1
|
Gu SS, Kohler S, Xu YQ, Wu R, Jiang SL, Ye SK, Lin T, Wang BC, Li HO, Cao G, Guo GP. Probing Two Driven Double Quantum Dots Strongly Coupled to a Cavity. PHYSICAL REVIEW LETTERS 2023; 130:233602. [PMID: 37354413 DOI: 10.1103/physrevlett.130.233602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 06/26/2023]
Abstract
We experimentally and theoretically study a driven hybrid circuit quantum electrodynamics (cQED) system beyond the dispersive coupling regime. Treating the cavity as part of the driven system, we develop a theory applicable to such strongly coupled and to multiqubit systems. The fringes measured for a single driven double quantum dot (DQD)-cavity setting and the enlarged splittings of the hybrid Floquet states in the presence of a second DQD are well reproduced with our model. This opens a path to study Floquet states of multiqubit systems with arbitrarily strong coupling and reveals a new perspective for understanding strongly driven hybrid systems.
Collapse
Affiliation(s)
- Si-Si Gu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sigmund Kohler
- Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| | - Yong-Qiang Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Wu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shun-Li Jiang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Kun Ye
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ting Lin
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bao-Chuan Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Ou Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Gang Cao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guo-Ping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Lin T, Gu SS, Xu YQ, Jiang SL, Ye SK, Wang BC, Li HO, Guo GC, Zou CL, Hu X, Cao G, Guo GP. Collective Microwave Response for Multiple Gate-Defined Double Quantum Dots. NANO LETTERS 2023; 23:4176-4182. [PMID: 37133858 DOI: 10.1021/acs.nanolett.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high-impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity (Ctotal > 17.6) interaction between the qubit ensemble and the resonator, we tune the charge-photon coupling and observe the collective microwave response changing from linear to nonlinear. Our results present the maximum number of DQDs coupled to a resonator and manifest a potential platform for scaling up qubits and studying collective quantum effects in semiconductor-superconductor hybrid cavity quantum electrodynamics systems.
Collapse
Affiliation(s)
- Ting Lin
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Si-Si Gu
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Qiang Xu
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shun-Li Jiang
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Kun Ye
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bao-Chuan Wang
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Ou Li
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guang-Can Guo
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chang-Ling Zou
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xuedong Hu
- Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260-1500, United States of America
| | - Gang Cao
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guo-Ping Guo
- Chinese Academy of Science Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Chinese Academy of Science Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230088, China
| |
Collapse
|
3
|
Yao B, Gui YS, Rao JW, Zhang YH, Lu W, Hu CM. Coherent Microwave Emission of Gain-Driven Polaritons. PHYSICAL REVIEW LETTERS 2023; 130:146702. [PMID: 37084460 DOI: 10.1103/physrevlett.130.146702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 05/03/2023]
Abstract
By developing a gain-embedded cavity magnonics platform, we create a gain-driven polariton (GDP) that is activated by an amplified electromagnetic field. Distinct effects of gain-driven light-matter interaction, such as polariton auto-oscillations, polariton phase singularity, self-selection of a polariton bright mode, and gain-induced magnon-photon synchronization, are theoretically studied and experimentally manifested. Utilizing the gain-sustained photon coherence of the GDP, we demonstrate polariton-based coherent microwave amplification (∼40 dB) and achieve high-quality coherent microwave emission (Q>10^{9}).
Collapse
Affiliation(s)
- Bimu Yao
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Y S Gui
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - J W Rao
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Y H Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - C-M Hu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
4
|
Shaghaghi V, Singh V, Carrega M, Rosa D, Benenti G. Lossy Micromaser Battery: Almost Pure States in the Jaynes-Cummings Regime. ENTROPY (BASEL, SWITZERLAND) 2023; 25:430. [PMID: 36981319 PMCID: PMC10048159 DOI: 10.3390/e25030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 06/01/2023]
Abstract
We consider a micromaser model of a quantum battery, where the battery is a single mode of the electromagnetic field in a cavity, charged via repeated interactions with a stream of qubits, all prepared in the same non-equilibrium state, either incoherent or coherent, with the matter-field interaction modeled by the Jaynes-Cummings model. We show that the coherent protocol is superior to the incoherent one, in that an effective pure steady state is achieved for generic values of the model parameters. Finally, we supplement the above collision model with cavity losses, described by a Lindblad master equation. We show that battery performances, in terms of stored energy, charging power, and steady-state purity, are slightly degraded up to moderated dissipation rate. Our results show that micromasers are robust and reliable quantum batteries, thus making them a promising model for experimental implementations.
Collapse
Affiliation(s)
- Vahid Shaghaghi
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Varinder Singh
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | | | - Dario Rosa
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
- Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Giuliano Benenti
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
- NEST, Istituto Nanoscienze-CNR, 56126 Pisa, Italy
| |
Collapse
|
5
|
Haldar S, Havir H, Khan W, Lehmann S, Thelander C, Dick KA, Maisi VF. Energetics of Microwaves Probed by Double Quantum Dot Absorption. PHYSICAL REVIEW LETTERS 2023; 130:087003. [PMID: 36898111 DOI: 10.1103/physrevlett.130.087003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
We explore the energetics of microwaves interacting with a double quantum dot photodiode and show wave-particle aspects in photon-assisted tunneling. The experiments show that the single-photon energy sets the relevant absorption energy in a weak-drive limit, which contrasts the strong-drive limit where the wave amplitude determines the relevant-energy scale and opens up microwave-induced bias triangles. The threshold condition between these two regimes is set by the fine-structure constant of the system. The energetics are determined here with the detuning conditions of the double dot system and stopping-potential measurements that constitute a microwave version of the photoelectric effect.
Collapse
Affiliation(s)
- Subhomoy Haldar
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Harald Havir
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Waqar Khan
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
- Center for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
| | - Sebastian Lehmann
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Claes Thelander
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A Dick
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
- Center for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
| | - Ville F Maisi
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
6
|
Wen Y, Ares N, Schupp F, Pei T, Briggs G, Laird E. A coherent nanomechanical oscillator driven by single-electron tunnelling. NATURE PHYSICS 2020; 16:75-82. [PMID: 31915459 PMCID: PMC6949122 DOI: 10.1038/s41567-019-0683-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A single-electron transistor embedded in a nanomechanical resonator represents an extreme limit of electron-phonon coupling. While it allows fast and sensitive electromechanical measurements, it also introduces backaction forces from electron tunnelling that randomly perturb the mechanical state. Despite the stochastic nature of this backaction, it has been predicted to create self-sustaining coherent mechanical oscillations under strong coupling conditions. Here, we verify this prediction using real-time measurements of a vibrating carbon nanotube transistor. This electromechanical oscillator has some similarities with a laser. The single-electron transistor pumped by an electrical bias acts as a gain medium and the resonator acts as a phonon cavity. Although the operating principle is unconventional because it does not involve stimulated emission, we confirm that the output is coherent. We demonstrate other analogues of laser behaviour, including injection locking, classical squeezing through anharmonicity, and frequency narrowing through feedback.
Collapse
Affiliation(s)
- Yutian Wen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - N. Ares
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - F.J. Schupp
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - T. Pei
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - G.A.D. Briggs
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - E.A. Laird
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
7
|
Deng GW, Xu N, Li WJ. Gate-Defined Quantum Dots: Fundamentals and Applications. QUANTUM DOT OPTOELECTRONIC DEVICES 2020. [DOI: 10.1007/978-3-030-35813-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Moldoveanu V, Manolescu A, Gudmundsson V. Generalized Master Equation Approach to Time-Dependent Many-Body Transport. ENTROPY 2019; 21:e21080731. [PMID: 33267445 PMCID: PMC7515260 DOI: 10.3390/e21080731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
We recall theoretical studies on transient transport through interacting mesoscopic systems. It is shown that a generalized master equation (GME) written and solved in terms of many-body states provides the suitable formal framework to capture both the effects of the Coulomb interaction and electron-photon coupling due to a surrounding single-mode cavity. We outline the derivation of this equation within the Nakajima-Zwanzig formalism and point out technical problems related to its numerical implementation for more realistic systems which can neither be described by non-interacting two-level models nor by a steady-state Markov-Lindblad equation. We first solve the GME for a lattice model and discuss the dynamics of many-body states in a two-dimensional nanowire, the dynamical onset of the current-current correlations in electrostatically coupled parallel quantum dots and transient thermoelectric properties. Secondly, we rely on a continuous model to get the Rabi oscillations of the photocurrent through a double-dot etched in a nanowire and embedded in a quantum cavity. A many-body Markovian version of the GME for cavity-coupled systems is also presented.
Collapse
Affiliation(s)
- Valeriu Moldoveanu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
- Correspondence:
| | - Andrei Manolescu
- School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland
| | - Vidar Gudmundsson
- Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| |
Collapse
|
9
|
Cirio M, Shammah N, Lambert N, De Liberato S, Nori F. Multielectron Ground State Electroluminescence. PHYSICAL REVIEW LETTERS 2019; 122:190403. [PMID: 31144951 DOI: 10.1103/physrevlett.122.190403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The ground state of a cavity-electron system in the ultrastrong coupling regime is characterized by the presence of virtual photons. If an electric current flows through this system, the modulation of the light-matter coupling induced by this nonequilibrium effect can induce an extracavity photon emission signal, even when electrons entering the cavity do not have enough energy to populate the excited states. We show that this ground state electroluminescence, previously identified in a single-qubit system [Phys. Rev. Lett. 116, 113601 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.113601] can arise in a many-electron system. The collective enhancement of the light-matter coupling makes this effect, described beyond the rotating wave approximation, robust in the thermodynamic limit, allowing its observation in a broad range of physical systems, from a semiconductor heterostructure with flatband dispersion to various implementations of the Dicke model.
Collapse
Affiliation(s)
- Mauro Cirio
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Nathan Shammah
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Neill Lambert
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
10
|
Kamura Y, Imura K. Space-Selective Fabrication of Light-Emitting Carbon Dots in Polymer Films Using Electron-Beam-Induced Chemical Reactions. ACS OMEGA 2019; 4:3380-3384. [PMID: 31459552 PMCID: PMC6648354 DOI: 10.1021/acsomega.9b00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 05/17/2023]
Abstract
Nanocarbon-based materials have excellent properties, including high electrical conductivity as well as charity-dependent optical absorption and luminescence; therefore, the materials are promising in applications for nanoelectric devices, nanophotonics, and so on. Carbon dots (CDs) are one of the carbon materials recently fabricated. Optical properties of CDs have been reported to be similar to those of polycyclic aromatic hydrocarbons (PAHs). For this reason, the CDs are considered to be composed of PAH. Synthesis of CDs has previously been accomplished through hydrothermal synthesis and microwave irradiation. These methods require a long synthesis time, and the processes involve multiple steps. In this study, we developed a fabrication method of CDs in simple and spatially selective ways, by using radical reactions in an organic polymer film with focused electron-beam irradiation. We investigated various organic polymers as reaction materials and found that polystyrene has a higher efficiency for CD formation than other organic polymers investigated. Absorption, photoluminescence, and Raman scattering properties of the electron-beam-irradiated sample were in good agreement with those reported for the CDs. The technique developed in this study is promising for fabricating light-emitting CDs and photonic crystals in a simple and flexible manner.
Collapse
|
11
|
Zwolak JP, Kalantre SS, Wu X, Ragole S, Taylor JM. QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments. PLoS One 2018; 13:e0205844. [PMID: 30332463 PMCID: PMC6192646 DOI: 10.1371/journal.pone.0205844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022] Open
Abstract
Background Over the past decade, machine learning techniques have revolutionized how research and science are done, from designing new materials and predicting their properties to data mining and analysis to assisting drug discovery to advancing cybersecurity. Recently, we added to this list by showing how a machine learning algorithm (a so-called learner) combined with an optimization routine can assist experimental efforts in the realm of tuning semiconductor quantum dot (QD) devices. Among other applications, semiconductor quantum dots are a candidate system for building quantum computers. In order to employ QDs, one needs to tune the devices into a desirable configuration suitable for quantum computing. While current experiments adjust the control parameters heuristically, such an approach does not scale with the increasing size of the quantum dot arrays required for even near-term quantum computing demonstrations. Establishing a reliable protocol for tuning QD devices that does not rely on the gross-scale heuristics developed by experimentalists is thus of great importance. Materials and methods To implement the machine learning-based approach, we constructed a dataset of simulated QD device characteristics, such as the conductance and the charge sensor response versus the applied electrostatic gate voltages. The gate voltages are the experimental ‘knobs’ for tuning the device into useful regimes. Here, we describe the methodology for generating the dataset, as well as its validation in training convolutional neural networks. Results and discussion From 200 training sets sampled randomly from the full dataset, we show that the learner’s accuracy in recognizing the state of a device is ≈ 96.5% when using either current-based or charge-sensor-based training. The spread in accuracy over our 200 training sets is 0.5% and 1.8% for current- and charge-sensor-based data, respectively. In addition, we also introduce a tool that enables other researchers to use this approach for further research: QFlow lite—a Python-based mini-software suite that uses the dataset to train neural networks to recognize the state of a device and differentiate between states in experimental data. This work gives the definitive reference for the new dataset that will help enable researchers to use it in their experiments or to develop new machine learning approaches and concepts.
Collapse
Affiliation(s)
- Justyna P. Zwolak
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20742, United States of America
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States of America
- * E-mail:
| | - Sandesh S. Kalantre
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20742, United States of America
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States of America
- Department of Physics, Indian Institute of Technology - Bombay, Mumbai, 400076, India
| | - Xingyao Wu
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20742, United States of America
- Joint Quantum Institute, University of Maryland, College Park, MD, 20742, United States of America
| | - Stephen Ragole
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20742, United States of America
- Joint Quantum Institute, University of Maryland, College Park, MD, 20742, United States of America
| | - Jacob M. Taylor
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20742, United States of America
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States of America
- Joint Quantum Institute, University of Maryland, College Park, MD, 20742, United States of America
| |
Collapse
|
12
|
Gill ST, Damasco J, Janicek BE, Durkin MS, Humbert V, Gazibegovic S, Car D, Bakkers EPAM, Huang PY, Mason N. Selective-Area Superconductor Epitaxy to Ballistic Semiconductor Nanowires. NANO LETTERS 2018; 18:6121-6128. [PMID: 30200769 DOI: 10.1021/acs.nanolett.8b01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Semiconductor nanowires such as InAs and InSb are promising materials for studying Majorana zero modes and demonstrating non-Abelian particle exchange relevant for topological quantum computing. While evidence for Majorana bound states in nanowires has been shown, the majority of these experiments are marked by significant disorder. In particular, the interfacial inhomogeneity between the superconductor and nanowire is strongly believed to be the main culprit for disorder and the resulting "soft superconducting gap" ubiquitous in tunneling studies of hybrid semiconductor-superconductor systems. Additionally, a lack of ballistic transport in nanowire systems can create bound states that mimic Majorana signatures. We resolve these problems through the development of selective-area epitaxy of Al to InSb nanowires, a technique applicable to other nanowires and superconductors. Epitaxial InSb-Al devices generically possess a hard superconducting gap and demonstrate ballistic 1D superconductivity and near-perfect transmission of supercurrents in the single mode regime, requisites for engineering and controlling 1D topological superconductivity. Additionally, we demonstrate that epitaxial InSb-Al superconducting island devices, the building blocks for Majorana-based quantum computing applications, prepared using selective-area epitaxy can achieve micron-scale ballistic 1D transport. Our results pave the way for the development of networks of ballistic superconducting electronics for quantum device applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Sasa Gazibegovic
- QuTech and Kavli Institute of NanoScience , Delft University of Technology , 2600 GA Delft , The Netherlands
- Department of Applied Physics , Eindhoven University of Technology , 5600 MB Eindhoven , The Netherlands
| | - Diana Car
- QuTech and Kavli Institute of NanoScience , Delft University of Technology , 2600 GA Delft , The Netherlands
- Department of Applied Physics , Eindhoven University of Technology , 5600 MB Eindhoven , The Netherlands
| | - Erik P A M Bakkers
- QuTech and Kavli Institute of NanoScience , Delft University of Technology , 2600 GA Delft , The Netherlands
- Department of Applied Physics , Eindhoven University of Technology , 5600 MB Eindhoven , The Netherlands
| | | | | |
Collapse
|
13
|
Luthi F, Stavenga T, Enzing OW, Bruno A, Dickel C, Langford NK, Rol MA, Jespersen TS, Nygård J, Krogstrup P, DiCarlo L. Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field. PHYSICAL REVIEW LETTERS 2018; 120:100502. [PMID: 29570312 DOI: 10.1103/physrevlett.120.100502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 06/08/2023]
Abstract
We present an experimental study of flux- and gate-tunable nanowire transmons with state-of-the-art relaxation time allowing quantitative extraction of flux and charge noise coupling to the Josephson energy. We evidence coherence sweet spots for charge, tuned by voltage on a proximal side gate, where first order sensitivity to switching two-level systems and background 1/f noise is minimized. Next, we investigate the evolution of a nanowire transmon in a parallel magnetic field up to 70 mT, the upper bound set by the closing of the induced gap. Several features observed in the field dependence of qubit energy relaxation and dephasing times are not fully understood. Using nanowires with a thinner, partially covering Al shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation and other applications.
Collapse
Affiliation(s)
- F Luthi
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - T Stavenga
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - O W Enzing
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - A Bruno
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - C Dickel
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - N K Langford
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - M A Rol
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - T S Jespersen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - J Nygård
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Nano-Science Center, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - P Krogstrup
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - L DiCarlo
- QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| |
Collapse
|
14
|
Hartke TR, Liu YY, Gullans MJ, Petta JR. Microwave Detection of Electron-Phonon Interactions in a Cavity-Coupled Double Quantum Dot. PHYSICAL REVIEW LETTERS 2018; 120:097701. [PMID: 29547336 DOI: 10.1103/physrevlett.120.097701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 06/08/2023]
Abstract
Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit oscillations that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.
Collapse
Affiliation(s)
- T R Hartke
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Y-Y Liu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - M J Gullans
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J R Petta
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
15
|
Saha A, Oleshkevich E, Vinas C, Teixidor F. Biomimetic Inspired Core-Canopy Quantum Dots: Ions Trapped in Voids Induce Kinetic Fluorescence Switching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1704238. [PMID: 29044704 DOI: 10.1002/adma.201704238] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Closely packed hollow spheres connected through pillars to a CdSe quantum dot (QD) core produce channels through which ions navigate. This particular structure is well represented by [CdSe@CarbOPH(O)]@Cl/[N(Caprylyl)3 Me1 ] indicating that in the channels between the canopy made by the carboranyl spheres (carboranylphosphinate, CarbOPH(O)) and the CdSe core exist chloride anions. Due to the close packing, the spheres produce openings. These are converted into gates because [N(Caprylyl)3 Me1 ] acts as a plug. The [CdSe@CarbOPH(O)]@Cl/assembly is negatively charged because the Cd positive charges are outnumbered by the negative charges due to the Se, the phosphinic acid and, very importantly, the trapped chloride anions, and this negative load is compensated by the cationic surfactant. Here, it is shown that this synergism produces an unprecedented phenomenon, namely, kinetic fluorescence switching. It is observed that the material shines brightly then loses its brightness and, upon the application of kinetic energy, shines back to the maximum power. This process continues for an extended period of time, up to half a year, at least. This new type of architecture in QDs is named as core-canopy QDs. In this case, this study demonstrates one property, the kinetic fluorescence switching, as a consequence of the trapping of Cl- in the QDs channels, but other properties can be envisaged with the judicious choice of the anions or even the pillar connecting the hollow sphere with the ground.
Collapse
Affiliation(s)
- Arpita Saha
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Elena Oleshkevich
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Clara Vinas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| |
Collapse
|
16
|
Hagenmüller D, Schachenmayer J, Schütz S, Genes C, Pupillo G. Cavity-Enhanced Transport of Charge. PHYSICAL REVIEW LETTERS 2017; 119:223601. [PMID: 29286774 DOI: 10.1103/physrevlett.119.223601] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 05/22/2023]
Abstract
We theoretically investigate charge transport through electronic bands of a mesoscopic one-dimensional system, where interband transitions are coupled to a confined cavity mode, initially prepared close to its vacuum. This coupling leads to light-matter hybridization where the dressed fermionic bands interact via absorption and emission of dressed cavity photons. Using a self-consistent nonequilibrium Green's function method, we compute electronic transmissions and cavity photon spectra and demonstrate how light-matter coupling can lead to an enhancement of charge conductivity in the steady state. We find that depending on cavity loss rate, electronic bandwidth, and coupling strength, the dynamics involves either an individual or a collective response of Bloch states, and we explain how this affects the current enhancement. We show that the charge conductivity enhancement can reach orders of magnitudes under experimentally relevant conditions.
Collapse
Affiliation(s)
- David Hagenmüller
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Johannes Schachenmayer
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Stefan Schütz
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Claudiu Genes
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
- Max Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany
| | - Guido Pupillo
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| |
Collapse
|
17
|
Cottet A, Dartiailh MC, Desjardins MM, Cubaynes T, Contamin LC, Delbecq M, Viennot JJ, Bruhat LE, Douçot B, Kontos T. Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:433002. [PMID: 28925381 DOI: 10.1088/1361-648x/aa7b4d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Collapse
Affiliation(s)
- Audrey Cottet
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS UMR 8551, Laboratoire associé aux universités Pierre et Marie Curie et Denis Diderot, 24, rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Westig M, Kubala B, Parlavecchio O, Mukharsky Y, Altimiras C, Joyez P, Vion D, Roche P, Esteve D, Hofheinz M, Trif M, Simon P, Ankerhold J, Portier F. Emission of Nonclassical Radiation by Inelastic Cooper Pair Tunneling. PHYSICAL REVIEW LETTERS 2017; 119:137001. [PMID: 29341699 DOI: 10.1103/physrevlett.119.137001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 06/07/2023]
Abstract
We show that a properly dc-biased Josephson junction in series with two microwave resonators of different frequencies emits photon pairs in the resonators. By measuring auto- and intercorrelations of the power leaking out of the resonators, we demonstrate two-mode amplitude squeezing below the classical limit. This nonclassical microwave light emission is found to be in quantitative agreement with our theoretical predictions, up to an emission rate of 2 billion photon pairs per second.
Collapse
Affiliation(s)
- M Westig
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - B Kubala
- Institute for Complex Quantum Systems and IQST, University of Ulm, 89069 Ulm, Germany
| | - O Parlavecchio
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Y Mukharsky
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - C Altimiras
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - P Joyez
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - D Vion
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - P Roche
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - D Esteve
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - M Hofheinz
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - M Trif
- Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France
| | - P Simon
- Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France
| | - J Ankerhold
- Institute for Complex Quantum Systems and IQST, University of Ulm, 89069 Ulm, Germany
| | - F Portier
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Abstract
Double quantum dots (DQDs) are a versatile platform for solid-state physics, quantum computation and nanotechnology. The micro-fabrication techniques commonly used to fabricate DQDs are difficult to extend to the atomic scale. Using an alternative approach, which relies on scanning tunneling microscopy and spectroscopy, we prepared a minimal DQD in a wide band-gap semiconductor matrix. It is comprised of a pair of strongly coupled donor atoms that can each be doubly charged. The donor excitation diagram of this system mimicks the charge stability diagram observed in transport measurements of DQDs. We furthermore illustrate how the charge and spin degrees of freedom of the minimal DQD may be used to obtain a single quantum bit and to prepare a Bell state. The results open an intriguing perspective for quantum electronics with atomic-scale structures.
Collapse
|
20
|
Liu YY, Stehlik J, Eichler C, Mi X, Hartke TR, Gullans MJ, Taylor JM, Petta JR. Threshold Dynamics of a Semiconductor Single Atom Maser. PHYSICAL REVIEW LETTERS 2017; 119:097702. [PMID: 28949587 DOI: 10.1103/physrevlett.119.097702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate a single atom maser consisting of a semiconductor double quantum dot (DQD) that is embedded in a high-quality-factor microwave cavity. A finite bias drives the DQD out of equilibrium, resulting in sequential single electron tunneling and masing. We develop a dynamic tuning protocol that allows us to controllably increase the time-averaged repumping rate of the DQD at a fixed level detuning, and quantitatively study the transition through the masing threshold. We further examine the crossover from incoherent to coherent emission by measuring the photon statistics across the masing transition. The observed threshold behavior is in agreement with an existing single atom maser theory when small corrections from lead emission are taken into account.
Collapse
Affiliation(s)
- Y-Y Liu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J Stehlik
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - C Eichler
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - X Mi
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - T R Hartke
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - M J Gullans
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - J M Taylor
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - J R Petta
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
21
|
Preparation of CdTe nanocrystals doped fluorescent silica spheres by sol-gel method and their surface modification via thiol-ene chemistry. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-6496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Abstract
Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed. Efficient on-demand cooling of the functional degrees of freedom in solid-state implementations of quantum information processing devices remains a challenge. Here the authors demonstrate direct cooling of a photonic mode of a superconducting resonator using voltage-controllable electron tunnelling.
Collapse
|
23
|
Dartiailh MC, Kontos T, Douçot B, Cottet A. Direct Cavity Detection of Majorana Pairs. PHYSICAL REVIEW LETTERS 2017; 118:126803. [PMID: 28388198 DOI: 10.1103/physrevlett.118.126803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 06/07/2023]
Abstract
No experiment could directly test the particle-antiparticle duality of Majorana fermions, so far. However, this property represents a necessary ingredient towards the realization of topological quantum computing schemes. Here, we show how to complete this task by using microwave techniques. The direct coupling between a pair of overlapping Majorana bound states and the electric field from a microwave cavity is extremely difficult to detect due to the self-adjoint character of Majorana fermions which forbids direct energy exchanges with the cavity. We show theoretically how this problem can be circumvented by using photoassisted tunneling to fermionic reservoirs. The absence of a direct microwave transition inside the Majorana pair in spite of the light-Majorana coupling would represent a smoking gun for the Majorana self-adjoint character.
Collapse
Affiliation(s)
- Matthieu C Dartiailh
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Takis Kontos
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Benoit Douçot
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS, LPTHE, UMR 7589, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Audrey Cottet
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
24
|
Cassidy MC, Bruno A, Rubbert S, Irfan M, Kammhuber J, Schouten RN, Akhmerov AR, Kouwenhoven LP. Demonstration of an ac Josephson junction laser. Science 2017; 355:939-942. [DOI: 10.1126/science.aah6640] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/03/2017] [Indexed: 11/03/2022]
Affiliation(s)
- M. C. Cassidy
- QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - A. Bruno
- QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - S. Rubbert
- Kavli Institute for Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - M. Irfan
- Kavli Institute for Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - J. Kammhuber
- QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - R. N. Schouten
- QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
- Kavli Institute for Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - A. R. Akhmerov
- Kavli Institute for Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - L. P. Kouwenhoven
- QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
- Kavli Institute for Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| |
Collapse
|
25
|
Newman D, Mintert F, Nazir A. Performance of a quantum heat engine at strong reservoir coupling. Phys Rev E 2017; 95:032139. [PMID: 28415330 DOI: 10.1103/physreve.95.032139] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 06/07/2023]
Abstract
We study a quantum heat engine at strong coupling between the system and the thermal reservoirs. Exploiting a collective coordinate mapping, we incorporate system-reservoir correlations into a consistent thermodynamic analysis, thus circumventing the usual restriction to weak coupling and vanishing correlations. We apply our formalism to the example of a quantum Otto cycle, demonstrating that the performance of the engine is diminished in the strong coupling regime with respect to its weakly coupled counterpart, producing a reduced net work output and operating at a lower energy conversion efficiency. We identify costs imposed by sudden decoupling of the system and reservoirs around the cycle as being primarily responsible for the diminished performance, and we define an alternative operational procedure which can partially recover the work output and efficiency. More generally, the collective coordinate mapping holds considerable promise for wider studies of thermodynamic systems beyond weak reservoir coupling.
Collapse
Affiliation(s)
- David Newman
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Florian Mintert
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ahsan Nazir
- Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
26
|
Gullans MJ, Stehlik J, Liu YY, Eichler C, Petta JR, Taylor JM. Sisyphus Thermalization of Photons in a Cavity-Coupled Double Quantum Dot. PHYSICAL REVIEW LETTERS 2016; 117:056801. [PMID: 27517784 PMCID: PMC5245799 DOI: 10.1103/physrevlett.117.056801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 06/06/2023]
Abstract
We investigate the nonclassical states of light that emerge in a microwave resonator coupled to a periodically driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a thermal state at the temperature of the surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away from these thermal regions we find regions of gain and loss, where the system can lase, or regions where the DQD acts as a single-photon source. These effects are observable in current devices and have broad utility for quantum optics with microwave photons.
Collapse
Affiliation(s)
- M J Gullans
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - J Stehlik
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Y-Y Liu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - C Eichler
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J R Petta
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J M Taylor
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
27
|
Chen ZY, Abdelhamid HN, Wu HF. Effect of surface capping of quantum dots (CdTe) on proteomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1403-1412. [PMID: 27197033 DOI: 10.1002/rcm.7575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/20/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE Investigation of nanoparticles for laser desorption/ionization mass spectrometry (LDI-MS) is routinely reported. However, the effect of surface capping of nanomaterials for LDI-MS is not well studied. METHODS Different capping agents of quantum dots (CdTe) affect the spectra quality and sensitivity of protein analysis and protein digestion using trypsin enzyme assisted by microwave. Surface modification of CdTe quantum dots with different capping agents, namely 3-mercaptopropionic acid (3-MPA), 4-aminothiophenol (4-ATP), 4-mercaptobenzoic acid (4-MBA), 11-mercaptoundecanoic acid (11-MUA), cysteine (Cys) and thioglycolic acid (TG), were investigated for quantum dots (QDs)-assisted trypsin protease followed by analysis using mass spectrometry. RESULTS CdTe QDs were used as a surface to assist trypsin protease and laser desorption/ionization mass spectrometry (surface-assisted laser desorption/ionization mass spectrometry, SALDI-MS). The MS profiles for the investigated analytes (bovine serum albumin (BSA), lysozyme, cytochrome c, α-casein, transferrin and myoglobin) revealed almost the absence of degradation that implies the softness of the present technique. QDs-assisted LDI-MS offered high sensitivity and high resolution. QDs showed significant enhancement of microwave-assisted trypsin digestion of the investigated proteins and these improvements boosted the identifications of fragments with a database. CONCLUSIONS A capping agent of quantum dots affects the analysis of proteins and peptides using LDI-MS. CdTe QDs offer sensitive, high-resolution and simple analysis of proteins. QDs improved the protein digestion using the microwave-assisted trypsin digestion. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhen-Yu Chen
- Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | | | - Hui-Fen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, 80424, Taiwan
| |
Collapse
|
28
|
Gate-controlled electromechanical backaction induced by a quantum dot. Nat Commun 2016; 7:11132. [PMID: 27063939 PMCID: PMC4831016 DOI: 10.1038/ncomms11132] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/24/2016] [Indexed: 11/08/2022] Open
Abstract
Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.
Collapse
|
29
|
Cirio M, De Liberato S, Lambert N, Nori F. Ground State Electroluminescence. PHYSICAL REVIEW LETTERS 2016; 116:113601. [PMID: 27035302 DOI: 10.1103/physrevlett.116.113601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 05/11/2023]
Abstract
Electroluminescence, the emission of light in the presence of an electric current, provides information on the allowed electronic transitions of a given system. It is commonly used to investigate the physics of strongly coupled light-matter systems, whose eigenfrequencies are split by the strong coupling with the photonic field of a cavity. Here we show that, together with the usual electroluminescence, systems in the ultrastrong light-matter coupling regime emit a uniquely quantum radiation when a flow of current is driven through them. While standard electroluminescence relies on the population of excited states followed by spontaneous emission, the process we describe herein extracts bound photons from the dressed ground state and it has peculiar features that unequivocally distinguish it from usual electroluminescence.
Collapse
Affiliation(s)
- Mauro Cirio
- Interdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Franco Nori
- CEMS, RIKEN, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
30
|
Lambert N, Nori F, Flindt C. Bistable Photon Emission from a Solid-State Single-Atom Laser. PHYSICAL REVIEW LETTERS 2015; 115:216803. [PMID: 26636864 DOI: 10.1103/physrevlett.115.216803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 06/05/2023]
Abstract
We predict a bistability in the photon emission from a solid-state single-atom laser comprising a microwave cavity coupled to a voltage-biased double quantum dot. To demonstrate that the single-atom laser is bistable, we evaluate the photon emission statistics and show that the distribution takes the shape of a tilted ellipse. The switching rates of the bistability can be extracted from the electrical current and the shot noise in the quantum dots. This provides a means to control the photon emission statistics by modulating the electronic transport in the quantum dots. Our prediction is robust against moderate electronic decoherence and dephasing and is important for current efforts to realize single-atom lasers with gate-defined quantum dots as the gain medium.
Collapse
Affiliation(s)
| | - Franco Nori
- CEMS, RIKEN, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
31
|
Liu YY, Stehlik J, Gullans MJ, Taylor JM, Petta JR. Injection Locking of a Semiconductor Double Quantum Dot Micromaser. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2015; 92:053802. [PMID: 28127226 PMCID: PMC5259738 DOI: 10.1103/physreva.92.053802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Collapse
Affiliation(s)
- Y-Y Liu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J Stehlik
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - M J Gullans
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - J M Taylor
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - J R Petta
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA; Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
32
|
Deng GW, Wei D, Li SX, Johansson JR, Kong WC, Li HO, Cao G, Xiao M, Guo GC, Nori F, Jiang HW, Guo GP. Coupling Two Distant Double Quantum Dots with a Microwave Resonator. NANO LETTERS 2015; 15:6620-6625. [PMID: 26327140 DOI: 10.1021/acs.nanolett.5b02400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We fabricated a hybrid device with two distant graphene double quantum dots (DQDs) and a microwave resonator. A nonlinear response is observed in the resonator reflection amplitude when the two DQDs are jointly tuned to the vicinity of the degeneracy points. This observation can be well fitted by the Tavis-Cummings (T-C) model which describes two two-level systems coupling with one photonic field. Furthermore, the correlation between the DC currents in the two DQDs is studied. A nonzero cross-current correlation is observed which has been theoretically predicted to be an important sign of nonlocal coupling between two distant systems. Our results explore T-C physics in electronic transport and also contribute to the study of nonlocal transport and future implementations of remote electronic entanglement.
Collapse
Affiliation(s)
- Guang-Wei Deng
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Da Wei
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Shu-Xiao Li
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | | | - Wei-Cheng Kong
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Hai-Ou Li
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Gang Cao
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Ming Xiao
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Guang-Can Guo
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Franco Nori
- Physics Department, The University of Michigan , Ann Arbor, Michigan 48109-1040, United States
| | - Hong-Wen Jiang
- Department of Physics and Astronomy, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Guo-Ping Guo
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences , Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Stockklauser A, Maisi VF, Basset J, Cujia K, Reichl C, Wegscheider W, Ihn T, Wallraff A, Ensslin K. Microwave Emission from Hybridized States in a Semiconductor Charge Qubit. PHYSICAL REVIEW LETTERS 2015; 115:046802. [PMID: 26252704 DOI: 10.1103/physrevlett.115.046802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 05/27/2023]
Abstract
We explore the microwave radiation emitted from a biased double quantum dot due to the inelastic tunneling of single charges. Radiation is detected over a broad range of detuning configurations between the dot energy levels, with pronounced maxima occurring in resonance with a capacitively coupled transmission line resonator. The power emitted for forward and reverse resonant detuning is found to be in good agreement with a rate equation model, which considers the hybridization of the individual dot charge states.
Collapse
Affiliation(s)
- A Stockklauser
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - V F Maisi
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - J Basset
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - K Cujia
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - C Reichl
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - W Wegscheider
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - T Ihn
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - A Wallraff
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - K Ensslin
- Department of Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| |
Collapse
|
34
|
Gullans MJ, Liu YY, Stehlik J, Petta JR, Taylor JM. Phonon-assisted gain in a semiconductor double quantum dot maser. PHYSICAL REVIEW LETTERS 2015; 114:196802. [PMID: 26024190 DOI: 10.1103/physrevlett.114.196802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 06/04/2023]
Abstract
We develop a microscopic model for the recently demonstrated double-quantum-dot maser. In characterizing the gain of this device we find that, in addition to the direct stimulated emission of photons, there is a large contribution from the simultaneous emission of a photon and a phonon, i.e., the phonon sideband. We show that this phonon-assisted gain typically dominates the overall gain, which leads to masing. Recent experimental data are well fit with our model.
Collapse
Affiliation(s)
- M J Gullans
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - Y-Y Liu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J Stehlik
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - J R Petta
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - J M Taylor
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|