1
|
Sanford EM, Emert BL, Coté A, Raj A. Gene regulation gravitates toward either addition or multiplication when combining the effects of two signals. eLife 2020; 9:e59388. [PMID: 33284110 PMCID: PMC7771960 DOI: 10.7554/elife.59388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/04/2020] [Indexed: 01/07/2023] Open
Abstract
Two different cell signals often affect transcription of the same gene. In such cases, it is natural to ask how the combined transcriptional response compares to the individual responses. The most commonly used mechanistic models predict additive or multiplicative combined responses, but a systematic genome-wide evaluation of these predictions is not available. Here, we analyzed the transcriptional response of human MCF-7 cells to retinoic acid and TGF-β, applied individually and in combination. The combined transcriptional responses of induced genes exhibited a range of behaviors, but clearly favored both additive and multiplicative outcomes. We performed paired chromatin accessibility measurements and found that increases in accessibility were largely additive. There was some association between super-additivity of accessibility and multiplicative or super-multiplicative combined transcriptional responses, while sub-additivity of accessibility associated with additive transcriptional responses. Our findings suggest that mechanistic models of combined transcriptional regulation must be able to reproduce a range of behaviors.
Collapse
Affiliation(s)
- Eric M Sanford
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Benjamin L Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Allison Coté
- Department of Bioengineering, School of Engineering and Applied Sciences, University of PennsylvaniaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of PennsylvaniaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Benler S, Koonin EV. Phage lysis‐lysogeny switches and programmed cell death: Danse macabre. Bioessays 2020; 42:e2000114. [DOI: 10.1002/bies.202000114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
3
|
Browning DF, Butala M, Busby SJW. Bacterial Transcription Factors: Regulation by Pick "N" Mix. J Mol Biol 2019; 431:4067-4077. [PMID: 30998934 DOI: 10.1016/j.jmb.2019.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Transcription in most bacteria is tightly regulated in order to facilitate bacterial adaptation to different environments, and transcription factors play a key role in this. Here we give a brief overview of the essential features of bacterial transcription factors and how they affect transcript initiation at target promoters. We focus on complex promoters that are regulated by combinations of activators and repressors, combinations of repressors only, or combinations of activators. At some promoters, transcript initiation is regulated by nucleoid-associated proteins, which often work together with transcription factors. We argue that the distinction between nucleoid-associated proteins and transcription factors is blurred and that they likely share common origins.
Collapse
Affiliation(s)
- Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Abstract
Understanding how sequence-specific protein-DNA interactions direct cellular function is of great interest to the research community. High-throughput methods have been developed to determine DNA-binding specificities; one such technique, the bacterial one-hybrid (B1H) system, confers advantages including ease of use, sensitivity and throughput. In this review, we describe the evolution of the B1H system as a tool capable of screening large DNA libraries to investigate protein-DNA interactions of interest. We discuss how DNA-binding specificities produced by the B1H system have been used to predict regulatory targets. Additionally, we examine how this approach has been applied to characterize two common DNA-binding domain families-homeodomains and Cys2His2 zinc fingers-both in organism-wide studies and with synthetic approaches. In the case of the former, the B1H system has produced large catalogs of protein specificity and nuanced information about previously recovered DNA targets, thereby improving our understanding of these proteins' functions in vivo and increasing our capacity to predict similar interactions in other species. In the latter, synthetic screens of the same DNA-binding domains have further refined our models of specificity, through analyzing comprehensive libraries to uncover all proteins able to bind a complete set of targets, and, for instance, exploring how context-in the form of domain position within the parent protein-may affect specificity. Finally, we recognize the limitations of the B1H system and discuss its potential for use in the production of designer proteins and in studies of protein-protein interactions.
Collapse
|
6
|
Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F, Crawford GE, Hartemink AJ, Gersbach CA. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 2013; 10:239-42. [PMID: 23377379 PMCID: PMC3719416 DOI: 10.1038/nmeth.2361] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/27/2012] [Indexed: 11/24/2022]
Abstract
Mammalian genes are regulated by the cooperative and synergistic actions of many transcription factors. In this study we recapitulate this complex regulation in human cells by targeting endogenous gene promoters, including regions of closed chromatin upstream of silenced genes, with combinations of engineered transcription activator–like effectors (TALEs). These combinations of TALE transcription factors induced substantial gene activation and allowed tuning of gene expression levels that will broadly enable synthetic biology, gene therapy and biotechnology.
Collapse
Affiliation(s)
- Pablo Perez-Pinera
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Khalil AS, Lu TK, Bashor CJ, Ramirez CL, Pyenson NC, Joung JK, Collins JJ. A synthetic biology framework for programming eukaryotic transcription functions. Cell 2012; 150:647-58. [PMID: 22863014 DOI: 10.1016/j.cell.2012.05.045] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/25/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.
Collapse
Affiliation(s)
- Ahmad S Khalil
- Howard Hughes Medical Institute, Department of Biomedical Engineering, and Center for BioDynamics, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Garcia HG, Sanchez A, Boedicker JQ, Osborne M, Gelles J, Kondev J, Phillips R. Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Rep 2012; 2:150-61. [PMID: 22840405 DOI: 10.1016/j.celrep.2012.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022] Open
Abstract
A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression.
Collapse
Affiliation(s)
- Hernan G Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
10
|
Frank TD, Carmody AM, Kholodenko BN. Versatility of cooperative transcriptional activation: a thermodynamical modeling analysis for greater-than-additive and less-than-additive effects. PLoS One 2012; 7:e34439. [PMID: 22506020 PMCID: PMC3323628 DOI: 10.1371/journal.pone.0034439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/02/2012] [Indexed: 11/20/2022] Open
Abstract
We derive a statistical model of transcriptional activation using equilibrium thermodynamics of chemical reactions. We examine to what extent this statistical model predicts synergy effects of cooperative activation of gene expression. We determine parameter domains in which greater-than-additive and less-than-additive effects are predicted for cooperative regulation by two activators. We show that the statistical approach can be used to identify different causes of synergistic greater-than-additive effects: nonlinearities of the thermostatistical transcriptional machinery and three-body interactions between RNA polymerase and two activators. In particular, our model-based analysis suggests that at low transcription factor concentrations cooperative activation cannot yield synergistic greater-than-additive effects, i.e., DNA transcription can only exhibit less-than-additive effects. Accordingly, transcriptional activity turns from synergistic greater-than-additive responses at relatively high transcription factor concentrations into less-than-additive responses at relatively low concentrations. In addition, two types of re-entrant phenomena are predicted. First, our analysis predicts that under particular circumstances transcriptional activity will feature a sequence of less-than-additive, greater-than-additive, and eventually less-than-additive effects when for fixed activator concentrations the regulatory impact of activators on the binding of RNA polymerase to the promoter increases from weak, to moderate, to strong. Second, for appropriate promoter conditions when activator concentrations are increased then the aforementioned re-entrant sequence of less-than-additive, greater-than-additive, and less-than-additive effects is predicted as well. Finally, our model-based analysis suggests that even for weak activators that individually induce only negligible increases in promoter activity, promoter activity can exhibit greater-than-additive responses when transcription factors and RNA polymerase interact by means of three-body interactions. Overall, we show that versatility of transcriptional activation is brought about by nonlinearities of transcriptional response functions and interactions between transcription factors, RNA polymerase and DNA.
Collapse
Affiliation(s)
- Till D Frank
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | | | | |
Collapse
|
11
|
Halter M, Sisan DR, Chalfoun J, Stottrup BL, Cardone A, Dima AA, Tona A, Plant AL, Elliott JT. Cell cycle dependent TN-C promoter activity determined by live cell imaging. Cytometry A 2012; 79:192-202. [PMID: 22045641 DOI: 10.1002/cyto.a.21028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix protein tenascin-C plays a critical role in development, wound healing, and cancer progression, but how it is controlled and how it exerts its physiological responses remain unclear. By quantifying the behavior of live cells with phase contrast and fluorescence microscopy, the dynamic regulation of TN-C promoter activity is examined. We employ an NIH 3T3 cell line stably transfected with the TN-C promoter ligated to the gene sequence for destabilized green fluorescent protein (GFP). Fully automated image analysis routines, validated by comparison with data derived from manual segmentation and tracking of single cells, are used to quantify changes in the cellular GFP in hundreds of individual cells throughout their cell cycle during live cell imaging experiments lasting 62 h. We find that individual cells vary substantially in their expression patterns over the cell cycle, but that on average TN-C promoter activity increases during the last 40% of the cell cycle. We also find that the increase in promoter activity is proportional to the activity earlier in the cell cycle. This work illustrates the application of live cell microscopy and automated image analysis of a promoter-driven GFP reporter cell line to identify subtle gene regulatory mechanisms that are difficult to uncover using population averaged measurements.
Collapse
Affiliation(s)
- Michael Halter
- Cell Systems Science Group/Biochemical Science Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
One of the greatest challenges facing synthetic biology is to develop a technology that allows gene regulatory circuits in microbes to integrate multiple inputs or stimuli using a small DNA sequence "foot-print", and which will generate precise and reproducible outcomes. Achieving this goal is hindered by the routine utilization of the commonplace σ(70) promoters in gene-regulatory circuits. These promoters typically are not capable of integrating binding of more than two or three transcription factors in natural examples, which has limited the field to developing integrated circuits made of two-input biological "logic" gates. In natural examples the regulatory elements, which integrate multiple inputs are called enhancers. These regulatory elements are ubiquitous in all organisms in the tree of life, and interestingly metazoan and bacterial enhancers are significantly more similar in terms of both Transcription Factor binding site arrangement and biological function than previously thought. These similarities imply that there may be underlying enhancer design principles or grammar rules by which one can engineer novel gene regulatory circuits. However, at present our current understanding of enhancer structure-function relationship in all organisms is limited, thus preventing us from using these objects routinely in synthetic biology application. In order to alleviate this problem, in this book chapter, I will review our current view of bacterial enhancers, allowing us to first highlight the potential of enhancers to be a game-changing tool in synthetic biology application, and subsequently to draw a road-map for developing the necessary quantitative understanding to reach this goal.
Collapse
Affiliation(s)
- Roee Amit
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel,
| |
Collapse
|
13
|
Sanchez A, Garcia HG, Jones D, Phillips R, Kondev J. Effect of promoter architecture on the cell-to-cell variability in gene expression. PLoS Comput Biol 2011; 7:e1001100. [PMID: 21390269 PMCID: PMC3048382 DOI: 10.1371/journal.pcbi.1001100] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/28/2011] [Indexed: 12/12/2022] Open
Abstract
According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic cells as well.
Collapse
Affiliation(s)
- Alvaro Sanchez
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Hernan G. Garcia
- Department of Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Daniel Jones
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- Department of Bioengineering, California Institute of Technology, Pasadena, California, United States of America
| | - Jané Kondev
- Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
14
|
Zhang J, Yuan Z, Zhou T. Geometric characteristics of dynamic correlations for combinatorial regulation in gene expression noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:021905. [PMID: 19792149 DOI: 10.1103/physreve.80.021905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/28/2009] [Indexed: 05/28/2023]
Abstract
Knowing which mode of combinatorial regulation (typically, AND or OR logic operation) that a gene employs is important for determining its function in regulatory networks. Here, we introduce a dynamic cross-correlation function between the output of a gene and its upstream regulator concentrations for signatures of combinatorial regulation in gene expression noise. We find that such a correlation function with respect to the correlation time near the peak close to the point of the zero correlation time is always upward convex in the case of AND logic whereas is always downward convex in the case of OR logic, whichever sources of noise (intrinsic or extrinsic or both). In turn, this fact implies a means for inferring regulatory synergies from available experimental data. The extensions and applications are discussed.
Collapse
Affiliation(s)
- Jiajun Zhang
- School of Mathematical and Computational Sciences, Sun Yet-Sen University, Guangzhou 510275, People's Republic of China
| | | | | |
Collapse
|
15
|
Van Valen D, Haataja M, Phillips R. Biochemistry on a leash: the roles of tether length and geometry in signal integration proteins. Biophys J 2009; 96:1275-92. [PMID: 19217847 PMCID: PMC2717227 DOI: 10.1016/j.bpj.2008.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/31/2008] [Indexed: 01/14/2023] Open
Abstract
We use statistical mechanics and simple ideas from polymer physics to develop a quantitative model of proteins whose activity is controlled by flexibly tethered ligands and receptors. We predict how the properties of tethers influence the function of these proteins and demonstrate how their tether length dependence can be exploited to construct proteins whose integration of multiple signals can be tuned. One case study to which we apply these ideas is that of the Wiskott-Aldrich Syndrome Proteins as activators of actin polymerization. More generally, tethered ligands competing with those free in solution are common phenomena in biology, making this an important specific example of a widespread biological idea.
Collapse
Affiliation(s)
- David Van Valen
- Department of Applied Physics, California Institute of Technology, Pasadena, California
| | - Mikko Haataja
- Department of Mechanical and Aerospace Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, California
| |
Collapse
|
16
|
Warmflash A, Dinner AR. Signatures of combinatorial regulation in intrinsic biological noise. Proc Natl Acad Sci U S A 2008; 105:17262-7. [PMID: 18981421 PMCID: PMC2582248 DOI: 10.1073/pnas.0809314105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Indexed: 12/24/2022] Open
Abstract
Gene expression is controlled by the action of transcription factors that bind to DNA and influence the rate at which a gene is transcribed. The quantitative mapping between the regulator concentrations and the output of the gene is known as the cis-regulatory input function (CRIF). Here, we show how the CRIF shapes the form of the joint probability distribution of molecular copy numbers of the regulators and the product of a gene. Namely, we derive a class of fluctuation-based relations that relate the moments of the distribution to the derivatives of the CRIF. These relations are useful because they enable statistics of naturally arising cell-to-cell variations in molecular copy numbers to substitute for traditional manipulations for probing regulatory mechanisms. We demonstrate that these relations can distinguish super- and subadditive gene regulatory scenarios (molecular analogs of AND and OR logic operations) in simulations that faithfully represent bacterial gene expression. Applications and extensions to other regulatory scenarios are discussed.
Collapse
Affiliation(s)
- Aryeh Warmflash
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Aaron R. Dinner
- James Franck Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
17
|
Rodrigo G, Jaramillo A. Computational design of digital and memory biological devices. SYSTEMS AND SYNTHETIC BIOLOGY 2008; 1:183-95. [PMID: 19003443 PMCID: PMC2553324 DOI: 10.1007/s11693-008-9017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/07/2008] [Accepted: 04/19/2008] [Indexed: 11/28/2022]
Abstract
The use of combinatorial optimization techniques with computational design allows the development of automated methods to design biological systems. Automatic design integrates design principles in an unsupervised algorithm to sample a larger region of the biological network space, at the topology and parameter levels. The design of novel synthetic transcriptional networks with targeted behaviors will be key to understand the design principles underlying biological networks. In this work, we evolve transcriptional networks towards a targeted dynamics, by using a library of promoters and coding sequences, to design a complex biological memory device. The designed sequential transcription network implements a JK-Latch, which is fully predictable and richer than other memory devices. Furthermore, we present designs of transcriptional devices behaving as logic gates, and we show how to create digital behavior from analog promoters. Our procedure allows us to propose a scenario for the evolution of multi-functional genetic networks. In addition, we discuss the decomposability of regulatory networks in terms of genetic modules to develop a given cellular function. Summary. We show how to use an automated procedure to design logic and sequential transcription circuits. This methodology will allow advancing the rational design of biological devices to more complex systems, and we propose the first design of a biological JK-latch memory device.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biologia Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, Valencia, Spain
| | | |
Collapse
|
18
|
Cox RS, Surette MG, Elowitz MB. Programming gene expression with combinatorial promoters. Mol Syst Biol 2007; 3:145. [PMID: 18004278 PMCID: PMC2132448 DOI: 10.1038/msb4100187] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 09/21/2007] [Indexed: 11/20/2022] Open
Abstract
Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters.
Collapse
Affiliation(s)
- Robert Sidney Cox
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
19
|
Rodrigo G, Carrera J, Gimenez D, Fernandez-de-Cordoba P, Salgado J, Montagud A, Urchueguia J, Aroca M, Mata C, Ferrando A, Navarrete C, Tortosa P, Baguena M, Jaramillo A, Fuertes G, Edo C, Medrano J, Navarro E, Aparici A. Vanillin cell sensor. ACTA ACUST UNITED AC 2007. [DOI: 10.1049/iet-stb:20060003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Rodrigo G, Carreral J, Jaramillo A. ECOLITASTER: cellular biosensor. BMC SYSTEMS BIOLOGY 2007. [DOI: 10.1186/1752-0509-1-s1-p38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Mayo AE, Setty Y, Shavit S, Zaslaver A, Alon U. Plasticity of the cis-regulatory input function of a gene. PLoS Biol 2006; 4:e45. [PMID: 16602820 PMCID: PMC1413569 DOI: 10.1371/journal.pbio.0040045] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 12/08/2005] [Indexed: 11/23/2022] Open
Abstract
The transcription rate of a gene is often controlled by several regulators that bind specific sites in the gene's
cis-regulatory region. The combined effect of these regulators is described by a
cis-regulatory input function. What determines the form of an input function, and how variable is it with respect to mutations? To address this, we employ the well-characterized
lac operon of
Escherichia coli, which has an elaborate input function, intermediate between Boolean AND-gate and OR-gate logic. We mapped in detail the input function of 12 variants of the
lac promoter, each with different point mutations in the regulator binding sites, by means of accurate expression measurements from living cells. We find that even a few mutations can significantly change the input function, resulting in functions that resemble Pure AND gates, OR gates, or single-input switches. Other types of gates were not found. The variant input functions can be described in a unified manner by a mathematical model. The model also lets us predict which functions cannot be reached by point mutations. The input function that we studied thus appears to be plastic, in the sense that many of the mutations do not ruin the regulation completely but rather result in new ways to integrate the inputs.
A few point mutations in the
lac operon of
Escherichia coli are sufficient to change the nature of the transcriptional computation.
Collapse
Affiliation(s)
- Avraham E Mayo
- 1Departments of Molecular Cell Biology and Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Setty
- 1Departments of Molecular Cell Biology and Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Seagull Shavit
- 1Departments of Molecular Cell Biology and Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Alon Zaslaver
- 1Departments of Molecular Cell Biology and Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- 1Departments of Molecular Cell Biology and Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Wickstrum JR, Santangelo TJ, Egan SM. Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli. J Bacteriol 2005; 187:6708-18. [PMID: 16166533 PMCID: PMC1251584 DOI: 10.1128/jb.187.19.6708-6718.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli rhaSR operon encodes two AraC family transcription activator proteins, RhaS and RhaR, which regulate expression of the l-rhamnose catabolic regulon in response to l-rhamnose availability. RhaR positively regulates rhaSR in response to l-rhamnose, and RhaR activation can be enhanced by the cyclic AMP (cAMP) receptor protein (CRP) protein. CRP is a well-studied global transcription regulator that binds to DNA as a dimer and activates transcription in the presence of cAMP. We investigated the mechanism of CRP activation at rhaSR both alone and in combination with RhaR in vivo and in vitro. Base pair substitutions at potential CRP binding sites in the rhaSR-rhaBAD intergenic region demonstrate that CRP site 3, centered at position -111.5 relative to the rhaSR transcription start site, is required for the majority of the CRP-dependent activation of rhaSR. DNase I footprinting confirms that CRP binds to site 3; CRP binding to the other potential CRP sites at rhaSR was not detected. We show that, at least in vitro, CRP is capable of both RhaR-dependent and RhaR-independent activation of rhaSR from a total of three transcription start sites. In vitro transcription assays indicate that the carboxy-terminal domain of the alpha subunit (alpha-CTD) of RNA polymerase is at least partially dispensable for RhaR-dependent activation but that the alpha-CTD is required for CRP activation of rhaSR. Although CRP requires the presence of RhaR for efficient in vivo activation of rhaSR, DNase I footprinting assays indicated that cooperative binding between RhaR and CRP does not make a significant contribution to the mechanism of CRP activation at rhaSR. It therefore appears that CRP activates transcription from rhaSR as it would at simple class I promoters, albeit from a relatively distant position.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, University of Kansas, 8031 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS 66045-7534, USA
| | | | | |
Collapse
|
23
|
Pérez-Lago L, Salas M, Camacho A. Homologies and divergences in the transcription regulatory system of two related Bacillus subtilis phages. J Bacteriol 2005; 187:6403-9. [PMID: 16159774 PMCID: PMC1236628 DOI: 10.1128/jb.187.18.6403-6409.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/13/2005] [Indexed: 11/20/2022] Open
Abstract
Transcription regulation relies on the molecular interplay between the RNA polymerase and regulatory factors. Phages of the phi29-like genus encode two regulatory proteins, p4 and p6. In phi29, the switch from early to late transcription is based on the synergistic binding of proteins p4 and p6 to the promoter sequence, resulting in a nucleosome-like structure able to synergize or antagonize the binding of RNAP. We show that a nucleosome-like structure of p4 and p6 is also formed in the related phage Nf and that this structure is responsible for the coordinated control of the early and late promoters. However, in spite of their homologies, the transcriptional regulators are not interchangeable, and only when all of the components of the Nf regulatory system are present is fully active transcriptional regulation of the Nf promoters achieved.
Collapse
Affiliation(s)
- Laura Pérez-Lago
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
24
|
Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R. Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 2005; 15:116-24. [PMID: 15797194 PMCID: PMC3482385 DOI: 10.1016/j.gde.2005.02.007] [Citation(s) in RCA: 540] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The expression of genes is regularly characterized with respect to how much, how fast, when and where. Such quantitative data demands quantitative models. Thermodynamic models are based on the assumption that the level of gene expression is proportional to the equilibrium probability that RNA polymerase (RNAP) is bound to the promoter of interest. Statistical mechanics provides a framework for computing these probabilities. Within this framework, interactions of activators, repressors, helper molecules and RNAP are described by a single function, the "regulation factor". This analysis culminates in an expression for the probability of RNA polymerase binding at the promoter of interest as a function of the number of regulatory proteins in the cell.
Collapse
|
25
|
Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Kuhlman T, Phillips R. Transcriptional regulation by the numbers: applications. Curr Opin Genet Dev 2005; 15:125-35. [PMID: 15797195 PMCID: PMC3462814 DOI: 10.1016/j.gde.2005.02.006] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the increasing amount of experimental data on gene expression and regulation, there is a growing need for quantitative models to describe the data and relate them to their respective context. Thermodynamic models provide a useful framework for the quantitative analysis of bacterial transcription regulation. This framework can facilitate the quantification of vastly different forms of gene expression from several well-characterized bacterial promoters that are regulated by one or two species of transcription factors; it is useful because it requires only a few parameters. As such, it provides a compact description useful for higher-level studies (e.g. of genetic networks) without the need to invoke the biochemical details of every component. Moreover, it can be used to generate hypotheses on the likely mechanisms of transcriptional control.
Collapse
|
26
|
Abstract
Bacteria use their genetic material with great effectiveness to make the right products in the correct amounts at the appropriate time. Studying bacterial transcription initiation in Escherichia coli has served as a model for understanding transcriptional control throughout all kingdoms of life. Every step in the pathway between gene and function is exploited to exercise this control, but for reasons of economy, it is plain that the key step to regulate is the initiation of RNA-transcript formation.
Collapse
Affiliation(s)
- Douglas F Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
27
|
Nickels BE, Dove SL, Murakami KS, Darst SA, Hochschild A. Protein-protein and protein-DNA interactions of sigma70 region 4 involved in transcription activation by lambdacI. J Mol Biol 2002; 324:17-34. [PMID: 12421556 DOI: 10.1016/s0022-2836(02)01043-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cI protein of bacteriophage lambda (lambdacI) activates transcription from promoter P(RM) through an acidic patch on the surface of its DNA-binding domain. Genetic evidence suggests that this acidic patch stimulates transcription from P(RM) through contact with the C-terminal domain (region 4) of the sigma(70) subunit of Escherichia coli RNA polymerase. Here, we identify two basic residues in region 4 of sigma(70) that are critical for lambdacI-mediated activation of transcription from P(RM). On the basis of structural modeling, we propose that one of these sigma(70) residues, K593, facilitates the interaction between lambdacI and region 4 of sigma(70) by inducing a bend in the DNA upstream of the -35 element, whereas the other, R588, interacts directly with a critical acidic residue within the activating patch of lambdacI. Residue R588 of sigma(70) has been shown to play an important role in promoter recognition; our findings suggest that the R588 side-chain has a dual function at P(RM), facilitating the interaction of region 4 with the promoter -35 element and participating directly in the protein-protein interaction with lambdacI.
Collapse
Affiliation(s)
- Bryce E Nickels
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
28
|
Nickels BE, Roberts CW, Sun H, Roberts JW, Hochschild A. The sigma(70) subunit of RNA polymerase is contacted by the (lambda)Q antiterminator during early elongation. Mol Cell 2002; 10:611-22. [PMID: 12408828 DOI: 10.1016/s1097-2765(02)00648-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Q protein of bacteriophage lambda is a transcription antiterminator that modifies the elongation properties of E. coli RNA polymerase (RNAP). To do this, DNA-bound (lambda)Q must first engage a paused elongation complex. Here we show that this engagement of (lambda)Q with RNAP involves an interaction between (lambda)Q and sigma(70), demonstrating that sigma(70) can be a target of regulation during elongation. Furthermore, we provide evidence that this interaction between (lambda)Q and sigma(70) stabilizes a conformation of RNAP that requires the disengagement of a segment of sigma(70) from the core enzyme. Recent structure-based models posit that the transition from the initiation to the elongation phase of transcription involves the staged displacement of sigma(70) from the RNAP core. Our findings provide support for this proposal.
Collapse
Affiliation(s)
- Bryce E Nickels
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Escherichia coli uses overlapping envelope stress responses to adapt to insults to the bacterial envelope that cause protein misfolding. The sigmaE and Cpx envelope stress responses are activated by both common and distinct envelope stresses and respond by increasing the expression of the periplasmic protease DegP as well as target genes unique to each response. The sigmaE pathway is involved in outer membrane protein (OMP) folding quality control whereas the Cpx pathway plays an important role in the assembly of at least one pilus. Previously, we identified the spy gene as a new Cpx regulon member of unknown function. Interestingly, induction of spy expression by severe envelope stresses such as spheroplasting is only partially dependent on an intact Cpx signalling pathway, unlike other Cpx-regulated genes. Here we show that the BaeS sensor kinase and BaeR response regulator also control expression of spy in response to envelope stress. BaeS and BaeR do not affect expression of other known Cpx-regulated genes, however, baeR cpxR double mutants show increased sensitivity to envelope stresses relative to either single mutant alone. We propose that the Bae signal transduction pathway controls a third envelope stress response in E. coli that induces expression of a distinct set of adaptive genes.
Collapse
Affiliation(s)
- Robert G Raffa
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
30
|
|
31
|
Langdon RC, Burr T, Pagan-Westphal S, Hochschild A. A chimeric activator of transcription that uses two DNA-binding domains to make simultaneous contact with pairs of recognition sites. Mol Microbiol 2001; 41:885-96. [PMID: 11532151 DOI: 10.1046/j.1365-2958.2001.02583.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many well-known transcriptional regulatory proteins are composed of at least two independently folding domains and, typically, only one of these is a DNA-binding domain. However, some transcriptional regulators have been described that have more than one DNA-binding domain. Regulators with a single DNA-binding domain often bind co-operatively to the DNA in homotypic or heterotypic combinations, and two or more DNA-binding domains of a single regulatory protein can also bind co-operatively to suitably positioned recognition sequences. Here, we examine the behaviour of a chimeric activator of transcription with two different DNA-binding domains, that of the bacteriophage lambda cI protein and that of the Escherichia coli cyclic AMP receptor protein. We show that these two DNA-binding moieties, when present in the same molecule, can bind co-operatively to a pair of cognate recognition sites located upstream of a test promoter, thereby permitting the chimera to function as a particularly strong activator of transcription from this promoter. Our results show how such a bivalent DNA-binding protein can be used to regulate transcription differentially from promoters that bear either one or both recognition sites.
Collapse
Affiliation(s)
- R C Langdon
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
32
|
Moir-Blais TR, Grundy FJ, Henkin TM. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site. J Bacteriol 2001; 183:2389-93. [PMID: 11244084 PMCID: PMC95151 DOI: 10.1128/jb.183.7.2389-2393.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon catabolite protein A (CcpA) is a global regulator of carbon metabolism in gram-positive bacteria, repressing transcription of genes for the utilization of secondary carbon sources in the presence of a readily metabolized carbon source and activating transcription of genes, such as ackA and pta, that are required for carbon excretion. The promoter region of the Bacillus subtilis ackA gene contains two catabolite responsive elements (cre sites), of which only the site closest to the promoter (cre2) binds CcpA to activate transcription. A region immediately upstream of the cre2 site is also important for transcriptional activation. The required elements in this region were further defined by mutagenesis. CcpA binds to the ackA promoter region in gel shift assays even in the presence of mutations in the upstream element that block transcriptional activation, indicating that this region has a function other than promoting binding of CcpA.
Collapse
Affiliation(s)
- T R Moir-Blais
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
33
|
Richet E. Synergistic transcription activation: a dual role for CRP in the activation of an Escherichia coli promoter depending on MalT and CRP. EMBO J 2000; 19:5222-32. [PMID: 11013224 PMCID: PMC302108 DOI: 10.1093/emboj/19.19.5222] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the Escherichia coli malEp promoter relies on the formation of a higher order structure involving cooperative binding of MalT to promoter-proximal and promoter-distal sites as well as CRP binding to three sites located in between. MalT is the primary activator and one function of CRP is to facilitate cooperative binding of MalT to its cognate sites by bending the intervening DNA. It is shown here that CRP also participates directly in malEp activation. This function is carried out by the molecule of CRP bound to the CRP site centered at -139.5 (CRP site 3). This molecule of CRP recruits RNA polymerase by promoting the binding of the RNA polymerase alpha subunit C-terminal domain (alphaCTD) to DNA immediately downstream from CRP site 3, via a contact between alphaCTD and activating region I of CRP. The action of MalT and CRP at malEp hence provides the example of a novel and complex mechanism for transcriptional synergy in prokaryotes whereby one activator both helps the primary activator to form a productive complex with promoter DNA and interacts directly with RNA polymerase holoenzyme.
Collapse
Affiliation(s)
- E Richet
- Unité de Génétique Moléculaire, URA CNRS 1773, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
34
|
Dhiman A, Schleif R. Recognition of overlapping nucleotides by AraC and the sigma subunit of RNA polymerase. J Bacteriol 2000; 182:5076-81. [PMID: 10960090 PMCID: PMC94654 DOI: 10.1128/jb.182.18.5076-5081.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1999] [Accepted: 06/14/2000] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli promoter p(BAD), under the control of the AraC protein, drives the expression of mRNA encoding the AraB, AraA, and AraD gene products of the arabinose operon. The binding site of AraC at p(BAD) overlaps the RNA polymerase -35 recognition region by 4 bases, leaving 2 bases of the region not contacted by AraC. This overlap raises the question of whether AraC substitutes for the sigma subunit of RNA polymerase in recognition of the -35 region or whether both AraC and sigma make important contacts with the DNA in the -35 region. If sigma does not contact DNA near the -35 region, p(BAD) activity should be independent of the identity of the bases in the hexamer region that are not contacted by AraC. We have examined this issue in the p(BAD) promoter and in a second promoter where the AraC binding site overlaps the -35 region by only 2 bases. In both cases promoter activity is sensitive to changes in bases not contacted by AraC, showing that despite the overlap, sigma does read DNA in the -35 region. Since sigma and AraC are thus closely positioned at p(BAD), it is possible that AraC and sigma contact one another during transcription initiation. DNA migration retardation assays, however, showed that there exists only a slight degree of DNA binding cooperativity between AraC and sigma, thus suggesting either that the normal interactions between AraC and sigma are weak or that the presence of the entire RNA polymerase is necessary for significant interaction.
Collapse
Affiliation(s)
- A Dhiman
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
35
|
McLeod SM, Xu J, Johnson RC. Coactivation of the RpoS-dependent proP P2 promoter by fis and cyclic AMP receptor protein. J Bacteriol 2000; 182:4180-7. [PMID: 10894725 PMCID: PMC101903 DOI: 10.1128/jb.182.15.4180-4187.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli proP P2 promoter, which directs the expression of an integral membrane transporter of proline, glycine betaine, and other osmoprotecting compounds, is induced upon entry into stationary phase to protect cells from osmotic shock. Transcription from the P2 promoter is completely dependent on RpoS (sigma(38)) and Fis. Fis activates transcription by binding to a site centered at -41, which overlaps the promoter, where it makes a specific contact with the C-terminal domain of the alpha subunit of RNA polymerase (alpha-CTD). We show here that Fis and cyclic AMP (cAMP) receptor protein (CRP)-cAMP collaborate to activate transcription synergistically in vitro. Coactivation both in vivo and in vitro is dependent on CRP binding to a site centered at -121.5, but CRP without Fis provides little activation. The contribution by CRP requires the correct helical phasing of the CRP site and a functional activation region 1 on CRP. We provide evidence that coactivation is achieved by Fis and CRP independently contacting each of the two alpha-CTDs. Efficient transcription in vitro requires that both activators must be preincubated with the DNA prior to addition of RNA polymerase.
Collapse
Affiliation(s)
- S M McLeod
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|
36
|
Johnson CM, Schleif RF. Cooperative action of the catabolite activator protein and AraC in vitro at the araFGH promoter. J Bacteriol 2000; 182:1995-2000. [PMID: 10715008 PMCID: PMC101909 DOI: 10.1128/jb.182.7.1995-2000.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Full activation of transcription of the araFGH promoter, p(FGH), requires both the catabolite activator protein (CAP) and AraC protein. At p(FGH), the binding site for CAP is centered at position -41.5, an essential binding site for AraC is centered at position -79.5, and a second, nonessential binding site is centered at position -154.5. In this work, we used the minimal promoter region required for in vivo activation of p(FGH) to examine the roles of CAP and AraC in stimulating formation of open complexes at p(FGH). Migration retardation assays of open complexes showed that RNA polymerase binds exceptionally tightly to the AraC-CAP-p(FGH) complex and that the order of addition of proteins to the initiating complex is important. Similar assays with RNA polymerase containing truncated alpha subunits suggest that AraC interacts with the C-terminal domain of the alpha subunit. Finally, AraC protein also acts to prevent the improper binding of RNA polymerase at a pseudo promoter near the true p(FGH) promoter.
Collapse
Affiliation(s)
- C M Johnson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
37
|
Podolny V, Lin EC, Hochschild A. A cyclic AMP receptor protein mutant that constitutively activates an Escherichia coli promoter disrupted by an IS5 insertion. J Bacteriol 1999; 181:7457-63. [PMID: 10601201 PMCID: PMC94201 DOI: 10.1128/jb.181.24.7457-7463.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously an Escherichia coli mutant that had acquired the ability to grow on propanediol as the sole carbon and energy source was isolated. This phenotype is the result of the constitutive expression of the fucO gene (in the fucAO operon), which encodes one of the enzymes in the fucose metabolic pathway. The mutant was found to bear an IS5 insertion in the intergenic regulatory region between the divergently oriented fucAO and fucPIK operons. Though expression of the fucAO operon was constitutive, the fucPIK operon became noninducible such that the mutant could no longer grow on fucose. A fucose-positive revertant which was found to contain a suppressor mutation in the crp gene was selected. Here we identify this crp mutation, which results in a single amino acid substitution (K52N) that has been proposed previously to uncover a cryptic activating region in the cyclic AMP receptor protein (CRP). We show that the mutant CRP constitutively activates transcription from both the IS5-disrupted and the wild-type fucPIK promoters, and we identify the CRP-binding site that is required for this activity. Our results show that the fucPIK promoter, a complex promoter which ordinarily depends on both CRP and the fucose-specific regulator FucR for its activation, can be activated in the absence of FucR by a mutant CRP that uses three, rather than two, activating regions to contact RNA polymerase. For the IS5-disrupted promoter, which retains a single CRP-binding site, the additional activating region of the mutant CRP evidently compensates for the lack of upstream regulatory sequences.
Collapse
Affiliation(s)
- V Podolny
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
38
|
Langdon RC, Hochschild A. A genetic method for dissecting the mechanism of transcriptional activator synergy by identical activators. Proc Natl Acad Sci U S A 1999; 96:12673-8. [PMID: 10535981 PMCID: PMC23043 DOI: 10.1073/pnas.96.22.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pairs of transcriptional activators in prokaryotes have been shown to activate transcription synergistically from promoters with two activator binding sites. In some cases, such synergistic effects result from cooperative binding, but in other cases each DNA-bound activator plays a direct role in the activation process by interacting simultaneously with separate surfaces of RNA polymerase. In such cases, each DNA-bound activator must possess a functional activating region, the surface that mediates the interaction with RNA polymerase. When transcriptional activation depends on two or more identical activators, it is not straightforward to test the requirement of each activator for a functional activating region. Here we describe a method for directing a mutationally altered activator to either one or the other binding site, and we demonstrate the use of this method to examine the mechanism of transcriptional activator synergy by the Escherichia coli cyclic AMP receptor protein (CRP) working at an artificial promoter bearing two CRP-binding sites.
Collapse
Affiliation(s)
- R C Langdon
- Harvard Medical School, Department of Microbiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Abstract
Transcription activation by Escherichia coli catabolite activator protein (CAP) at each of two classes of simple CAP-dependent promoters is understood in structural and mechanistic detail. At class I CAP-dependent promoters, CAP activates transcription from a DNA site located upstream of the DNA site for RNA polymerase holoenzyme (RNAP); at these promoters, transcription activation involves protein-protein interactions between CAP and the RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex. At class II CAP-dependent promoters, CAP activates transcription from a DNA site that overlaps the DNA site for RNAP; at these promoters, transcription activation involves both: (i) protein-protein interactions between CAP and RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex; and (ii) protein-protein interactions between CAP and RNAP alpha subunit N-terminal domain that facilitates isomerization of the RNAP-promoter closed complex to the RNAP-promoter open complex. Straightforward combination of the mechanisms for transcription activation at class I and class II CAP-dependent promoters permits synergistic transcription activation by multiple molecules of CAP, or by CAP and other activators. Interference with determinants of CAP or RNAP involved in transcription activation at class I and class II CAP-dependent promoters permits "anti-activation" by negative regulators. Basic features of transcription activation at class I and class II CAP-dependent promoters appear to be generalizable to other activators.
Collapse
Affiliation(s)
- S Busby
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
40
|
Wang J, Ellwood K, Lehman A, Carey MF, She ZS. A mathematical model for synergistic eukaryotic gene activation. J Mol Biol 1999; 286:315-25. [PMID: 9973553 DOI: 10.1006/jmbi.1998.2489] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise biochemical mechanism underlying the synergistic action of gene activators on eukaryotic transcription has eluded a solution, largely because of the technical difficulties inherent in analyzing the mechanics of a 2.5 MDa complex comprising greater than 50 polypeptide components. To complement the biochemical approach we have employed mathematical modeling as a means to understand the mechanism of synergy. Parameters relevant to activated transcription were varied in a simple biochemical system and the data were compared to the transcriptional response predicted by a multi-component statistical model. We found that the model achieved a consistent, semi-quantitative description of the measured transcriptional response, and enabled the characterization and measurement of thermodynamic parameters in the in vitro system. The results provide evidence for the existence of cooperativity in the activation process beyond what would be predicted from one current model suggesting that activators function solely by simple recruitment of the general transcription machinery to the promoter.
Collapse
Affiliation(s)
- J Wang
- School of Medicine, University of California, Los Angeles, CA, Box 1737, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Cells detect extracellular signals by allostery and then give those signals meaning by 'regulated localization'. We suggest that this formulation applies to many biological processes and is particularly well illustrated by the mechanisms of gene regulation. Analysis of these mechanisms reveals that regulated localization requires simple molecular interactions that are readily used combinatorially. This system of regulation is highly 'evolvable', and its use accounts, at least in part, for the nature of the complexities observed in biological systems.
Collapse
Affiliation(s)
- M Ptashne
- Molecular Biology Program, Sloan-Kettering Cancer Institute, New York, New York 10021, USA. ;
| | | |
Collapse
|
42
|
Darwin AJ, Ziegelhoffer EC, Kiley PJ, Stewart V. Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro. J Bacteriol 1998; 180:4192-8. [PMID: 9696769 PMCID: PMC107417 DOI: 10.1128/jb.180.16.4192-4198.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, the napF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and NarP-dependent regulation. First, the Fnr-binding site is unusually located compared to the control regions of most other Fnr-activated operons, suggesting different Fnr-RNA polymerase contacts during transcriptional activation. Second, nitrate and nitrite activation is solely dependent on NarP but is antagonized by the NarL protein. In this study, we used DNase I footprint analysis to confirm our previous assignment of the unusual location of the Fnr-binding site in the napF control region. In addition, the in vivo effects of Fnr-positive control mutations on napF operon expression indicate that the napF promoter is atypical with respect to Fnr-mediated activation. The transcriptional regulation of napF was successfully reproduced in vitro by using a supercoiled plasmid template and purified Fnr, NarL, and NarP proteins. These in vitro transcription experiments demonstrate that, in the presence of Fnr, the NarP protein causes efficient transcription activation whereas the NarL protein does not. This suggests that Fnr and NarP may act synergistically to activate napF operon expression. As observed in vivo, this activation by Fnr and NarP is antagonized by the addition of NarL in vitro.
Collapse
Affiliation(s)
- A J Darwin
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
43
|
Belyaeva TA, Rhodius VA, Webster CL, Busby SJ. Transcription activation at promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein: organisation of the RNA polymerase alpha subunits. J Mol Biol 1998; 277:789-804. [PMID: 9545373 DOI: 10.1006/jmbi.1998.1666] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a family of promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein (CRP), with one of the sites centred between base-pairs 41 and 42 upstream from the transcription start site, and the second site located further upstream. In vivo activity measurements show that the activity of these promoters is completely dependent on CRP and that, depending on the precise location, CRP bound at the upstream site increases transcription activation. Hydroxyl radical footprinting was exploited to investigate the binding of CRP and RNA polymerase holoenzyme (RNAP) to these promoters. The study shows that the C-terminal domains of the RNAP alpha subunits bind adjacent to the upstream CRP and that their precise positioning depends on the location of upstream-bound CRP. The C-terminal domains of the RNAP alpha subunits interact with both the upstream and downstream-bound CRP via activating region 1 of CRP.
Collapse
Affiliation(s)
- T A Belyaeva
- School of Biochemistry, University of Birmingham, Birmingham, B15 2TT, U.K
| | | | | | | |
Collapse
|
44
|
Abstract
Most bacterial transcription activators function by making direct contact with RNA polymerase at target promoters. Some activators contact the carboxy-terminal domain of the RNA polymerase alpha subunit, some contact region 4 of the sigma70 subunit, whilst others interact with other contact sites. A number of activators are ambidextrous and can, apparently simultaneously, contact more than one target site on RNA polymerase. Expression from many promoters is co-dependent on two or more activators. There are several different mechanisms for coupling promoter activity to more than one activator: in one such mechanism, the different activators make independent contacts with different target sites on RNA polymerase.
Collapse
Affiliation(s)
- V A Rhodius
- School of Biochemistry, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
45
|
Pérez-Rueda E, Gralla JD, Collado-Vides J. Genomic position analyses and the transcription machinery. J Mol Biol 1998; 275:165-70. [PMID: 9466899 DOI: 10.1006/jmbi.1997.1465] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Position analyses have been devised to extract additional transcriptional information from rapidly expanding genomic data bases. The locations of promoter regulatory sites and also the locations of transcription factor DNA-binding domains are analyzed. Strongly preferred positions of activator binding sites occur in both Escherichia coli and eukaryotes, suggesting specific common features of transcription in the two systems. In both systems, regulatory proteins are found to have their DNA-binding domains near termini and the data suggest an evolutionary analysis that complements a phylogenetic analysis based on sequence alignments. The results indicate that positional information can be an important adjunct to sequence comparisons in analyzing genomic information.
Collapse
Affiliation(s)
- E Pérez-Rueda
- Centro de Investigación Sobre, Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Morelos, México
| | | | | |
Collapse
|
46
|
|
47
|
Schyns G, Buckner CM, Moran CP. Activation of the Bacillus subtilis spoIIG promoter requires interaction of Spo0A and the sigma subunit of RNA polymerase. J Bacteriol 1997; 179:5605-8. [PMID: 9287022 PMCID: PMC179438 DOI: 10.1128/jb.179.17.5605-5608.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis Spo0A activates transcription from both sigmaA- and sigmaH-dependent promoters. Baldus et al. (2) identified two amino acid substitutions in the carboxyl terminus of sigmaA, K356E and H359R, that specifically impaired Spo0A-activated transcription in vivo. To test the model in which the K356E and H359R substitutions in sigmaA interfere with the interaction of Spo0A and sigmaA, we examined the effects of alanine substitutions at these positions in sigmaA on sigmaA's ability to direct transcription in vivo and in vitro. We found that alanine substitutions at these positions specifically reduced expression from the sigmaA-dependent, Spo0A-dependent promoters, spoIIG and spoIIE, in vivo. Furthermore, we found that stimulation of spoIIG promoter activity by Spo0A in vitro was reduced by the single substitutions H359A and H359R in sigmaA.
Collapse
Affiliation(s)
- G Schyns
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
48
|
Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 1997; 11:1169-82. [PMID: 9159398 DOI: 10.1101/gad.11.9.1169] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We show that the two-component signal transduction system of Escherichia coli, CpxA-CpxR, controls the expression of genes encoding cell envelope proteins involved in protein folding and degradation. These findings are based on three lines of evidence. First, activation of the Cpx pathway induces 5- to 10-fold the synthesis of DsbA, required for disulfide bond formation, and DegP, a major periplasmic protease. Second, using electrophoretic mobility shift and DNase I protection assays, we have shown that phosphorylated CpxR binds to elements upstream of the transcription start sites of dsbA, degP, and ppiA (rotA), the latter coding for a peptidyl-prolyl cis/trans isomerase. Third, we have demonstrated increased in vivo transcription of all three genes, dsbA, degP, and ppiA, when the Cpx pathway is activated. We have identified a putative CpxR consensus binding site that is found upstream of a number of other E. coli genes. These findings suggest a potentially extensive Cpx regulon including genes transcribed by sigma70 and sigma(E), which encode factors involved in protein folding as well as other cellular functions.
Collapse
Affiliation(s)
- J Pogliano
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
The recruitment model for gene activation stipulates that an activator works by bringing the transcriptional machinery to the DNA. Recent experiments in bacteria and yeast indicate that many genes can be activated by this mechanism. These findings have implications for our understanding of the nature of activating regions and their targets, and for the role of histones in gene regulation.
Collapse
Affiliation(s)
- M Ptashne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
50
|
Dove SL, Joung JK, Hochschild A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature 1997; 386:627-30. [PMID: 9121589 DOI: 10.1038/386627a0] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many transcriptional activators in prokaryotes are known to bind near a promoter and contact RNA polymerase, but it is not clear whether a protein-protein contact between an activator and RNA polymerase is enough to activate gene transcription. Here we show that contact between a DNA-bound protein and a heterologous protein domain fused to RNA polymerase can elicit transcriptional activation; moreover, the strength of this engineered protein-protein interaction determines the amount of gene activation. Our results indicate that an arbitrary interaction between a DNA-bound protein and RNA polymerase can activate transcription. We also find that when the DNA-bound 'activator' makes contact with two different components of the polymerase, the effect of these two interactions on transcription is synergistic.
Collapse
Affiliation(s)
- S L Dove
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|