low Exposure Area. Nutrients 2022; 14:nu14081652. [PMID: 35458213 PMCID: PMC9024438 DOI: 10.3390/nu14081652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a class 1 carcinogen with an ascertained role in the development of hepatocellular carcinoma (HCC) in high exposure areas. Instead, this study aimed to assay whether chronic/intermittent, low-dose AFB1 consumption might occur in low-exposure geographical areas, ultimately accumulating in the liver and possibly contributing to liver cancer. AFB1-DNA adducts were assayed by immunostaining in liver tissues from three Italian series of twenty cirrhosis without HCC, 131 HCC, and 45 cholangiocarcinoma, and in an AFB1-induced HCC rat model. CD68, TP53 immunostaining, and TP53 RFLP analysis of R249S transversion were used to characterize cell populations displaying AFB1-DNA adducts. Twenty-five HCCs displayed AFB1-adducts both in neoplastic hepatocytes and in cells infiltrating the tumor and non-tumor tissues. Nuclear immunostaining was observed in a few cases, while most cases showed cytoplasmic immunostaining, especially in CD68-positive tumor-infiltrating cells, suggestive for phagocytosis of dead hepatocytes. Similar patterns were observed in AFB1-induced rat HCC, though with higher intensity. Cholangiocarcinoma and cirrhosis without HCC did not displayAFB1-adducts, except for one case. Despite not providing a causal relationship with HCC, these findings still suggest paying attention to detection and control measures for aflatoxins to ensure food safety in low exposure areas.
Collapse
Affiliation(s)
- Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.T.); (F.P.)
- Correspondence: (L.G.); (C.G.)
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.V.); (A.D.)
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Francesca Fornari
- Department for Life Quality Studies, University of Bologna, 40126 Rimini, Italy;
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy;
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.T.); (F.P.)
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Fabrizia Suzzi
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy;
| | - Andrea Vornoli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Antonia D’Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.V.); (A.D.)
- Department of Experimental, Diagnostic and Specialty Medicine, University di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.T.); (F.P.)
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy
| | - Catia Giovannini
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine, University di Bologna, 40138 Bologna, Italy
- Correspondence: (L.G.); (C.G.)
| |
Collapse
|
7
|
Poiani SB, Pereira MC, Bueno OC. Transmission Electron Microscopy as a Tool to Study the Toxicological Effects of Thiamethoxam in Workers of Atta sexdens (Myrmicinae, Attini). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:170-186. [PMID: 33280633 DOI: 10.1017/s1431927620024733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiamethoxam is a neonicotinoid that has been used to control insect pests. The literature reports a few behavioral studies evaluating the toxic effect of thiamethoxam in ants; however, there are scarce studies at the cellular level. The present research evaluated the effects of thiamethoxam in labial (LG) and mandibular glands (MG), fat bodies (FB), and Malpighian tubules (MT) of workers of Atta sexdens, using transmission electron microscopy. The duct and secretory cells of LG were profoundly affected, then the production of saliva can be compromised, as well as its quality and subsequent use. In MG, reservoir and canaliculi cells presented slight alterations; however, MG secretory cells presented vacuoles containing lamellar structures, increased lipid production, and a large amount of mitochondria, which may lead to organ's malfunctioning. The FB cell alterations do not seem enough to cause significant changes that lead to cell death. Prominent changes in MT, such as loss of the electron-dense concentric ring, increased smooth endoplasmic reticulum, loss of basal infolds, vacuoles containing mineralized granules, and lamellar structures associated with mitochondria, suggest that their excretory function is compromised. In conclusion, thiamethoxam acts not only in the nervous system but also contributes to systemic toxicity on the target organism.
Collapse
Affiliation(s)
- Silvana B Poiani
- Department of Biology, Sao Paulo State University (UNESP), Institute of Biosciences - Campus Rio Claro, Center of Study of Social Insects, Avenida 24A, 1515, Bela Vista, Rio Claro, SP13506-900, Brazil
| | - Mayara C Pereira
- Department of Biology, Sao Paulo State University (UNESP), Institute of Biosciences - Campus Rio Claro, Center of Study of Social Insects, Avenida 24A, 1515, Bela Vista, Rio Claro, SP13506-900, Brazil
| | - Odair C Bueno
- Department of Biology, Sao Paulo State University (UNESP), Institute of Biosciences - Campus Rio Claro, Center of Study of Social Insects, Avenida 24A, 1515, Bela Vista, Rio Claro, SP13506-900, Brazil
| |
Collapse
|
8
|
McCann E, O'Sullivan J, Marcone S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl Oncol 2021; 14:100905. [PMID: 33069104 PMCID: PMC7562988 DOI: 10.1016/j.tranon.2020.100905] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a regimen that uses ionising radiation (IR) to treat cancer. Despite the availability of several therapeutic options, cancer remains difficult to treat and only a minor percentage of patients receiving radiotherapy show a complete response to the treatment due to development of resistance to IR (radioresistance). Therefore, radioresistance is a major clinical problem and is defined as an adaptive response of the tumour to radiation-induced damage by altering several cellular processes which sustain tumour growth including DNA damage repair, cell cycle arrest, alterations of oncogenes and tumour suppressor genes, autophagy, tumour metabolism and altered reactive oxygen species. Cellular organelles, in particular mitochondria, are key players in mediating the radiation response in tumour, as they regulate many of the cellular processes involved in radioresistance. In this article has been reviewed the recent findings describing the cellular and molecular mechanism by which cancer rewires the function of the mitochondria and cellular metabolism to enhance radioresistance, and the role that drugs targeting cellular bioenergetics have in enhancing radiation response in cancer patients.
Collapse
Affiliation(s)
- Emma McCann
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; M.Sc. in Translational Oncology, Trinity College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Zhao L, Sumberaz P. Mitochondrial DNA Damage: Prevalence, Biological Consequence, and Emerging Pathways. Chem Res Toxicol 2020; 33:2491-2502. [PMID: 32486637 DOI: 10.1021/acs.chemrestox.0c00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria have a plethora of functions within a eukaryotic cell, ranging from energy production, cell signaling, and protein cofactor synthesis to various aspects of metabolism. Mitochondrial dysfunction is known to cause over 200 named disorders and has been implicated in many human diseases and aging. Mitochondria have their own genetic material, mitochondrial DNA (mtDNA), which encodes 13 protein subunits in the oxidative phosphorylation system and a full set of transfer and rRNAs. Although more than 99% of the proteins in mitochondria are nuclear DNA (nDNA)-encoded, the integrity of mtDNA is critical for mitochondrial functions, as evidenced by mitochondrial diseases sourced from mtDNA mutations and depletions and the vital role of fragmented mtDNA molecules in cell signaling pathways. Previous research has shown that mtDNA is an important target of genotoxic assaults by a variety of chemical and physical factors. This Perspective discusses the prevalence of mtDNA damage by comparing the abundance of lesions in mDNA and nDNA and summarizes current knowledge on the biological pathways to cope with mtDNA damage, including mtDNA repair, mtDNA degradation, and mitochondrial fission and fusion. Also, emerging roles of mtDNA damage in mutagenesis and immune responses are reviewed.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| | - Philip Sumberaz
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Cai P, Zheng H, She J, Feng N, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Molecular Mechanism of Aflatoxin-Induced Hepatocellular Carcinoma Derived from a Bioinformatics Analysis. Toxins (Basel) 2020; 12:E203. [PMID: 32210020 PMCID: PMC7150856 DOI: 10.3390/toxins12030203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exposure to aflatoxin is considered to be one of the causes of hepatocellular carcinoma (HCC). With the development of bioinformation, we sought to reveal the occurrence and development of aflatoxin-induced HCC through data research. We identified differentially expressed genes (DEGs) of datasets GSE127791 (Aflatoxin-treated pluripotent stem cell derived human hepatocytes vs. controls) and GSE64041 (liver carcinoma with unknown cause vs. non-cancerous tissue) by GEO2R to find the common DEGs. Gene ontology (GO) and KEGG path enrichment analysis were used to annotate the function of DEGs. Hub genes were screened from identified DEGs by protein-protein interaction (PPI) network analysis. The prognostic value of hub genes in cancer databases were evaluated. We obtained 132 common DEGs and 11 hub genes. According to cluster analysis and protein co-expression networks, we screened out the key genes, histidine-rich glycoprotein (HRG) and phosphoenolpyruvate carboxykinase 2 (PCK2). Oncomine database and survival curve analysis showed that the decline in HRG and PCK2 expression in the development of HCC indicated poor prognosis. We speculated that the decreased expression of HRG and PCK2 after aflatoxin exposure to hepatocyte may be related to aflatoxin induced hepatocyte injury and carcinogenesis. In addition, the decreased expression of HRG and PCK2 in the occurrence and development of HCC suggests a poor prognosis of HCC.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hao Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jinjin She
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.C.); (Y.Y.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. [PMID: 31627882 DOI: 10.1016/bs.enz.2019.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in bioenergetics, and fulfill a plethora of functions in cell signaling, programmed cell death, and biosynthesis of key protein cofactors. Mitochondria harbor their own genomic DNA, which encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. Mitochondrial DNA (mtDNA) is essential for cellular and organismal functions, and defects in mitochondrial genome maintenance have been implicated in common human diseases and mitochondrial disorders. mtDNA repair and degradation are known pathways to cope with mtDNA damage; however, molecular factors involved in this process have remained unclear. Such knowledge is fundamental to the understanding of mitochondrial genomic maintenance and pathology, because mtDNA degradation may contribute to the etiology of mtDNA depletion syndromes and to the activation of the innate immune response by fragmented mtDNA. This article reviews the current literature regarding the importance of mitochondrial DNA degradation in mtDNA maintenance and stress response, and the recent progress in uncovering molecular factors involved in mtDNA degradation. These factors include key components of the mtDNA replication machinery, such as DNA polymerase γ, helicase Twinkle, and exonuclease MGME1, as well as a major DNA-packaging protein, mitochondrial transcription factor A (TFAM).
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
13
|
Guha M, Srinivasan S, Johnson FB, Ruthel G, Guja K, Garcia-Diaz M, Kaufman BA, Glineburg MR, Fang J, Nakagawa H, Basha J, Kundu T, Avadhani NG. hnRNPA2 mediated acetylation reduces telomere length in response to mitochondrial dysfunction. PLoS One 2018; 13:e0206897. [PMID: 30427907 PMCID: PMC6241121 DOI: 10.1371/journal.pone.0206897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 10/22/2018] [Indexed: 11/19/2022] Open
Abstract
Telomeres protect against chromosomal damage. Accelerated telomere loss has been associated with premature aging syndromes such as Werner's syndrome and Dyskeratosis Congenita, while, progressive telomere loss activates a DNA damage response leading to chromosomal instability, typically observed in cancer cells and senescent cells. Therefore, identifying mechanisms of telomere length maintenance is critical for understanding human pathologies. In this paper we demonstrate that mitochondrial dysfunction plays a causal role in telomere shortening. Furthermore, hnRNPA2, a mitochondrial stress responsive lysine acetyltransferase (KAT) acetylates telomere histone H4at lysine 8 of (H4K8) and this acetylation is associated with telomere attrition. Cells containing dysfunctional mitochondria have higher telomere H4K8 acetylation and shorter telomeres independent of cell proliferation rates. Ectopic expression of KAT mutant hnRNPA2 rescued telomere length possibly due to impaired H4K8 acetylation coupled with inability to activate telomerase expression. The phenotypic outcome of telomere shortening in immortalized cells included chromosomal instability (end-fusions) and telomerase activation, typical of an oncogenic transformation; while in non-telomerase expressing fibroblasts, mitochondrial dysfunction induced-telomere attrition resulted in senescence. Our findings provide a mechanistic association between dysfunctional mitochondria and telomere loss and therefore describe a novel epigenetic signal for telomere length maintenance.
Collapse
Affiliation(s)
- Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - F. Bradley Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gordon Ruthel
- Penn Vet Imaging Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kip Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Brett A. Kaufman
- Vascular Medicine Institute, University of Pittsburg, Pittsburgh, PA United States of America
| | - M. Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - JiKang Fang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hiroshi Nakagawa
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jeelan Basha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tapas Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:15-35. [PMID: 30362088 DOI: 10.1007/978-3-319-98788-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (P450) enzymes are involved in the metabolism of carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary to some literature, P450 2E1 expression and induction itself does not cause global oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is localized in liver mitochondria instead of the endoplasmic reticulum, and studies with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal variants have shown that P450 2E1 localized in mitochondria is catalytically active and more proficient in producing reactive oxygen species and damage. The role of the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as is the mechanism of altered electron transport to P450s that localize inside mitochondria instead of their typical endoplasmic reticulum environment.
Collapse
|
15
|
Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 2017; 391:42-53. [PMID: 28789970 PMCID: PMC5681418 DOI: 10.1016/j.tox.2017.07.019] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Tess C Leuthner
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Anthony L Luz
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| |
Collapse
|
16
|
Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology 2017; 387:81-94. [PMID: 28602540 PMCID: PMC5535741 DOI: 10.1016/j.tox.2017.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
Abstract
Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B1, arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B1, arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite-induced mitochondrial deficits, and these disruptions are exacerbated in the absence of mitochondrial fusion. This research demonstrates the importance of mitochondrial dynamics in limiting arsenite toxicity by permitting mitochondrial adaptability. It also suggests that individuals suffering from deficiencies in mitodynamic processes may be more susceptible to the mitochondrial toxicity of arsenic and other toxicants.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tewodros R Godebo
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Latasha L Smith
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tess C Leuthner
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, 08801-3059, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
17
|
Vojdani A, Thrasher JD, Madison RA, Gray MR, Heuser G, Campbell AW. Antibodies to Molds and Satratoxin in Individuals Exposed in Water-Damaged Buildings. ACTA ACUST UNITED AC 2017; 58:421-32. [PMID: 15143855 DOI: 10.1080/00039896.2003.11879143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunoglobulin (Ig)A, IgM, and IgG antibodies against Penicillium notatum, Aspergillus niger, Stachybotrys chartarum, and satratoxin H were determined in the blood of 500 healthy blood donor controls, 500 random patients, and 500 patients with known exposure to molds. The patients were referred to the immunological testing laboratory for health reasons other than mold exposure, or for measurement of mold antibody levels. Levels of IgA, IgM, and IgG antibodies against molds were significantly greater in the patients (p < 0.001 for all measurements) than in the controls. However, in mold-exposed patients, levels of these antibodies against satratoxin differed significantly for IgG only (p < 0.001), but not for IgM or IgA. These differences in the levels of mold antibodies among the 3 groups were confirmed by calculation of z score and by Scheffé's significant difference tests. A general linear model was applied in the majority of cases, and 3 different subsets were formed, meaning that the healthy control groups were different from the random patients and from the mold-exposed patients. These findings indicated that mold exposure was more common in patients who were referred for immunological evaluation than it was in healthy blood donors. The detection of antibodies to molds and satratoxin H likely resulted from antigenic stimulation of the immune system and the reaction of serum with specially prepared mold antigens. These antigens, which had high protein content, were developed in this laboratory and used in the enzyme-linked immunosorbent assay (ELISA) procedure. The authors concluded that the antibodies studied are specific to mold antigens and mycotoxins, and therefore could be useful in epidemiological and other studies of humans exposed to molds and mycotoxins.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Beverly Hills, California, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Srinivasan S, Guha M, Kashina A, Avadhani NG. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:602-614. [PMID: 28104365 DOI: 10.1016/j.bbabio.2017.01.004] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is a hallmark of many diseases. The retrograde signaling initiated by dysfunctional mitochondria can bring about global changes in gene expression that alters cell morphology and function. Typically, this is attributed to disruption of important mitochondrial functions, such as ATP production, integration of metabolism, calcium homeostasis and regulation of apoptosis. Recent studies showed that in addition to these factors, mitochondrial dynamics might play an important role in stress signaling. Normal mitochondria are highly dynamic organelles whose size, shape and network are controlled by cell physiology. Defective mitochondrial dynamics play important roles in human diseases. Mitochondrial DNA defects and defective mitochondrial function have been reported in many cancers. Recent studies show that increased mitochondrial fission is a pro-tumorigenic phenotype. In this paper, we have explored the current understanding of the role of mitochondrial dynamics in pathologies. We present new data on mitochondrial dynamics and dysfunction to illustrate a causal link between mitochondrial DNA defects, excessive fission, mitochondrial retrograde signaling and cancer progression. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Satish Srinivasan
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Manti Guha
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Anna Kashina
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Narayan G Avadhani
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States.
| |
Collapse
|
19
|
Souza TM, Rieswijk L, Beucken TVD, Kleinjans J, Jennen D. Persistent transcriptional responses show the involvement of feed-forward control in a repeated dose toxicity study. Toxicology 2016; 375:58-63. [PMID: 27765683 DOI: 10.1016/j.tox.2016.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/17/2023]
Abstract
Chemical carcinogenesis, albeit complex, often relies on modulation of transcription through activation or repression of key transcription factors. While analyzing extensive networks may hinder the biological interpretation, one may focus on dynamic network motifs, among which persistent feed-forward loops (FFLs) are known to chronically influence transcriptional programming. Here, to investigate the relevance a FFL-oriented approach in depth, we have focused on aflatoxin B1-induced transcriptomic alterations during distinct states of exposure (daily administration during 5days followed by a non-exposed period) of human hepatocytes, by exploring known interactions in human transcription. Several TF-coding genes were persistently deregulated after washout of AFB1. Oncogene MYC was identified as the prominent regulator and driver of many FFLs, among which a FFL comprising MYC/HIF1A was the most recurrent. The MYC/HIF1A FFL was also identified and validated in an independent set as the master regulator of metabolic alterations linked to initiation and progression of carcinogenesis, i.e. the Warburg effect, possibly as result of persistent intracellular alterations arising from AFB1 exposure (nuclear and mitochondrial DNA damage, oxidative stress, transcriptional activation by secondary messengers). In summary, our analysis shows the involvement of FFLs as modulators of gene expression suggestive of a carcinogenic potential even after termination of exposure.
Collapse
Affiliation(s)
- Terezinha M Souza
- Department of Toxicogenomics, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Linda Rieswijk
- Department of Toxicogenomics, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| |
Collapse
|
20
|
Luz AL, Meyer JN. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans. Mitochondrion 2016; 30:255-64. [PMID: 27566481 PMCID: PMC5023498 DOI: 10.1016/j.mito.2016.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023]
Abstract
The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
21
|
Valente WJ, Ericson NG, Long AS, White PA, Marchetti F, Bielas JH. Mitochondrial DNA exhibits resistance to induced point and deletion mutations. Nucleic Acids Res 2016; 44:8513-8524. [PMID: 27550180 PMCID: PMC5062989 DOI: 10.1093/nar/gkw716] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure.
Collapse
Affiliation(s)
- William J Valente
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Nolan G Ericson
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Jason H Bielas
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
22
|
Chen H, Wang J, Liu Z, Yang H, Zhu Y, Zhao M, Liu Y, Yan M. Mitochondrial DNA depletion causes decreased ROS production and resistance to apoptosis. Int J Mol Med 2016; 38:1039-46. [PMID: 27499009 PMCID: PMC5029958 DOI: 10.3892/ijmm.2016.2697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion occurs frequently in many diseases including cancer. The present study was designed in order to examine the hypothesis that mtDNA‑depleted cells are resistant to apoptosis and to explore the possible mechanisms responsible for this effect. Parental human osteosarcoma 143B cells and mtDNA‑deficient (Rho˚ or ρ˚) 206 cells (derived from 143B cells) were exposed to different doses of solar-simulated ultraviolet (UV) radiation. The effects of solar irradiation on cell morphology were observed under both light and fluorescence microscopes. Furthermore, apoptosis, mitochondrial membrane potential (MMP) disruption and reactive oxygen species (ROS) production were detected and measured by flow cytometry. In both cell lines, apoptosis and ROS production were clearly increased, whereas MMP was slightly decreased. However, apoptosis and ROS production were reduced in the Rho˚206 cells compared with the 143B cells. We also performed western blot analysis and demonstrated the increased release of cytosolic Cyt c from mitochondria in the 143B cells compared with that in the Rho˚206 cells. Thus, we concluded that Rho˚206 cells exhibit more resistance to solar‑simulated UV radiation‑induced apoptosis at certain doses than 143B cells and this is possibly due to decreased ROS production.
Collapse
Affiliation(s)
- Hulin Chen
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Junling Wang
- Gynecologic Department of Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Zhongrong Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Huilan Yang
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yingjie Zhu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Minling Zhao
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yan Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Miaomiao Yan
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
23
|
Gonzalez-Hunt CP, Rooney JP, Ryde IT, Anbalagan C, Joglekar R, Meyer JN. PCR-Based Analysis of Mitochondrial DNA Copy Number, Mitochondrial DNA Damage, and Nuclear DNA Damage. ACTA ACUST UNITED AC 2016; 67:20.11.1-20.11.25. [PMID: 26828332 DOI: 10.1002/0471140856.tx2011s67] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays.
Collapse
Affiliation(s)
| | - John P Rooney
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Ian T Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | | | - Rashmi Joglekar
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
24
|
Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015; 409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
|
25
|
González-Hunt CP, Leung MCK, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One 2014; 9:e114459. [PMID: 25486066 PMCID: PMC4259338 DOI: 10.1371/journal.pone.0114459] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.
Collapse
Affiliation(s)
- Claudia P. González-Hunt
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Rakesh K. Bodhicharla
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Madeline G. McKeever
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Andrew E. Arrant
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Kathleen M. Margillo
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Center for Applied Genomics and Technology, Duke University, Durham, North Carolina, United States of America
| | - Sara G. Kosmaczewski
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- * E-mail: mailto:
| |
Collapse
|
26
|
Jennings P, Schwarz M, Landesmann B, Maggioni S, Goumenou M, Bower D, Leonard MO, Wiseman JS. SEURAT-1 liver gold reference compounds: a mechanism-based review. Arch Toxicol 2014; 88:2099-133. [DOI: 10.1007/s00204-014-1410-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
|
27
|
Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol 2013; 5:a012641. [PMID: 23637283 DOI: 10.1101/cshperspect.a012641] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA molecules in mitochondria, just like those in the nucleus of eukaryotic cells, are constantly damaged by noxious agents. Eukaryotic cells have developed efficient mechanisms to deal with this assault. The process of DNA repair in mitochondria, initially believed nonexistent, has now evolved into a mature area of research. In recent years, it has become increasingly appreciated that mitochondria possess many of the same DNA repair pathways that the nucleus does. Moreover, a unique pathway that is enabled by high redundancy of the mitochondrial DNA and allows for the disposal of damaged DNA molecules operates in this organelle. In this review, we attempt to present a unified view of our current understanding of the process of DNA repair in mitochondria with an emphasis on issues that appear controversial.
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
28
|
Bess AS, Ryde IT, Hinton DE, Meyer JN. UVC-induced mitochondrial degradation via autophagy correlates with mtDNA damage removal in primary human fibroblasts. J Biochem Mol Toxicol 2013; 27:28-41. [PMID: 23132756 PMCID: PMC3640456 DOI: 10.1002/jbt.21440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/08/2012] [Indexed: 11/07/2022]
Abstract
Mitochondrial DNA (mtDNA) is more susceptible than nuclear DNA to helix-distorting damage via exposure to environmental genotoxins, partially due to a lack of nucleotide excision repair. Thus, this damage is irreparable and persistent in mtDNA in the short term. We recently found that helix-distorting mtDNA damage induced by ultraviolet C radiation (UVC) is gradually removed in Caenorhabditis elegans and that removal is dependent upon autophagy and mitochondrial dynamics. We here report the effects of UVC exposure on mitophagy, mitochondrial morphology, and indicators of mitochondrial function in mammalian cells. Exposure to UVC induced autophagy within 24 h; nonetheless, significant mitochondrial degradation was not observed until 72 h post exposure. Mitochondrial mass, morphology, and function were not significantly altered. These data further support the idea that persistent mtDNA damage is removed by autophagy and also suggest a powerful compensatory capacity for dealing with mtDNA damage.
Collapse
Affiliation(s)
- Amanda S Bess
- Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Duke University, Research Drive, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
29
|
Bess AS, Crocker TL, Ryde IT, Meyer JN. Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res 2012; 40:7916-31. [PMID: 22718972 PMCID: PMC3439916 DOI: 10.1093/nar/gks532] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mitochondrial DNA (mtDNA) by important environmental genotoxins and endogenous metabolites. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. We report that removal of such mtDNA damage is detectable by 48 h in Caenorhabditis elegans, and requires mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.
Collapse
Affiliation(s)
- Amanda S Bess
- Duke University, Nicholas School of Environment, Integrated Toxicology and Environmental Health Program, LSRC, PO Box 90328, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
30
|
Mitochondrial DNA damage and its consequences for mitochondrial gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:979-91. [PMID: 22728831 DOI: 10.1016/j.bbagrm.2012.06.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 12/11/2022]
Abstract
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. This article is part of a special issue entitled: Mitochondrial Gene Expression.
Collapse
|
31
|
Sangar MC, Bansal S, Avadhani NG. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2010; 6:1231-51. [PMID: 20629582 PMCID: PMC2940958 DOI: 10.1517/17425255.2010.503955] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD Microsomal CYPs are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. AREAS COVERED IN THIS REVIEW This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. WHAT THE READERS WILL GAIN A comprehensive review of the literature on drug metabolism in the mitochondrial compartment and their potential for inducing mitochondrial dysfunction. TAKE HOME MESSAGE Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity.
Collapse
Affiliation(s)
- Michelle C Sangar
- University of Pennsylvania, School of Veterinary Medicine, Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
32
|
Kulawiec M, Salk JJ, Ericson NG, Wanagat J, Bielas JH. Generation, function, and prognostic utility of somatic mitochondrial DNA mutations in cancer. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:427-439. [PMID: 20544883 DOI: 10.1002/em.20582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exciting new studies are increasingly strengthening the link between mitochondrial mutagenesis and tumor progression. Here we provide a comprehensive review and meta-analysis of studies reporting on mitochondrial DNA mutations in common human cancers. We discuss possible mechanisms by which mitochondrial DNA mutations may influence carcinogenesis, outline important caveats for interpreting the detected mutations--particularly differentiating causality from association--and suggest how new mutational assays may help resolve fundamental controversies in the field and delineate the origin and expansion of neoplastic cell lineages. Finally, we discuss the potential clinical utility of mtDNA mutations for improving the sensitivity of early cancer diagnosis, rapidly detecting cancer recurrence, and predicting the disease outcome.
Collapse
Affiliation(s)
- Mariola Kulawiec
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
33
|
Meyer JN. QPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:804-11. [PMID: 20049526 PMCID: PMC2844971 DOI: 10.1007/s10646-009-0457-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2009] [Indexed: 05/17/2023]
Abstract
The quantitative PCR (QPCR) assay for DNA damage and repair has been used extensively in laboratory species. More recently, it has been adapted to ecological settings. The purpose of this article is to provide a detailed methodological guide that will facilitate its adaptation to additional species, highlight its potential for ecotoxicological and biomonitoring work, and critically review the strengths and limitations of this assay. Major strengths of the assay include very low (nanogram to picogram) amounts of input DNA; direct comparison of damage and repair in the nuclear and mitochondrial genomes, and different parts of the nuclear genome; detection of a wide range of types of DNA damage; very good reproducibility and quantification; applicability to properly preserved frozen samples; simultaneous monitoring of relative mitochondrial genome copy number; and easy adaptation to most species. Potential limitations include the limit of detection (approximately 1 lesion per 10(5) bases); the inability to distinguish different types of DNA damage; and the need to base quantification of damage on a control or reference sample. I suggest that the QPCR assay is particularly powerful for some ecotoxicological studies.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, Box 90328, NC 27708-0328, USA.
| |
Collapse
|
34
|
Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line. SCIENCE CHINA-LIFE SCIENCES 2010; 53:87-93. [DOI: 10.1007/s11427-010-0004-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/27/2009] [Indexed: 10/19/2022]
|
35
|
Abstract
With the aging of the population, we are seeing a global increase in the prevalence of age-related disorders, especially in developed countries. Chronic diseases disproportionately affect the older segment of the population, contributing to disability, a diminished quality of life and an increase in healthcare costs. Increased life expectancy reflects the success of contemporary medicine, which must now respond to the challenges created by this achievement, including the growing burden of chronic illnesses, injuries and disabilities. A well-developed theoretical framework is required to understand the molecular basis of aging. Such a framework is a prerequisite for the development of clinical interventions that will constitute an efficient response to the challenge of age-related health issues. This review critically analyzes the experimental evidence that supports and refutes the Free Radical/Mitochondrial Theory of Aging, which has dominated the field of aging research for almost half a century.
Collapse
Affiliation(s)
- Mikhail F Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
36
|
LaRiviere FJ, Newman AG, Watts ML, Bradley SQ, Juskewitch JE, Greenwood PG, Millard JT. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA. Mutat Res 2009; 664:48-54. [PMID: 19428380 PMCID: PMC2727856 DOI: 10.1016/j.mrfmmm.2009.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/04/2008] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
Abstract
The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.
Collapse
Affiliation(s)
| | - Adam G. Newman
- Department of Chemistry, Colby College, Waterville ME 04901
| | - Megan L. Watts
- Department of Chemistry, Colby College, Waterville ME 04901
| | | | | | | | | |
Collapse
|
37
|
Jung D, Cho Y, Meyer JN, Di Giulio RT. The long amplicon quantitative PCR for DNA damage assay as a sensitive method of assessing DNA damage in the environmental model, Atlantic killifish (Fundulus heteroclitus). Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:182-6. [PMID: 18706522 PMCID: PMC2676791 DOI: 10.1016/j.cbpc.2008.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
DNA damage is an important mechanism of toxicity for a variety of pollutants, and therefore, is often used as an indicator of pollutant effects in ecotoxicological studies. Here, we adapted a PCR-based assay for nuclear and mitochondrial DNA damage for use in an important environmental model, the Atlantic killifish (Fundulus heteroclitus). We refer to this assay as the long amplicon quantitative PCR (LA-QPCR) assay. To validate this method in killifish, DNA damage was measured in liver, brain, and muscle of fish dosed with 10 mg/kg benzo[a]pyrene. This exposure caused 0.4-0.8 lesions/10 kb. We also measured DNA damage in liver and muscle tissues from killifish inhabiting a Superfund site, confirming the utility of this method for biomonitoring. In both cases, damage levels were comparable in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Since extensive nDNA sequence data are not readily available for many environmentally relevant species, but mitochondrial genomes are frequently fully sequenced, this assay can be adapted to examine mtDNA damage in virtually any species with little development. Therefore, we argue that this assay will be a valuable tool in assessing DNA damage in ecotoxicological studies.
Collapse
Affiliation(s)
- Dawoon Jung
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Youngeun Cho
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
38
|
Gasiev AI, Shaikhaev GO. Lesions of the mitochondrial genome and ways of its preservation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Dioxin-mediated tumor progression through activation of mitochondria-to-nucleus stress signaling. Proc Natl Acad Sci U S A 2008; 105:186-91. [PMID: 18172213 DOI: 10.1073/pnas.0706183104] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The environmental toxin 2,3,7,8-tetrachlorodibenzodioxin (TCDD) is a known human carcinogen; however, its precise mechanism of action remains unclear. Here we show that TCDD induces mitochondrial dysfunction, stress signaling, and tumor invasion by a mechanism similar to that described for mtDNA-depleted cells. Treatment of C2C12 cells with TCDD disrupted mitochondrial transmembrane potential in a time-dependent fashion and inhibited mitochondrial transcription and translation. TCDD also increased cytosolic [Ca(2+)](c) and RyR1-specific Ca(2+) release. These changes were associated with increased calcineurin (CnA) levels and activation of CnA-sensitive NF-kappaB/Rel (IkappaBbeta-dependent) factors. Cells treated with TCDD displayed resistance to apoptosis, increased expression of the tumor marker cathepsin L, and a high degree of invasiveness as tested by the Matrigel membrane invasion assay. These effects were reversed by the CnA inhibitor FK506, and CnA mRNA silencing suggesting that TCDD triggers a signaling pathway similar to mtDNA depletion. Taken together, these results reveal that TCDD may promote tumor progression in vivo by directly targeting mitochondrial transcription and induction of mitochondrial stress signaling.
Collapse
|
40
|
Harrison JF, Rinne ML, Kelley MR, Druzhyna NM, Wilson GL, Ledoux SP. Altering DNA base excision repair: use of nuclear and mitochondrial-targeted N-methylpurine DNA glycosylase to sensitize astroglia to chemotherapeutic agents. Glia 2007; 55:1416-25. [PMID: 17674369 PMCID: PMC2706656 DOI: 10.1002/glia.20556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Primary astrocyte cultures were used to investigate the modulation of DNA repair as a tool for sensitizing astrocytes to genotoxic agents. Base excision repair (BER) is the principal mechanism by which mammalian cells repair alkylation damage to DNA and involves the processing of relatively nontoxic DNA adducts through a series of cytotoxic intermediates during the course of restoring normal DNA integrity. An adenoviral expression system was employed to target high levels of the BER pathway initiator, N-methylpurine glycosylase (MPG), to either the mitochondria or nucleus of primary astrocytes to test the hypothesis that an alteration in BER results in increased alkylation sensitivity. Increasing MPG activity significantly increased BER kinetics in both the mitochondria and nuclei. Although modulating MPG activity in mitochondria appeared to have little effect on alkylation sensitivity, increased nuclear MPG activity resulted in cell death in astrocyte cultures treated with methylnitrosourea (MNU). Caspase-3 cleavage was not detected, thus indicating that these alkylation sensitive astrocytes do not undergo a typical programmed cell death in response to MNU. Astrocytes were found to express relatively high levels of antiapoptotic Bcl-2 and Bcl-XL and very low levels of proapoptotic Bad and Bid suggesting that the mitochondrial pathway of apoptosis may be blocked making astrocytes less vulnerable to proapoptotic stimuli compared with other cell types. Consequently, this unique characteristic of astrocytes may be responsible, in part, for resistance of astrocytomas to chemotherapeutic agents.
Collapse
Affiliation(s)
- Jason F. Harrison
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama
| | - Mikael L. Rinne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R. Kelley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nadiya M. Druzhyna
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama
| | - Glenn L. Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama
| | - Susan P. Ledoux
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama
- Correspondence to: Susan P. LeDoux, Department of Cell Biology and Neuroscience, University of South Alabama, 307 University Blvd MSB 1200, Mobile, AL 36688, USA. E-mail:
| |
Collapse
|
41
|
Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 2006; 106:383-405. [PMID: 16464011 DOI: 10.1021/cr040463d] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria A Graziewicz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
42
|
Stuart JA, Brown MF. Mitochondrial DNA maintenance and bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:79-89. [PMID: 16473322 DOI: 10.1016/j.bbabio.2006.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/03/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
Oxidative phosphorylation requires assembly of the protein products of both mitochondrial and of nuclear genomes into functional respiratory complexes. Cellular respiration can be compromised when mitochondrial DNA (mtDNA) sequences are corrupted. Oxidative damage resulting from reactive oxygen species (ROS) produced during respiration is probably a major source of mitochondrial genomic instability leading to respiratory dysfunction. Here, we review mechanisms of mitochondrial ROS production, mtDNA damage and its relationship to mitochondrial dysfunction. We focus particular attention on the roles of mtDNA repair enzymes and processes by which the integrity of the mitochondrial genome is maintained and dysfunction prevented.
Collapse
Affiliation(s)
- Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1.
| | | |
Collapse
|
43
|
Harrison JF, Hollensworth SB, Spitz DR, Copeland WC, Wilson GL, LeDoux SP. Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance. Nucleic Acids Res 2005; 33:4660-71. [PMID: 16107556 PMCID: PMC1187820 DOI: 10.1093/nar/gki759] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in reductants, such as glutathione, and redox sensitive signaling molecules, such as AP endonuclease/redox effector factor-1. Cerebellar granule cultures also exhibited an increased susceptibility to exogenous oxidative stress. Menadione (50 μM) produced twice as many lesions in granule cell mtDNA compared with astrocytes, and granule cell mtDNA repair was significantly less efficient. A decreased capacity to repair oxidative mtDNA damage correlates strongly with mitochondrial initiated apoptosis in these neuronal cultures. Interestingly, the mitochondrial activities of initiators for base excision repair (BER), the bifunctional glycosylase/AP lyases as well as AP endonuclease, were significantly higher in cerebellar granule cells compared with astrocytes. The increased mitochondrial AP endonuclease activity in combination with decreased polymerase γ activity may cause an imbalance in oxidative BER leading to an increased production and persistence of mtDNA damage in neurons when treated with menadione. This study provides evidence linking neuronal mtDNA repair capacity with oxidative stress-related neurodegeneration.
Collapse
Affiliation(s)
| | | | - Douglas R. Spitz
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Holden Comprehensive Cancer Center, The University of IowaIA City, IA 52242, USA
| | - William C. Copeland
- Laboratory of Molecular Genetics, National Institute of Environmental Health SciencesResearch Triangle Park, NC 27709, USA
| | | | - Susan P. LeDoux
- To whom correspondence should be addressed. Tel: +1 251 460 6762; Fax: +1 251 414 8241;
| |
Collapse
|
44
|
Andrade Júnior DRD, Souza RBD, Santos SAD, Andrade DRD. Os radicais livres de oxigênio e as doenças pulmonares. J Bras Pneumol 2005. [DOI: 10.1590/s1806-37132005000100011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Os radicais livres de oxigênio são moléculas que apresentam elétrons não pareados em sua órbita externa, capazes de transformar outras moléculas com as quais se encontram, como proteínas, carbohidratos, lípides e o ácido desoxirribonucleico. Essas moléculas são geradas em situações clínicas onde microambientes de hipóxia são seguidos por microambientes de reoxigenação. Nesse grupo estão o choque hemodinâmico, a septicemia, a resposta inflamatória sistêmica, as hepatites fulminantes, o transplante de órgãos, e a insuficiência respiratória, entre outras condições. Neste trabalho discutimos os principais conceitos sobre os radicais livres de oxigênio: os principais tipos, sua formação e a forma como atuam sobre todas as estruturas celulares provocando lesão tecidual significativa. Os principais sistemas de defesa antioxidante existentes para combater o estresse oxidativo são comentados, com destaque para a glutationa, superóxido dismutase, catalase, glutationa peroxidase e N-acetilcisteína. A influência dos radicais livres de oxigênio sobre as principais doenças pulmonares também é discutida, com ênfase nos produtos do cigarro, doença pulmonar obstrutiva crônica, asma, apnéia obstrutiva do sono e síndrome do desconforto respiratório agudo.
Collapse
|
45
|
Karthikeyan G, Resnick MA. Impact of mitochondria on nuclear genome stability. DNA Repair (Amst) 2005; 4:141-8. [PMID: 15590322 DOI: 10.1016/j.dnarep.2004.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/24/2022]
Affiliation(s)
- Gopalakrishnan Karthikeyan
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH Research Triangle Park, 111 Alexander Drive, North Carolina 27709, USA
| | | |
Collapse
|
46
|
Onuki J, Chen Y, Teixeira PC, Schumacher RI, Medeiros MHG, Van Houten B, Di Mascio P. Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. Arch Biochem Biophys 2005; 432:178-87. [PMID: 15542056 DOI: 10.1016/j.abb.2004.09.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/28/2004] [Indexed: 12/12/2022]
Abstract
5-Aminolevulinic acid (ALA) is a heme precursor accumulated in plasma and in organs in acute intermittent porphyria (AIP), a disease associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma (HCC). Liver biopsies of AIP patients showed odd-shaped mitochondria and autophagic vacuoles containing well-preserved mitochondria. ALA yields reactive oxygen species upon metal-catalyzed oxidation and causes in vivo and in vitro impairment of rat liver mitochondria and DNA damage. Using a quantitative polymerase chain reaction assay, we demonstrated that ALA induces a dose-dependent damage in nuclear and mitochondrial DNA in human SVNF fibroblasts and rat PC12 cells. CHO cells treated with ALA also show nuclear DNA damage and human HepG2 cells entered in apoptosis and necrosis induced by ALA and its dimerization product, DHPY. The present data provide additional information on the genotoxicity of ALA, reinforcing the hypothesis that it may be involved in the development of HCC in AIP patients.
Collapse
Affiliation(s)
- Janice Onuki
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077 CEP 05513-970, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Campbell AW, Thrasher JD, Gray MR, Vojdani A. Mold and mycotoxins: effects on the neurological and immune systems in humans. ADVANCES IN APPLIED MICROBIOLOGY 2004; 55:375-406. [PMID: 15350803 DOI: 10.1016/s0065-2164(04)55015-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Alexeyev MF, Ledoux SP, Wilson GL. Mitochondrial DNA and aging. Clin Sci (Lond) 2004; 107:355-64. [PMID: 15279618 DOI: 10.1042/cs20040148] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/22/2004] [Accepted: 07/28/2004] [Indexed: 12/21/2022]
Abstract
Among the numerous theories that explain the process of aging, the mitochondrial theory of aging has received the most attention. This theory states that electrons leaking from the ETC (electron transfer chain) reduce molecular oxygen to form O2•− (superoxide anion radicals). O2•−, through both enzymic and non-enzymic reactions, can cause the generation of other ROS (reactive oxygen species). The ensuing state of oxidative stress results in damage to ETC components and mtDNA (mitochondrial DNA), thus increasing further the production of ROS. Ultimately, this ‘vicious cycle’ leads to a physiological decline in function, or aging. This review focuses on recent developments in aging research related to the role played by mtDNA. Both supportive and contradictory evidence is discussed.
Collapse
Affiliation(s)
- Mikhail F Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, 307 University Blvd, Mobile, AL 36688, USA.
| | | | | |
Collapse
|
49
|
Gray MR, Thrasher JD, Crago R, Madison RA, Arnold L, Campbell AW, Vojdani A. Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged buildings. ACTA ACUST UNITED AC 2004; 58:410-20. [PMID: 15143854 DOI: 10.1080/00039896.2003.11879142] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study described was part of a larger multicenter investigation of patients with multiple health complaints attributable to confirmed exposure to mixed-molds infestation in water-damaged buildings. The authors present data on symptoms; clinical chemistries; abnormalities in pulmonary function; alterations in T, B, and natural killer (NK) cells; the presence of autoantibodies (i.e., antinuclear autoantibodies [ANA], autoantibodies against smooth muscle [ASM], and autoantibodies against central nervous system [CNS] and peripheral nervous system [PNS] myelins). A total of 209 adults, 42.7 +/- 16 yr of age (mean +/- standard deviation), were examined and tested with (a) self-administered weighted health history and symptom questionnaires; (b) standardized physical examinations; (c) complete blood counts and blood and urine chemistries; (d) urine and fecal cultures; (e) thyroid function tests (T4, free T3); (f) pulmonary function tests (forced vital capacity [FVC], forced expiratory volume in 1 sec [FEV1.0], and forced expiratory flow at 25%, 50%, 75%, and 25-75% of FVC [FEF25, FEF50, FEF75, and FEF2(25-75)]); (g) peripheral lymphocyte phenotypes (T, B, and NK cells) and mitogenesis determinations; and (h) a 13-item autoimmune panel. The molds-exposed patients reported a greater frequency and intensity of symptoms, particularly neurological and inflammatory symptoms, when compared with controls. The percentages of exposed individuals with increased lymphocyte phenotypes were: B cells (CD20+), 75.6%; CD5+CD25+, 68.9%; CD3+CD26+, 91.2%; CD8+HLR-DR+, 62%; and CD8+CD38+, 56.6%; whereas other phenotypes were decreased: CD8+CD11b+, 15.6% and CD3-CD16+CD56+, 38.5%. Mitogenesis to phytohemagglutinin was decreased in 26.2% of the exposed patients, but only 5.9% had decreased response to concanavalin A. Abnormally high levels of ANA, ASM, and CNS myelin (immunoglobulins [Ig]G, IgM, IgA) and PNS myelin (IgG, IgM, IgA) were found; odds ratios for each were significant at 95% confidence intervals, showing an increased risk for autoimmunity. The authors conclude that exposure to mixed molds and their associated mycotoxins in water-damaged buildings leads to multiple health problems involving the CNS and the immune system, in addition to pulmonary effects and allergies. Mold exposure also initiates inflammatory processes. The authors propose the term "mixed mold mycotoxicosis" for the multisystem illness observed in these patients.
Collapse
|
50
|
Fang DC, Fang L, Wang RQ, Yang SM. Nuclear and mitochondrial DNA microsatellite instability in Chinese hepatocellular carcinoma. World J Gastroenterol 2004; 10:371-5. [PMID: 14760760 PMCID: PMC4724920 DOI: 10.3748/wjg.v10.i3.371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the nuclear microsatellite instability (nMSI) at BAT26 and mitochondral microsalellite instability (mtMSI) in the occurrence and development of hepatocellular carcinoma and the relationship between nMSI and mtMSI.
METHODS: nMSI was observed with PCR and mtMSI with PCR-SSCP in 52 cases of hepatocellular carcinoma.
RESULTS: mtMSI was detected in 11 out of the 52 cases of hepatocellular carcinoma (21.2%). Among the 11 cases of hepatocellular carcinoma with mtMSI, 7 occured in one locus and 4 in 2 loci. The frequency of mtMSI in the 52 cases of hepatocellular carcinoma showed no correlation to sex, age, infection of hepatitis B, liver cirrhosis as well as positive AFP of the patients (P > 0.05). In addition, nMSI was detected in 3 out of 52 cases of hepatocellular carcinoma (5.8%) and there was no correlation of the incidence of mtMSI to that of nMSI (P > 0.05).
CONCLUSION: mtMSI may be involved in the coccurrence and development of hepatocellular carcinoma and it is independent of nMSI.
Collapse
Affiliation(s)
- Dian-Chun Fang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | | | | | | |
Collapse
|