1
|
He S, Zhang Z, Lu W. Natural promoters and promoter engineering strategies for metabolic regulation in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2023; 50:6986260. [PMID: 36633543 PMCID: PMC9936215 DOI: 10.1093/jimb/kuac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Sharomyces cerevisiae is currently one of the most important foreign gene expression systems. S. cerevisiae is an excellent host for high-value metabolite cell factories due to its advantages of simplicity, safety, and nontoxicity. A promoter, as one of the basic elements of gene transcription, plays an important role in regulating gene expression and optimizing metabolic pathways. Promoters control the direction and intensity of transcription, and the application of promoters with different intensities and performances will largely determine the effect of gene expression and ultimately affect the experimental results. Due to its significant role, there have been many studies on promoters for decades. While some studies have explored and analyzed new promoters with different functions, more studies have focused on artificially modifying promoters to meet their own scientific needs. Thus, this article reviews current research on promoter engineering techniques and related natural promoters in S. cerevisiae. First, we introduce the basic structure of promoters and the classification of natural promoters. Then, the classification of various promoter strategies is reviewed. Finally, by grouping related articles together using various strategies, this review anticipates the future development direction of promoter engineering.
Collapse
Affiliation(s)
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- Correspondence should be addressed to: W. Y. Lu, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Phone: +86-22-853-56523. Fax: +86-22-274-00973. E-mail:
| |
Collapse
|
2
|
Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL, Veenstra GJC. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors. Development 2016; 143:1340-50. [PMID: 26952988 PMCID: PMC4852510 DOI: 10.1242/dev.127936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Embryonic development relies on activating and repressing regulatory influences that are faithfully integrated at the core promoter of individual genes. In vertebrates, the basal machinery recognizing the core promoter includes TATA-binding protein (TBP) and two TBP-related factors. In Xenopus embryos, the three TBP family factors are all essential for development and are required for expression of distinct subsets of genes. Here, we report on a non-canonical TBP family-insensitive (TFI) mechanism of transcription initiation that involves mesoderm and organizer gene expression. Using TBP family single- and triple-knockdown experiments, α-amanitin treatment, transcriptome profiling and chromatin immunoprecipitation, we found that TFI gene expression cannot be explained by functional redundancy, is supported by active transcription and shows normal recruitment of the initiating form of RNA polymerase II to the promoter. Strikingly, recruitment of Gcn5 (also known as Kat2a), a co-activator that has been implicated in transcription initiation, to TFI gene promoters is increased upon depletion of TBP family factors. TFI genes are part of a densely connected TBP family-insensitive T-box-Otx2-Gsc interaction network. The results indicate that this network of genes bound by Vegt, Eomes, Otx2 and Gsc utilizes a novel, flexible and non-canonical mechanism of transcription that does not require TBP or TBP-related factors. Highlighted article: A network of embryonic genes, many of which are expressed in the mesoderm and the organiser, can initiate transcription through a non-canonical mechanism.
Collapse
Affiliation(s)
- Emese Gazdag
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ulrike G Jacobi
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 2014; 34:1547-63. [PMID: 24550006 DOI: 10.1128/mcb.01060-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.
Collapse
|
4
|
Transcriptional activators and activation mechanisms. Protein Cell 2011; 2:879-88. [PMID: 22180087 DOI: 10.1007/s13238-011-1101-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 10/14/2022] Open
Abstract
Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to the enhancer can facilitate either the recruitment of RNA polymerase II to the promoter or its elongation. This article examines a few selected issues in understanding activator functions and activation mechanisms.
Collapse
|
5
|
Ohyama Y, Kasahara K, Kokubo T. Saccharomyces cerevisiae Ssd1p promotes CLN2 expression by binding to the 5′-untranslated region of CLN2 mRNA. Genes Cells 2010; 15:1169-88. [DOI: 10.1111/j.1365-2443.2010.01452.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Samorodnitsky E, Pugh BF. Genome-wide modeling of transcription preinitiation complex disassembly mechanisms using ChIP-chip data. PLoS Comput Biol 2010; 6:e1000733. [PMID: 20369017 PMCID: PMC2848545 DOI: 10.1371/journal.pcbi.1000733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 03/03/2010] [Indexed: 11/26/2022] Open
Abstract
Apparent occupancy levels of proteins bound to DNA in vivo can now be routinely measured on a genomic scale. A challenge in relating these occupancy levels to assembly mechanisms that are defined with biochemically isolated components lies in the veracity of assumptions made regarding the in vivo system. Assumptions regarding behavior of molecules in vivo can neither be proven true nor false, and thus is necessarily subjective. Nevertheless, within those confines, connecting in vivo protein-DNA interaction observations with defined biochemical mechanisms is an important step towards fully defining and understanding assembly/disassembly mechanisms in vivo. To this end, we have developed a computational program PathCom that models in vivo protein-DNA occupancy data as biochemical mechanisms under the assumption that occupancy levels can be related to binding duration and explicitly defined assembly/disassembly reactions. We exemplify the process with the assembly of the general transcription factors (TBP, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II) at the genes of the budding yeast Saccharomyces. Within the assumption inherent in the system our modeling suggests that TBP occupancy at promoters is rather transient compared to other general factors, despite the importance of TBP in nucleating assembly of the preinitiation complex. PathCom is suitable for modeling any assembly/disassembly pathway, given that all the proteins (or species) come together to form a complex. For proper cell function, cells need to precisely coordinate the expression of their genes on their DNA at precise times. In order to better understand how the cell works, it is important to understand how, when, and why a cell needs to turn on or off certain genes at certain times. In order to assist the cell to properly express its genes, there are hundreds of proteins that can bind and access DNA. Each protein has a unique function and these proteins assemble together into a very large complex to turn on genes. The assembly of these proteins has defined to some extent, however the whole process of assembly and disassembly of this complex in the cell is still poorly understood. In our modeling analysis, we have attempted to utilize genome-wide binding data to better understand how the transcription machinery that “reads” genes might disassemble, in light of what is known about the assembly process. This knowledge helps us better understand how cells coordinate their on/off-switching of their genes.
Collapse
Affiliation(s)
- Eric Samorodnitsky
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, North Frear Laboratory, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - B. Franklin Pugh
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, North Frear Laboratory, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Ranjan A, Ansari SA, Srivastava R, Mantri S, Asif MH, Sawant SV, Tuli R. A T9G mutation in the prototype TATA-box TCACTATATATAG determines nucleosome formation and synergy with upstream activator sequences in plant promoters. PLANT PHYSIOLOGY 2009; 151:2174-86. [PMID: 19812181 PMCID: PMC2785982 DOI: 10.1104/pp.109.148064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 09/30/2009] [Indexed: 05/19/2023]
Abstract
We had earlier reported that mutations to G and C at the seventh and eighth positions in the prototype TATA-box TCACTATATATAG inhibited light-dependent activation of transcription from the promoter. In this study, we characterized mutations at the ninth position of the prototype TATA-box. Substitution of T at the ninth position with G or C enhanced transcription from the promoter in transgenic tobacco (Nicotiana tabacum) plants. The effect of T9G/C mutations was not light dependent, although the 9G/C TATA-box showed synergy with the light-responsive element (lre). However, the 9G/C mutants in the presence of lre failed to respond to phytochromes, sugar, and calcium signaling, in contrast to the prototype TATA-box with lre. The 9G/C mutation shifted the point of initiation of transcription, and transcription activation was dependent upon the type of activating element present upstream. The synergy in activation was noticed with lre and legumin activators but not with rbcS, Pcec, and PR-1a activators. The 9G mutation resulted in a micrococcal nuclease-sensitive region over the TATA-box, suggesting a nucleosome-free region, in contrast to the prototype promoter, which had a distinct nucleosome on the TATA-box. Thus, the transcriptional augmentation with mutation at the ninth position might be because of the loss of a repressive nucleosomal structure on the TATA-box. In agreement with our findings, the promoters containing TATAGATA as identified by genome-wide analysis of Arabidopsis (Arabidopsis thaliana) are not tightly repressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Samir V. Sawant
- National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow 226001, India
| | | |
Collapse
|
8
|
Codarin E, Renzone G, Poz A, Avellini C, Baccarani U, Lupo F, di Maso V, Crocè SL, Tiribelli C, Arena S, Quadrifoglio F, Scaloni A, Tell G. Differential Proteomic Analysis of Subfractioned Human Hepatocellular Carcinoma Tissues. J Proteome Res 2009; 8:2273-84. [DOI: 10.1021/pr8009275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erika Codarin
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Giovanni Renzone
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Alessandra Poz
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Avellini
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Umberto Baccarani
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Francesco Lupo
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Vittorio di Maso
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Saveria Lory Crocè
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Tiribelli
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Simona Arena
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Franco Quadrifoglio
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Andrea Scaloni
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| |
Collapse
|
9
|
Sprouse RO, Wells MN, Auble DT. TATA-binding protein variants that bypass the requirement for Mot1 in vivo. J Biol Chem 2009; 284:4525-35. [PMID: 19098311 PMCID: PMC2640957 DOI: 10.1074/jbc.m808951200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/18/2008] [Indexed: 12/27/2022] Open
Abstract
Mot1 is an essential TATA-binding protein (TBP)-associated factor and Snf2/Swi2 ATPase that both represses and activates transcription. Biochemical and structural results support a model in which ATP binding and hydrolysis induce a conformational change in Mot1 that drives local translocation along DNA, thus removing TBP. Although this activity explains transcriptional repression, it does not as easily explain Mot1-mediated transcriptional activation, and several different models have been proposed to explain how Mot1 activates transcription. To better understand the function of Mot1 in yeast cells in vivo, particularly with regard to gene activation, TBP mutants were identified that bypass the requirement for Mot1 in vivo. Although TBP has been extensively mutated and analyzed previously, this screen uncovered two novel TBP variants that are unique in their ability to bypass the requirement for Mot1. Surprisingly, in vitro analyses reveal that rather than having acquired an improved biochemical activity, one of the TBPs was defective for interaction with polymerase II preinitiation complex (PIC) components and other regulators of TBP function. The other mutant was defective for DNA binding in vitro yet was still recruited to chromatin in vivo. These results suggest that Mot1-mediated dissociation of TBP (or TBP-containing complexes) from chromatin can explain the Mot1 activation mechanism at some promoters. The results also suggest that PICs can be dynamically unstable and that appropriate PIC instability is critical for the regulation of transcription in vivo.
Collapse
Affiliation(s)
- Rebekka O Sprouse
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
10
|
Bendjennat M, Weil PA. The transcriptional repressor activator protein Rap1p is a direct regulator of TATA-binding protein. J Biol Chem 2008; 283:8699-710. [PMID: 18195009 DOI: 10.1074/jbc.m709436200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Essentially all nuclear eukaryotic gene transcription depends upon the function of the transcription factor TATA-binding protein (TBP). Here we show that the abundant, multifunctional DNA binding transcription factor repressor activator protein Rap1p interacts directly with TBP. TBP-Rap1p binding occurs efficiently in vivo at physiological expression levels, and in vitro analyses confirm that this is a direct interaction. The DNA binding domains of the two proteins mediate interaction between TBP and Rap1p. TBP-Rap1p complex formation inhibits TBP binding to TATA promoter DNA. Alterations in either Rap1p or TBP levels modulate mRNA gene transcription in vivo. We propose that Rap1p represents a heretofore unrecognized regulator of TBP.
Collapse
Affiliation(s)
- Mourad Bendjennat
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
11
|
Bypassing the requirements for epigenetic modifications in gene transcription by increasing enhancer strength. Mol Cell Biol 2007; 28:926-38. [PMID: 18025106 DOI: 10.1128/mcb.01344-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current concept postulates that histone acetylation is required for the recruitment of bromodomain-containing transcription complexes, such as the chromatin-remodeling machine SWI/SNF and the basal transcription factor TFIID. We generated simple NF-kappaB-dependent enhancers of increasing transcriptional strengths and found that the histone acetylation requirements for activation of transcription depended on the strengths of these enhancers. All enhancers function by recruiting SWI/SNF and TFIID to induce nucleosome sliding, a prerequisite for transcriptional activation. However, histone acetylation, although it occurs, is dispensable for TFIID and SWI/SNF recruitment by the strong enhancers, indicating that strong activators can overcome the chromatin barrier by directly recruiting the necessary transcriptional complexes. Weak enhancers depend on histone acetylation for recruitment, and this requirement is independent of a histone acetylation code. Thus, the need for nucleosome modifications is imposed on genes and translated according to the quality and strengths of the activators.
Collapse
|
12
|
Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 2007; 27:297-311. [PMID: 17074814 PMCID: PMC1800639 DOI: 10.1128/mcb.01558-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/06/2006] [Accepted: 10/13/2006] [Indexed: 11/20/2022] Open
Abstract
In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UAS(RAP1) enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UAS(RAP1) enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.
Collapse
Affiliation(s)
- Krassimira A Garbett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
13
|
Copik AJ, Webb MS, Miller AL, Wang Y, Kumar R, Thompson EB. Activation function 1 of glucocorticoid receptor binds TATA-binding protein in vitro and in vivo. Mol Endocrinol 2006; 20:1218-30. [PMID: 16469772 DOI: 10.1210/me.2005-0257] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanism through which the glucocorticoid receptor (GR) stimulates transcription is still unclear, although it is clear that the GR affects assembly of the transcriptional machinery. The binding of the TATA-binding protein (TBP) to the TATA-box is accepted as essential in this process. It is known that the GR can interact in vitro with TBP, but the direct interaction of TBP with GR has not been previously characterized quantitatively and has not been appreciated as an important step in assembling the transcriptional complex. Herein, we demonstrate that the TBP-GR interaction is functionally significant by characterizing the association of TBP and GR in vitro by a combination of techniques and confirming the role of this interaction in vivo. Combined analysis, using native gel electrophoresis, sedimentation equilibrium, and isothermal microcalorimetry titrations, characterize the stoichiometry, affinity, and thermodynamics of the TBP-GR interaction. TBP binds recombinant GR activation function 1 (AF1) with a 1:2 stoichiometry and a dissociation constant in the nanomolar range. In vivo fluorescence resonance energy transfer experiments, using fluorescently labeled TBP and various GR constructs, transiently transfected into CV-1 cells, show GR-TBP interactions, dependent on AF1. AF1-deletion variants showed fluorescence resonance energy transfer efficiencies on the level of coexpressed cyan fluorescent protein and yellow fluorescent protein, indicating that the interaction is dependent on AF1 domain. To demonstrate the functional role of the in vivo GR-TBP interaction, increased amounts of TBP expressed in vivo stimulated expression of GR-driven reporters and endogenous genes, and the effect was also specifically dependent on AF1.
Collapse
Affiliation(s)
- Alicja J Copik
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | |
Collapse
|
14
|
Fu D, Wen Y, Ma J. The co-activator CREB-binding protein participates in enhancer-dependent activities of bicoid. J Biol Chem 2004; 279:48725-33. [PMID: 15358774 DOI: 10.1074/jbc.m407066200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bicoid (Bcd) is a transcriptional activator required for early embryonic patterning in Drosophila. Despite extensive studies, it currently remains unclear how Bcd activates transcription and what proteins participate in its activation process. In this report, we describe experiments to analyze the role of the Drosophila co-activator dCBP in Bcd-mediated activation. In Drosophila S2 cells, the Bcd activity is increased by the co-transfection of plasmids expressing dCBP and reduced by double-stranded RNA-mediated interference against dCBP. We further show that Bcd and dCBP can interact with each other and that Bcd-interacting domains of dCBP can cause dominant negative effects on Bcd activity in S2 cells. Our comparison of two Bcd-responsive enhancers, hunchback (hb) and knirps (kni), reveals a differential role of dCBP in facilitating Bcd activation. A dCBP mutant defective in its histone acetyltransferase activity exhibits a reduced, but not abolished, co-activator function for Bcd. Our chromatin immunoprecipitation experiments show that dCBP can increase not only the occupancy of Bcd itself at the enhancers but also the recruitment of general transcription factors to the promoter. Together, these experiments suggest that dCBP is an enhancer-dependent co-activator of Bcd, facilitating its activation through multiple mechanisms.
Collapse
Affiliation(s)
- Dechen Fu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
15
|
Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 2003; 11:709-19. [PMID: 12667453 DOI: 10.1016/s1097-2765(03)00092-3] [Citation(s) in RCA: 841] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Set1, the yeast histone H3-lysine 4 (H3-K4) methylase, is recruited by the Pol II elongation machinery to a highly localized domain at the 5' portion of active mRNA coding regions. Set1 association depends upon the TFIIH-associated kinase that phosphorylates the Pol II C-terminal domain (CTD) and mediates the transition between initiation and elongation, and Set1 interacts with the form of Pol II whose CTD is phosphorylated at serine 5 but not serine 2. The Rtf1 and Paf1 components of the Pol II-associated Paf1 complex are also important for Set1 recruitment. Although the level of dimethylated H3-K4 is fairly uniform throughout the genome, the pattern of trimethylated H3-K4 strongly correlates with Set1 occupancy. Hypermethylated H3-K4 within the mRNA coding region persists for considerable time after transcriptional inactivation and Set1 dissociation from the chromatin, indicating that H3-K4 hypermethylation provides a molecular memory of recent transcriptional activity.
Collapse
Affiliation(s)
- Huck Hui Ng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Kobayashi A, Miyake T, Kawaichi M, Kokubo T. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP). Nucleic Acids Res 2003; 31:1261-74. [PMID: 12582246 PMCID: PMC150217 DOI: 10.1093/nar/gkg180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-DeltaTAND) and identified two DeltaTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-DeltaTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-DeltaTAND mutant by different mechanisms.
Collapse
Affiliation(s)
- Akiko Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
NC2 is a heterodimeric regulator of transcription that plays both positive and negative roles in vivo. Here we show that the alpha and beta subunits of yeast NC2 are not always associated in a tight complex. Rather, their association is regulated, in particular by glucose depletion. Indeed, stable NC2 alpha/beta complexes can only be purified from cells after the diauxic shift when glucose has been depleted from the growth medium. In vivo, the presence of NC2 alpha, but not NC2 beta, at promoters generally correlates with the presence of TBP and transcriptional activity. In contrast, increased presence of NC2 beta relative to TBP correlates with transcriptional repression. NC2 is regulated by phosphorylation. We found that mutation of genes encoding casein kinase II (CKII) subunits as well as potential CKII phosphorylation sites in NC2 alpha and beta affected gene repression. Interestingly, NC2-dependent repression in the phosphorylation site mutants was only perturbed in high glucose when NC2 beta and NC2 alpha are not associated, but not after the diauxic shift when NC2 alpha and beta form stable complexes. Thus, the separation of NC2 alpha and beta function indicated by these mutants also supports the existence of multiple NC2 complexes with different functions in transcription.
Collapse
|
18
|
Fischbeck JA, Kraemer SM, Stargell LA. SPN1, a conserved gene identified by suppression of a postrecruitment-defective yeast TATA-binding protein mutant. Genetics 2002; 162:1605-16. [PMID: 12524336 PMCID: PMC1462358 DOI: 10.1093/genetics/162.4.1605] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about TATA-binding protein (TBP) functions after recruitment to the TATA element, although several TBP mutants display postrecruitment defects. Here we describe a genetic screen for suppressors of a postrecruitment-defective TBP allele. Suppression was achieved by a single point mutation in a previously uncharacterized Saccharomyces cerevisiae gene, SPN1 (suppresses postrecruitment functions gene number 1). SPN1 is an essential yeast gene that is highly conserved throughout evolution. The suppressing mutation in SPN1 substitutes an asparagine for an invariant lysine at position 192 (spn1(K192N)). The spn1(K192N) strain is able to suppress additional alleles of TBP that possess postrecruitment defects, but not a TBP allele that is postrecruitment competent. In addition, Spn1p does not stably associate with TFIID in vivo. Cells containing the spn1(K192N) allele exhibit a temperature-sensitive phenotype and some defects in activated transcription, whereas constitutive transcription appears relatively robust in the mutant background. Consistent with an important role in postrecruitment functions, transcription from the CYC1 promoter, which has been shown to be regulated by postrecruitment mechanisms, is enhanced in spn1(K192N) cells. Moreover, we find that SPN1 is a member of the SPT gene family, further supporting a functional requirement for the SPN1 gene product in transcriptional processes.
Collapse
Affiliation(s)
- Julie A Fischbeck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
19
|
Spencer JV, Arndt KM. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo. Mol Cell Biol 2002; 22:8744-55. [PMID: 12446791 PMCID: PMC139874 DOI: 10.1128/mcb.22.24.8744-8755.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.
Collapse
Affiliation(s)
- J Vaughn Spencer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
20
|
Hall DB, Struhl K. The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo. J Biol Chem 2002; 277:46043-50. [PMID: 12297514 DOI: 10.1074/jbc.m208911200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional activator proteins recruit the RNA polymerase II machinery and chromatin-modifying activities to promoters. Biochemical experiments indicate that activator proteins can associate with a large number of proteins, and many such proteins have been proposed to be direct targets of activators. However, there is great uncertainty about which biochemical interactions are physiologically relevant. Here, we develop a formaldehyde-based cross-linking procedure to identify protein-protein interactions that occur under physiological conditions. We show that the VP16 activation domain directly interacts with TATA-binding protein (TBP), TFIIB, and the SAGA histone acetylase complex in vivo.
Collapse
Affiliation(s)
- Daniel B Hall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Abstract
Enhancers when functioning at a distance cannot effectively stimulate transcription from core promoters. We demonstrate that this is due to the inability of enhancer-bound activators to recruit TBP to a distal TATA box. Surprisingly, binding of a transcriptionally inert Oct-1 POU domain near a core promoter enables an enhancer to function from a distance. POU activity neither requires the coactivator OCA-B nor the interaction of TBP with TFIIA. Instead, the POU domain directly facilitates TBP recruitment to the promoter utilizing a bipartite interaction surface. These results establish that an interaction between the DNA binding domain of an activator and TBP can be used to stimulate transcription. Furthermore, they suggest a mechanism for long-range enhancer function in which a TBP complex is preassembled on a promoter via localized recruitment and then acted upon by distal activators.
Collapse
Affiliation(s)
- Eric Bertolino
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
22
|
Cabart P, Murphy S. Assembly of human small nuclear RNA gene-specific transcription factor IIIB complex de novo on and off promoter. J Biol Chem 2002; 277:26831-8. [PMID: 12016223 DOI: 10.1074/jbc.m203119200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, transcription factor IIIB (TFIIIB)-alpha governs basal transcription from small nuclear RNA genes by RNA polymerase III (pol III). One of the components of this complex, BRFU/TFIIIB50, is specific for these promoters, whereas TATA-binding protein (TBP) and hB" are required for pol III transcription from both gene external and internal promoters. We show that hB" is specifically recruited to a promoter-bound TBP.BRFU complex, which we have previously demonstrated as forming on TATA-containing templates. The N-terminal region of BRFU, containing a zinc ribbon domain, acts as a damper of hB" binding. TBP deactivates this negative mechanism through protein-protein contacts with both BRFU and hB", which may then promote their cooperative binding to form TFIIIB-alpha. In addition, we have identified a GC-rich sequence downstream from the TATA box (the BURE) which, depending on the strength of TATA box, can either enhance BRFU binding to the TBP.DNA complex or hB" association with the BRFU.TBP.DNA complex, and subsequently stimulate pol III transcription. Moreover, mutation of the BURE reduces pol III transcription and induces transcription by RNA polymerase II from the U2 gene promoter carrying a minimal TATA box.
Collapse
Affiliation(s)
- Pavel Cabart
- Chemical Pathology Unit, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | |
Collapse
|
23
|
Traven A, Staresincić L, Arnerić M, Sopta M. The yeast protein Xtc1 functions as a direct transcriptional repressor. Nucleic Acids Res 2002; 30:2358-64. [PMID: 12034822 PMCID: PMC117208 DOI: 10.1093/nar/30.11.2358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yeast protein Xtc1 was identified as a protein that binds directly and specifically to the activation domains of acidic activators such as E2F-1, Gal4 and VP16. Additionally, it was shown to co-purify with the RNA polymerase II holoenzyme complex and it was suggested that Xtc1 functions as a regulator of transcription that modulates the response of RNA polymerase II to transcriptional activators. We have further analyzed the transcription function of Xtc1 and show that its fusion to a heterologous DNA binding domain can repress transcription of a reporter gene in vivo in an Srb10/11-dependent manner. We suggest that the presence of Xtc1 in the RNA polymerase II holoenzyme could help to recruit an Srb10-active form of the holoenzyme to target promoters. This same protein has also been implicated in mitochondrial DNA recombination, maintenance and repair. Determination of the subcellular localization using a GFP-Xtc1 fusion shows that it localizes to both the nucleus and the mitochondria in vivo, which is consistent with Xtc1 having a function in both cellular compartments.
Collapse
Affiliation(s)
- Ana Traven
- Department of Molecular Genetics, Ruder BokoviM Institute, BijeniQka 54, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
24
|
Cheung E, Zarifyan AS, Kraus WL. Histone H1 represses estrogen receptor alpha transcriptional activity by selectively inhibiting receptor-mediated transcription initiation. Mol Cell Biol 2002; 22:2463-71. [PMID: 11909941 PMCID: PMC133703 DOI: 10.1128/mcb.22.8.2463-2471.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin is the physiological template for many nuclear processes in eukaryotes, including transcription by RNA polymerase II. In vivo, chromatin is assembled from genomic DNA, core histones, linker histones such as histone H1, and nonhistone chromatin-associated proteins. Histone H1 is thought to act as a general repressor of transcription by promoting the compaction of chromatin into higher-order structures. We have used a biochemical approach, including an in vitro chromatin assembly and transcription system, to examine the effects of histone H1 on estrogen receptor alpha (ER alpha)-mediated transcription with chromatin templates. We show that histone H1 acts as a potent repressor of ligand- and coactivator-regulated transcription by ER alpha. Histone H1 exerts its repressive effect without inhibiting the sequence-specific binding of ER alpha to chromatin or the overall extent of targeted acetylation of nucleosomal histones by the coactivator p300. Instead, histone H1 acts by blocking a specific step in the ER alpha-dependent transcription process, namely, transcription initiation, without affecting transcription reinitiation. Together, our data indicate that histone H1 acts selectively to reduce the overall level of productive transcription initiation by restricting promoter accessibility and preventing the ER alpha-dependent formation of a stable transcription pre-initiation complex.
Collapse
Affiliation(s)
- Edwin Cheung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
25
|
Stewart JJ, Stargell LA. The stability of the TFIIA-TBP-DNA complex is dependent on the sequence of the TATAAA element. J Biol Chem 2001; 276:30078-84. [PMID: 11402056 DOI: 10.1074/jbc.m105276200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the mechanistic differences between canonical and noncanonical TATA elements, we compared the functional activity of two sequences: TATAAA (canonical) and CATAAA (noncanonical). The TATAAA element can support high levels of transcription in vivo, whereas the CATAAA element is severely defective for this function. This dramatic functional difference is not likely to be due to a difference in TBP (TATA-binding protein) binding efficiency because protein-DNA complex studies in vitro indicate little difference between the two DNA sequences in the formation and stability of the TBP-DNA complex. In addition, the binding and stability of the TFIIB-TBP-DNA complex is similar for the two elements. In striking contrast, the TFIIA-TBP-DNA complex is significantly less stable on the CATAAA element when compared with the TATAAA element. A role for TFIIA in distinguishing between TATAAA and CATAAA in vivo was tested by fusing a subunit of TFIIA to TBP. We found that fusion of TFIIA to TBP dramatically increases transcription from CATAAA in yeast cells. Taken together, these results indicate that the stability of the TFIIA-TBP complex depends strongly on the sequence of the core promoter element and that the TFIIA-TBP complex plays an important function in recognizing optimal promoters in vivo.
Collapse
Affiliation(s)
- J J Stewart
- Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | |
Collapse
|
26
|
Pitarque M, von Richter O, Oke B, Berkkan H, Oscarson M, Ingelman-Sundberg M. Identification of a single nucleotide polymorphism in the TATA box of the CYP2A6 gene: impairment of its promoter activity. Biochem Biophys Res Commun 2001; 284:455-60. [PMID: 11394901 DOI: 10.1006/bbrc.2001.4990] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human cytochrome P450 2A6 (CYP2A6) constitutes the major nicotine oxidase, and large interindividual differences are seen in the levels of this enzyme, to a great extent caused by the distribution of several different polymorphic gene variants mainly located in the open reading frame (ORF). In the present study, we report a common polymorphism located in the 5' flanking region of CYP2A6 affecting its expression. DHPLC analysis and complete sequence of the open reading frame of the gene from a Turkish individual revealed a -48T > G substitution disrupting the TATA box. Using dynamic allele-specific hybridization (DASH), genotyping of this novel variant (named CYP2A6*9) was carried out in 116 Swedish, 132 Turkish, and 102 Chinese subjects, and the allele frequencies were found to be 5.2, 7.2, and 15.7%, respectively. The significance of the polymorphism was investigated by the construction of luciferase reporter plasmids containing 135 or 500 bp of the 5'-upstream region of the gene transfected into human hepatoma B16A2 cells. The constructs carrying the -48T > G mutation were only expressed at about 50% of the wild-type alleles. It is concluded that the CYP2A6*9 allele might be one of the most common CYP2A6 variants in Caucasians that alters the levels of enzyme expression.
Collapse
Affiliation(s)
- M Pitarque
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Lee M, Struhl K. Multiple functions of the nonconserved N-terminal domain of yeast TATA-binding protein. Genetics 2001; 158:87-93. [PMID: 11333220 PMCID: PMC1461640 DOI: 10.1093/genetics/158.1.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The TATA-binding protein (TBP) is composed of a highly conserved core domain sufficient for TATA-element binding and preinitiation complex formation as well as a highly divergent N-terminal region that is dispensable for yeast cell viability. In vitro, removal of the N-terminal region domain enhances TBP-TATA association and TBP dimerization. Here, we examine the effects of truncation of the N-terminal region in the context of yeast TBP mutants with specific defects in DNA binding and in interactions with various proteins. For a subset of mutations that disrupt DNA binding and the response to transcriptional activators, removal of the N-terminal domain rescues their transcriptional defects. By contrast, deletion of the N-terminal region is lethal in combination with mutations on a limited surface of TBP. Although this surface is important for interactions with TFIIA and Brf1, TBP interactions with these two factors do not appear to be responsible for this dependence on the N-terminal region. Our results suggest that the N-terminal region of TBP has at least two distinct functions in vivo. It inhibits the interaction of TBP with TATA elements, and it acts positively in combination with a specific region of the TBP core domain that presumably interacts with another protein(s).
Collapse
Affiliation(s)
- M Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Adamkewicz JI, Hansen KE, Prud'homme WA, Davis JL, Thorner J. High affinity interaction of yeast transcriptional regulator, Mot1, with TATA box-binding protein (TBP). J Biol Chem 2001; 276:11883-94. [PMID: 11278722 DOI: 10.1074/jbc.m010665200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Mot1, an essential ATP-dependent regulator of basal transcription, removes TATA box-binding protein (TBP) from TATA sites in vitro. Complexes of Mot1 and Spt15 (yeast TBP), radiolabeled in vitro, were immunoprecipitated with anti-TBP (or anti-Mot1) antibodies in the absence of DNA, showing Mot1 binds TBP in solution. Mot1 N-terminal deletions (residues 25-801) abolished TBP binding, whereas C-terminal ATPase domain deletions (residues 802-1867) did not. Complex formation was prevented above 200 mm salt, consistent with electrostatic interaction. Correspondingly, TBP variants lacking solvent-exposed positive charge did not bind Mot1, whereas a mutant lacking positive charge within the DNA-binding groove bound Mot1. ATPase-defective mutant, Mot1(D1408N), which inhibits growth when overexpressed (but is suppressed by co-overexpression of TBP), bound TBP normally in vitro, suggesting it forms nonrecyclable complexes. N-terminal deletions of Mot1(D1408N) were not growth-inhibitory. C-terminal deletions were toxic when overexpressed, and toxicity was ameliorated by TBP co-overproduction. Residues 1-800 of Mot1 are therefore necessary and sufficient for TBP binding. The N terminus of 89B, a tissue-specific Drosophila Mot1 homolog, bound the TBP-like factor, dTRF1. Native Mot1 and derivatives deleterious to growth localized in the nucleus, whereas nontoxic derivatives localized to the cytosol, suggesting TBP binding and nuclear transport of Mot1 are coupled.
Collapse
Affiliation(s)
- J I Adamkewicz
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | |
Collapse
|
29
|
Kraemer SM, Ranallo RT, Ogg RC, Stargell LA. TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Mol Cell Biol 2001; 21:1737-46. [PMID: 11238911 PMCID: PMC86722 DOI: 10.1128/mcb.21.5.1737-1746.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.
Collapse
Affiliation(s)
- S M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|
30
|
Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 2001; 276:395-405. [PMID: 11035037 DOI: 10.1074/jbc.m008208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID, which is composed of the TATA box-binding protein (TBP) and a set of TBP-associated factors (TAFs), is crucial for both basal and regulated transcription by RNA polymerase II. The N-terminal small segment of yeast TAF145 (yTAF145) binds to TBP and thereby inhibits TBP function. To understand the physiological role of this inhibitory domain, which is designated as TAND (TAF N-terminal domain), we screened mutations, synthetically lethal with the TAF145 gene lacking TAND (taf145 Delta TAND), in Saccharomyces cerevisiae by exploiting a red/white colony-sectoring assay. Our screen yielded several recessive nsl (Delta TAND synthetic lethal) mutations, two of which, nsl1-1 and nsl1-2, define the same complementation group. The NSL1 gene was found to be identical to the SPT15 gene encoding TBP. Interestingly, both temperature-sensitive nsl1/spt15 alleles, which harbor the single amino acid substitutions, S118L and P65S, respectively, were defective in transcriptional activation in vivo. Several other previously characterized activation-deficient spt15 alleles also displayed synthetic lethal interactions with taf145 Delta TAND, indicating that TAND and TBP carry an overlapping but as yet unidentified function that is specifically required for transcriptional regulation.
Collapse
Affiliation(s)
- A Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
31
|
Cunningham TS, Rai R, Cooper TG. The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. J Bacteriol 2000; 182:6584-91. [PMID: 11073899 PMCID: PMC111397 DOI: 10.1128/jb.182.23.6584-6591.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2000] [Accepted: 09/13/2000] [Indexed: 11/20/2022] Open
Abstract
Nitrogen-catabolic gene expression in Saccharomyces cerevisiae is regulated by the action of four GATA family transcription factors: Gln3p and Gat1p/Nil1p are transcriptional activators, and Dal80 and Deh1p/Gzf3p are repressors. In addition to the GATA sequences situated upstream of all nitrogen catabolite repression-sensitive genes that encode enzyme and transport proteins, the promoters of the GAT1, DAL80, and DEH1 genes all contain multiple GATA sequences as well. These GATA sequences are the binding sites of the GATA family transcription factors and are hypothesized to mediate their autogenous and cross regulation. Here we show, using DAL80 fused to the carbon-regulated GAL1,10 or copper-regulated CUP1 promoter, that GAT1 expression is inversely regulated by the level of DAL80 expression, i.e., as DAL80 expression increases, GAT1 expression decreases. The amount of DAL80 expression also dictates the level at which DAL3, a gene activated almost exclusively by Gln3p, is transcribed. Gat1p was found to partially substitute for Gln3p in transcription. These data support the contention that regulation of GATA-factor gene expression is tightly and dynamically coupled. Finally, we suggest that the complicated regulatory circuit in which the GATA family transcription factors participate is probably most beneficial as cells make the transition from excess to limited nitrogen availability.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
32
|
Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature 2000; 408:225-9. [PMID: 11089979 DOI: 10.1038/35041603] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High levels of gene transcription by RNA polymerase II depend on high rates of transcription initiation and reinitiation. Initiation requires recruitment of the complete transcription machinery to a promoter, a process facilitated by activators and chromatin remodelling factors. Reinitiation probably occurs through a different pathway. After initiation, a subset of the transcription machinery remains at the promoter, forming a platform for assembly of a second transcription complex. Here we describe the isolation of a reinitiation intermediate that includes transcription factors TFIID, TFIIA, TFIIH, TFIIE and Mediator. This intermediate can act as a scaffold for formation of a functional reinitiation complex. Formation of this scaffold is dependent on ATP and TFIIH. The scaffold is stabilized in the presence of the activator Gal4-VP16, but not Gal4-AH, suggesting a new role for some activators and Mediator in promoting high levels of transcription.
Collapse
Affiliation(s)
- N Yudkovsky
- Division of Basic Sciences, The Fred Hutchinson Cancer Research Center, University of Washington, Seattle 98109, USA
| | | | | |
Collapse
|
33
|
Melcher K. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. J Mol Biol 2000; 301:1097-112. [PMID: 10966808 DOI: 10.1006/jmbi.2000.4034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation domains (ADs) appear to work by making specific protein-protein contacts with the transcriptional machinery. However, ADs show no apparent sequence conservation, they can be functionally replaced by a number of random peptides and unrelated proteins, and their function does not depend on sustaining a complex tertiary structure. To gain a broader perspective on the nature of interactions between acidic ADs and several of their proposed targets, the in vivo strengths of viral, human, yeast, and artificial activation domains were determined under physiological conditions, and mutant ADs with increased in vivo potencies were selected. The affinities between ADs and proposed targets were determined in vitro and all interactions were found to be of low-level affinity with dissociation constants above 10(-7)M. However, in vivo potencies of all ADs correlated nearly perfectly with their affinities for transcriptional proteins. Surprisingly, the weak interactions of the different ADs with at least two non-transcriptional proteins show the same rank order of binding and AD mutants selected for increased in vivo strength also have increased affinities to non-transcriptional proteins. Based on these results, isolated acidic ADs can bind with relatively low-level specificity and affinity to many different proteins and the strength of these semi-specific interactions determine the strength of an AD. I suggest that ADs expose flexible hydrophobic elements in an aqueous environment to contact hydrophobic patches over short distances, shifting specificity of activators largely to the DNA colocalization of arrays of ADs and targets.
Collapse
Affiliation(s)
- K Melcher
- Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75235-8573, USA.
| |
Collapse
|
34
|
Mai X, Chou S, Struhl K. Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements. Mol Cell Biol 2000; 20:6668-76. [PMID: 10958664 PMCID: PMC86173 DOI: 10.1128/mcb.20.18.6668-6676.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast promoter regions are often more accessible to nuclear proteins than are nonpromoter regions. As assayed by HinfI endonuclease cleavage in living yeast cells, HinfI sites located in the promoters of all seven genes tested were 5- to 20-fold more accessible than sites in adjacent nonpromoter regions. HinfI hypersensitivity within the his3 promoter region is locally determined, since it was observed when this region was translocated to the middle of the ade2 structural gene. Detailed analysis of the his3 promoter indicated that preferential accessibility is not determined by specific elements such as the Gcn4 binding site, poly(dA-dT) sequences, TATA elements, or initiator elements or by transcriptional activity. However, progressive deletion of the promoter region in either direction resulted in a progressive loss of HinfI accessibility. Preferential accessibility is independent of the Swi-Snf chromatin remodeling complex, Gcn5 histone acetylase complexes Ada and SAGA, and Rad6, which ubiquitinates histone H2B. These results suggest that preferential accessibility of the his3 (and presumably other) promoter regions is determined by a general property of the DNA sequence (e.g., base composition or a related feature) rather than by defined sequence elements. The organization of the compact yeast genome into inherently distinct promoter and nonpromoter regions may ensure that transcription factors bind preferentially to appropriate sites in promoters rather than to the excess of irrelevant but equally high-affinity sites in nonpromoter regions.
Collapse
Affiliation(s)
- X Mai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Kays AR, Schepartz A. Virtually unidirectional binding of TBP to the AdMLP TATA box within the quaternary complex with TFIIA and TFIIB. CHEMISTRY & BIOLOGY 2000; 7:601-10. [PMID: 11048951 DOI: 10.1016/s1074-5521(00)00009-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The TATA box binding protein (TBP) is required by all three RNA polymerases for the promoter-specific initiation of transcription. All eukaryotic TBP-DNA complexes observed in crystal structures show the conserved C-terminal domain of TBP (TBPc) bound to the TATA box in a single orientation that is consistent with assembly of a preinitiation complex (PIC) possessing a unique polarity. The binding of TBP to the TATA box is believed to orient the PIC correctly on the promoter and can function as the rate-limiting step in PIC assembly. Previous work performed with TBP from Saccharomyces cerevisiae (yTBP) showed that, despite the oriented binding of eukaryotic TBP observed in crystal structures, yTBP in solution does not orient itself uniquely on the adenovirus major late promoter (AdMLP) TATA box. Instead, yTBP binds the AdMLP as a mixture of two orientational isomers that are related by a 180 degree rotation about the pseudo-dyad axis of the complex. In addition, these orientational isomers are not restricted to the 8 bp TATA box, but rather bind a distribution of sites that partially overlap the TATA box. Two members of the PIC, general transcription factor (TF) IIB and TFIIA individually enhance the orientational and axial specificity of yTBP binding to the TATA box, but fail to fix yTBP in a single orientation or a unique position on the promoter. RESULTS We used an affinity cleavage assay to explore the combined effects of TFIIA and TFIIB on the axial and orientational specificity of yTBP. Our results show that the combination of TFIIA and TFIIB affixes yTBP in virtually a single orientation as well as a unique location on the AdMLP TATA box. Ninety-five percent of the quaternary TBP-TFIIA-TFIIB-TATA complex contained yTBP bound in the orientation expected on the basis of crystallographic and genetic experiments, and more than 70% is restricted axially to the 8 bp sequence TATAAAAG. CONCLUSIONS Although yTBP itself binds to the TATA box without a high level of orientational or axial specificity, our data show that a small subset of general TFs are capable of uniquely orienting the PIC on the AdMLP. Our results, in combination with recent data concerning the pathway of PIC formation in yeast, suggest that transcription could be regulated during both early and late stages of PIC assembly by general factors (and the proteins to which they bind) that influence the position and orientation of TBP on the promoter.
Collapse
Affiliation(s)
- A R Kays
- Department of Chemistry, Yale University, New Haven, CT 06511-8118, USA
| | | |
Collapse
|
36
|
Ryan MP, Stafford GA, Yu L, Morse RH. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol Cell Biol 2000; 20:5847-57. [PMID: 10913168 PMCID: PMC86062 DOI: 10.1128/mcb.20.16.5847-5857.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin remodeling accompanying artificial recruitment of TBP in yeast (Saccharomyces cerevisiae). We measured transcription of reporter genes with defined chromatin structure by artificial recruitment of TBP and found that a reporter gene whose TATA element was relatively accessible could be activated by artificially recruited TBP, whereas two promoters, GAL10 and CHA1, that have accessible activator binding sites, but nucleosomal TATA elements, could not. A third reporter gene containing the HIS4 promoter could be activated by GAL4-TBP only when a RAP1 binding site was present, although RAP1 alone could not activate the reporter, suggesting that RAP1 was needed to open the chromatin structure to allow activation. Consistent with this interpretation, artificially recruited TBP was unable to perturb nucleosome positioning via a nucleosomal binding site, in contrast to a true activator such as GAL4, or to perturb the TATA-containing nucleosome at the CHA1 promoter. Finally, we show that activation of the GAL10 promoter by GAL4, which requires chromatin remodeling, can occur even in swi gcn5 yeast, implying that remodeling pathways independent of GCN5, the SWI-SNF complex, and TFIID can operate during transcriptional activation in vivo.
Collapse
Affiliation(s)
- M P Ryan
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
37
|
Adamkewicz JI, Mueller CG, Hansen KE, Prud'homme WA, Thorner J. Purification and enzymic properties of Mot1 ATPase, a regulator of basal transcription in the yeast Saccharomyces cerevisiae. J Biol Chem 2000; 275:21158-68. [PMID: 10887203 DOI: 10.1074/jbc.m002639200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 1867-residue Mot1 protein is a member of a superfamily of ATPases, some of which are helicases, that interact with protein-nucleic acid assemblies. Mot1 is an essential regulator of RNA polymerase II-dependent transcription in vivo and dissociates TATA box-binding protein (TBP)-DNA complexes in vitro. Mot1-(His)(6) was purified to apparent homogeneity from yeast extracts. The preparation efficiently dissociated TBP.TATA complexes, suggesting that no other protein or cofactor is required. Mot1 behaved as a non-globular monomer in hydrodynamic studies, and no association was detected between differentially tagged co-expressed Mot1 constructs. ATPase activity was stimulated about 10-fold by high ionic strength or alkaline pH, or by deletion of the N-terminal TBP-binding segment, suggesting that the N-terminal domain negatively regulates the C-terminal ATPase domain (Mot1C). Correspondingly, at moderate salt concentration, Mot1 ATPase (but not Mot1C) was stimulated >/=10-fold by yeast TBP, suggesting that interaction with TBP relieves a conformational constraint in Mot1. Double- or single-stranded TATA-containing DNA did not affect ATPase activity of Mot1 or Mot1C, with or without TBP. Mot1 did not exhibit detectable helicase activity in strand displacement assays using substrates with flush ends or 5'- or 3'-overhangs. Mot1-catalyzed dissociation of TBP from DNA was not prevented by a psoralen cross-link positioned immediately preceding the TATA sequence. Thus, Mot1 most likely promotes release of TBP from TATA-containing DNA by causing a structural change in TBP itself, rather than by strand unwinding.
Collapse
Affiliation(s)
- J I Adamkewicz
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | |
Collapse
|
38
|
Tsukihashi Y, Miyake T, Kawaichi M, Kokubo T. Impaired core promoter recognition caused by novel yeast TAF145 mutations can be restored by creating a canonical TATA element within the promoter region of the TUB2 gene. Mol Cell Biol 2000; 20:2385-99. [PMID: 10713163 PMCID: PMC85416 DOI: 10.1128/mcb.20.7.2385-2399.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1999] [Accepted: 01/10/2000] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIID, which is composed of TATA-binding protein (TBP) and an array of TBP-associated factors (TAFs), has been shown to play a crucial role in recognition of the core promoters of eukaryotic genes. We isolated Saccharomyces cerevisiae yeast TAF145 (yTAF145) temperature-sensitive mutants in which transcription of a specific subset of genes was impaired at restrictive temperatures. The set of genes affected in these mutants overlapped with but was not identical to the set of genes affected by a previously reported yTAF145 mutant (W.-C. Shen and M. R. Green, Cell 90:615-624, 1997). To identify sequences which rendered transcription yTAF145 dependent, we conducted deletion analysis of the TUB2 promoter using a novel mini-CLN2 hybrid gene reporter system. The results showed that the yTAF145 mutations we isolated impaired core promoter recognition but did not affect activation by any of the transcriptional activators we tested. These observations are consistent with the reported yTAF145 dependence of the CLN2 core promoter in the mutant isolated by Shen and Green, although the CLN2 core promoter functioned normally in the mutants we report here. These results suggest that different promoters require different yTAF145 functions for efficient transcription. Interestingly, insertion of a canonical TATA element into the TATA-less TUB2 promoter rescued impaired transcription in the yTAF145 mutants we studied. It therefore appears that strong binding of TBP to the core promoter can alleviate the requirement for at least one yTAF145 function.
Collapse
Affiliation(s)
- Y Tsukihashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
39
|
Geisberg JV, Struhl K. TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol 2000; 20:1478-88. [PMID: 10669725 PMCID: PMC85312 DOI: 10.1128/mcb.20.5.1478-1488.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using a genetic screen, we isolated three TATA-binding protein (TBP) mutants that increase transcription from promoters that are repressed by the Cyc8-Tup1 or Sin3-Rpd3 corepressors or that lack an enhancer element, but not from an equivalently weak promoter with a mutated TATA element. Increased transcription is observed when the TBP mutants are expressed at low levels in the presence of wild-type TBP. These TBP mutants are unable to support cell viability, and they are toxic in strains lacking Rpd3 histone deacetylase or when expressed at higher levels. Although these mutants do not detectably bind TATA elements in vitro, genetic and chromatin immunoprecipitation experiments indicate that they act directly at promoters and do not increase transcription by titration of a negative regulatory factor(s). The TBP mutants are mildly defective for associating with promoters responding to moderate or strong activators; in addition, they are severely defective for RNA polymerase (Pol) III but not Pol I transcription. These results suggest that, with respect to Pol II transcription, the TBP mutants specifically increase expression from core promoters. Biochemical analysis indicates that the TBP mutants are unaffected for TFIID complex formation, dimerization, and interactions with either the general negative regulator NC2 or the N-terminal inhibitory domain of TAF130. We speculate that these TBP mutants have an unusual structure that allows them to preferentially access TATA elements in chromatin templates. These TBP mutants define a criterion by which promoters repressed by Cyc8-Tup1 or Sin3-Rpd3 resemble enhancerless, but not TATA-defective, promoters; hence, they support the idea that these corepressors inhibit the function of activator proteins rather than the Pol II machinery.
Collapse
Affiliation(s)
- J V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
40
|
Bagby S, Mal TK, Liu D, Raddatz E, Nakatani Y, Ikura M. TFIIA-TAF regulatory interplay: NMR evidence for overlapping binding sites on TBP. FEBS Lett 2000; 468:149-54. [PMID: 10692576 DOI: 10.1016/s0014-5793(00)01213-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TATA box binding protein (TBP)-promoter interaction nucleates assembly of the RNA polymerase II transcription initiation complex. Transcription factor IIA (TFIIA) stabilizes the TBP-promoter complex whereas the N-terminal domain of the largest TAF(II) inhibits TBP-promoter interaction. We have mapped the interaction sites on TBP of Drosophila TAF(II)230 and yeast TFIIA (comprising two subunits, TOA1 and TOA2), using nuclear magnetic resonance (NMR), and also report structural evidence that subdomain II of the TAF(II)230 N-terminal inhibitory domain and TFIIA have overlapping binding sites on the convex surface of TBP. Together with previous mutational and biochemical data, our NMR results indicate that subdomain II augments subdomain I-mediated inhibition of TBP function by blocking TBP-TFIIA interaction.
Collapse
Affiliation(s)
- S Bagby
- Division of Molecular Biology, Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
41
|
Liu Q, Gabriel SE, Roinick KL, Ward RD, Arndt KM. Analysis of TFIIA function In vivo: evidence for a role in TATA-binding protein recruitment and gene-specific activation. Mol Cell Biol 1999; 19:8673-85. [PMID: 10567590 PMCID: PMC85009 DOI: 10.1128/mcb.19.12.8673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of transcription can occur by the facilitated recruitment of TFIID to promoters by gene-specific activators. To investigate the role of TFIIA in TFIID recruitment in vivo, we exploited a class of yeast TATA-binding protein (TBP) mutants that is activation and DNA binding defective. We found that co-overexpression of TOA1 and TOA2, the genes that encode yeast TFIIA, overcomes the activation defects caused by the TBP mutants. Using a genetic screen, we isolated a new class of TFIIA mutants and identified three regions on TFIIA that are likely to be involved in TBP recruitment or stabilization of the TBP-TATA complex in vivo. Amino acid replacements in only one of these regions enhance TFIIA-TBP-DNA complex formation in vitro, suggesting that the other regions are involved in regulatory interactions. To determine the relative importance of TFIIA in the regulation of different genes, we constructed yeast strains to conditionally deplete TFIIA levels prior to gene activation. While the activation of certain genes, such as INO1, was dramatically impaired by TFIIA depletion, activation of other genes, such as CUP1, was unaffected. These data suggest that TFIIA facilitates DNA binding by TBP in vivo, that TFIIA may be regulated by factors that target distinct regions of the protein, and that promoters vary significantly in the degree to which they require TFIIA for activation.
Collapse
Affiliation(s)
- Q Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Dimerization of the TATA-binding protein (TBP) through its DNA-binding domain blocks TBP from accessing DNA and prevents unregulated gene expression. TFIIA plays a central role in loading TBP and its multisubunit counterpart TFIID onto promoter DNA, and it is therefore a candidate for regulating TBP/TFIID dimerization. Here, we show that TFIIA promotes the dissociation of TBP dimers directly and in doing so accelerates the kinetics of DNA binding. TFIID dimer dissociation was found to be slow and rate limiting in DNA binding. TFIIA induced a rapid dissociation of TFIID dimers, allowing TFIID to readily load onto promoter DNA. Together, these results suggest a novel mechanism by which TFIIA assists in regulating gene expression.
Collapse
Affiliation(s)
- R A Coleman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | |
Collapse
|
43
|
Struhl K, Kadosh D, Keaveney M, Kuras L, Moqtaderi Z. Activation and repression mechanisms in yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:413-21. [PMID: 10384306 DOI: 10.1101/sqb.1998.63.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- K Struhl
- Department Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
44
|
Kuras L, Struhl K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 1999; 399:609-13. [PMID: 10376605 DOI: 10.1038/21239] [Citation(s) in RCA: 390] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcriptional activators have been proposed to function by recruiting the RNA polymerase II (Pol II) machinery, by altering the conformation of this machinery, or by affecting steps after initiation, but the evidence is not definitive. Genomic footprinting of yeast TATA-box elements reveals activator-dependent alterations of chromatin structure and activator-independent protection, but little is known about the association of specific components of the Pol II machinery with promoters in vivo. Here we analyse TATA-box-binding-protein (TBP) occupancy of 30 yeast promoters in vivo. We find that TBP association with promoters is stimulated by activators and inhibited by the Cyc8-Tup1 repressor, and that transcriptional activity correlates strongly with the degree of TBP occupancy. In a small subset of promoters, TBP occupancy is higher than expected when gene activity is low, and the activator-dependent increase is modest. TBP association depends on the Pol II holoenzyme component Srb4, but not on the Kin28 subunit of the transcription factor TFIIH, even though both proteins are generally required for transcription. Thus in yeast cells, TBP association with promoters occurs in concert with the Pol II holoenzyme, activator-dependent recruitment of the Pol II machinery occurs at the vast majority of promoters, and Kin28 acts after the initial recruitment.
Collapse
Affiliation(s)
- L Kuras
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
45
|
Ranallo RT, Struhl K, Stargell LA. A TATA-binding protein mutant defective for TFIID complex formation in vivo. Mol Cell Biol 1999; 19:3951-7. [PMID: 10330135 PMCID: PMC104354 DOI: 10.1128/mcb.19.6.3951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using an intragenic complementation screen, we have identified a temperature-sensitive TATA-binding protein (TBP) mutant (K151L, K156Y) that is defective for interaction with certain yeast TBP-associated factors (TAFs) at the restrictive temperature. The K151L,K156Y mutant appears to be functional for RNA polymerase I (Pol I) and Pol III transcription, and it is capable of supporting Gal4-activated and Gcn4-activated transcription by Pol II. However, transcription from certain TATA-containing and TATA-less Pol II promoters is reduced at the restrictive temperature. Immunoprecipitation analysis of extracts prepared after culturing cells at the restrictive temperature for 1 h indicates that the K151L,K156Y derivative is severely compromised in its ability to interact with TAF130, TAF90, TAF68/61, and TAF25 while remaining functional for interaction with TAF60 and TAF30. Thus, a TBP mutant that is compromised in its ability to form TFIID can support the response to Gcn4 but is defective for transcription from specific promoters in vivo.
Collapse
Affiliation(s)
- R T Ranallo
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
46
|
Jackson-Fisher AJ, Chitikila C, Mitra M, Pugh BF. A role for TBP dimerization in preventing unregulated gene expression. Mol Cell 1999; 3:717-27. [PMID: 10394360 DOI: 10.1016/s1097-2765(01)80004-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recruitment of the TATA box-binding protein (TBP) to promoters in vivo is often rate limiting in gene expression. We present evidence that TBP negatively autoregulates its accessibility to promoter DNA in yeast through dimerization. The crystal structure of TBP dimers was used to design point mutations in the dimer interface. These mutants are impaired for dimerization in vitro, and in vivo they generate large increases in activator-independent gene expression. Overexpression of wild-type TBP suppresses these mutants, possibly by heterodimerizing with them. In addition to loss of autorepression, dimerization-defective TBPs are rapidly degraded in vivo. Direct detection of TBP dimers in vivo was achieved through chemical cross-linking. Taken together, the data suggest that TBP dimerization prevents unregulated gene expression and its own degradation.
Collapse
Affiliation(s)
- A J Jackson-Fisher
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
47
|
Kotani T, Miyake T, Tsukihashi Y, Hinnebusch AG, Nakatani Y, Kawaichi M, Kokubo T. Identification of highly conserved amino-terminal segments of dTAFII230 and yTAFII145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo. J Biol Chem 1998; 273:32254-64. [PMID: 9822704 DOI: 10.1074/jbc.273.48.32254] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIID is a multiprotein complex composed of TBP and several TAFIIs. Small amino-terminal segments (TAF N-terminal domain (TAND)) of Drosophila TAFII230 (dTAFII230) and yeast TAFII145 (yTAFII145) bind strongly to TBP and inhibit TBP-DNA interactions. yTAFII145 TAND (yTAND) was divided into two subdomains, yTANDI10-37 and yTANDII46-71, that function cooperatively. Here, we identify dTANDII within the amino terminus of dTAFII230 at 118-143 amino acids in addition to dTANDI18-77, reported previously. dTANDII exhibits pronounced sequence similarity to yTANDII, and the two were shown to be functionally equivalent in binding to TBP and inhibiting TBP-DNA interactions in vitro. Alanine scanning mutation analysis demonstrated that Phe-57 (yTANDII) and Tyr-129 (dTANDII) are critically required for the interaction with TBP. Yeast strains containing mutant yTAFII145 lacking yTANDI or yTANDII showed a temperature-sensitive growth phenotype. The conserved core of dTANDII could substitute for the yTANDII core, and Phe-57 or Tyr-129 described above was critically required for the function of this segment in promoting normal cell growth at 37 degreesC. In these respects, the impact of yTANDII mutations on cell growth paralleled their effects on TBP binding in vitro, strongly suggesting that the yTAFII145-TBP interaction and its negative effects on TFIID binding to core promoters are physiologically important.
Collapse
Affiliation(s)
- T Kotani
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Natarajan K, Jackson BM, Rhee E, Hinnebusch AG. yTAFII61 has a general role in RNA polymerase II transcription and is required by Gcn4p to recruit the SAGA coactivator complex. Mol Cell 1998; 2:683-92. [PMID: 9844640 DOI: 10.1016/s1097-2765(00)80166-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We obtained a recessive insertion mutation in the gene encoding yeast TBP-associated factor yTAFII61/68 that impairs Gcn4p-independent and Gcn4p-activated HIS3 transcription. This mutation also reduces transcription of seven other class II genes, thus indicating a broad role for this yTAFII in RNA polymerase II transcription. The Gcn4p activation domain interacts with multiple components of the SAGA complex in cell extracts, including the yTAFII proteins associated with SAGA, but not with two yTAFIIs restricted to TFIID. The taf61-1 mutation impairs binding of Gcn4p to SAGA/yTAFII subunits but not to components of holoenzyme mediator. Our results provide strong evidence that recruitment of SAGA, in addition to holoenzyme, is crucial for activation by Gcn4p in vivo and that yTAFII61 plays a key role in this process.
Collapse
Affiliation(s)
- K Natarajan
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
49
|
Moreira JM, Holmberg S. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J 1998; 17:6028-38. [PMID: 9774346 PMCID: PMC1170929 DOI: 10.1093/emboj/17.20.6028] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae CHA1 gene encodes the catabolic L-serine (L-threonine) dehydratase. We have previously shown that the transcriptional activator protein Cha4p mediates serine/threonine induction of CHA1 expression. We used accessibility to micrococcal nuclease and DNase I to determine the in vivo chromatin structure of the CHA1 chromosomal locus, both in the non-induced state and upon induction. Upon activation, a precisely positioned nucleosome (nuc-1) occluding the TATA box and the transcription start site is removed. A strain devoid of Cha4p showed no chromatin alteration under inducing conditions. Five yeast TBP mutants defective in different steps in activated transcription abolished CHA1 expression, but failed to affect induction-dependent chromatin rearrangement of the promoter region. Progressive truncations of the RNA polymerase II C-terminal domain caused a progressive reduction in CHA1 transcription, but no difference in chromatin remodeling. Analysis of swi1, swi3, snf5 and snf6, as well as gcn5, ada2 and ada3 mutants, suggested that neither the SWI/SNF complex nor the ADA/GCN5 complex is involved in efficient activation and/or remodeling of the CHA1 promoter. Interestingly, in a sir4 deletion strain, repression of CHA1 is partly lost and activator-independent remodeling of nuc-1 is observed. We propose a model for CHA1 activation based on promoter remodeling through interactions of Cha4p with chromatin components other than basal factors and associated proteins.
Collapse
Affiliation(s)
- J M Moreira
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Oster Farimagsgade 2A, DK-1353 Copenhagen K, Denmark
| | | |
Collapse
|
50
|
Vashee S, Willie J, Kodadek T. Synergistic activation of transcription by physiologically unrelated transcription factors through cooperative DNA-binding. Biochem Biophys Res Commun 1998; 247:530-5. [PMID: 9642164 DOI: 10.1006/bbrc.1998.8820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most eukaryotic promoters contain binding sites for several different transcription factors, which often act synergistically. Mechanistically, synergy is ascribed either to cooperative DNA-binding of the factors to the promoter or to some type of "multiple contact" mechanism in which each activator performs a different task in stimulating the transcription machinery. Here, it is shown that the yeast activators Gal4 and Put3 bind to DNA cooperatively in vivo and can activate transcription synergistically from certain synthetic promoters. Normally, Gal4 and Put3 bind to completely different promoters and activate physiologically unrelated sets of genes and it is extremely unlikely that they have evolved direct protein-protein contacts. These studies add to a growing body of evidence that binding of proteins to nearby sites in chromatin is intrinsically cooperative and suggest that many examples of synergy ascribed to multiple contact mechanisms may instead involve non-traditional cooperative DNA-binding.
Collapse
Affiliation(s)
- S Vashee
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712-1096, USA
| | | | | |
Collapse
|