1
|
Zhang YF, Wang B, Chen Z, Liu JR, Yang NY, Xiang JM, Liu J, Gu QS, Hong X, Liu XY. Asymmetric amination of alkyl radicals with two minimally different alkyl substituents. Science 2025; 388:283-291. [PMID: 40245132 DOI: 10.1126/science.adu3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Differentiating between similar alkyl groups is a major challenge in asymmetric catalysis. Achieving enantiocontrol over unactivated prochiral alkyl radicals is even more difficult owing to their high reactivity and limited interactions with chiral catalysts. In this study, we report a copper-catalyzed asymmetric amination of unactivated prochiral secondary alkyl radicals, using specifically designed chiral anionic multidentate ligands in a radical substitution reaction. This approach efficiently produces highly enantioenriched α-chiral alkyl amines and facilitates the enantioselective formal synthesis of a series of important drug molecules. Mechanistic studies reveal that bulky peripheral modifications on the ligands help create a truncated cone-shaped chiral pocket, enabling precise enantiodiscrimination through steric hindrance and noncovalent interactions. This strategy holds broad potential for asymmetric transformations involving diverse unactivated prochiral alkyl radicals and nucleophiles.
Collapse
Affiliation(s)
- Yu-Feng Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Biao Wang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Jin-Min Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Juan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Qiang-Shuai Gu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Papidocha SM, Wilke HR, Patej KJ, Isomura M, Stucky TJ, Rothenbühler L, Carreira EM. Enantiospecific Synthesis of α-Tertiary Amines: Ruthenium-Catalyzed Allylic Amination with Aqueous Ammonia. J Am Chem Soc 2025; 147:11675-11681. [PMID: 40145970 DOI: 10.1021/jacs.5c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ammonia stands out as the most available, cost-effective, and atom-economical source of nitrogen for organic synthesis. In the laboratory, it is safely and most conveniently handled in aqueous solution. Despite the advantages, the direct application of aqueous ammonia in the field of transition-metal catalysis remains a significant challenge. In this study, we report the first ruthenium-catalyzed allylic substitution using ammonia. The catalytic system, consisting of [Cp*Ru(MeCN)3]PF6 and a phenoxythiazoline ligand, enables the enantiospecific amination of tertiary allylic carbonates in aqueous media and affords enantioenriched primary amines as single regioisomers in high yields.
Collapse
Affiliation(s)
- Sven M Papidocha
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Henrik R Wilke
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Kacper J Patej
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Mayuko Isomura
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Tim J Stucky
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Lukas Rothenbühler
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Erick M Carreira
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Sun G, Liu H, Dong B, Zhang Y, Zhao Z, Gao B. Modular synthesis of bis-α-chiral amines using Ellman sulfinamide for consecutive S-to- C chirality induction/transfer. SCIENCE ADVANCES 2025; 11:eadv2010. [PMID: 40184443 PMCID: PMC11970453 DOI: 10.1126/sciadv.adv2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Amines are ubiquitous components in pharmaceuticals. Increasing saturated substitutions (sp3-hybridized carbon) at the amino center and the number of chiral centers can enrich the molecular diversity and chemical space, ultimately enhancing the success of drug development. However, the synthesis of such advanced amines is challenging due to a higher level of structural complexity and stereo-control. Here, we report a modular protocol for short de novo synthesis of bis-α-chiral amines. This protocol uses commercially available Ellman sulfinamide, tert-butanesulfinamide (tBS), as the exclusive chiral source to selectively produce all possible stereoisomers. Sequential formation of contiguous α-amino chiral carbons is achieved by chirality induction and transfer mechanisms that are both enabled by tBS, the stereoselective imine functionalization and alkyne-participated rearrangement reaction. The second step we developed is crucial for high diastereoselectivity, which is problematic in previous methods. The other coupling partners used in this protocol are abundant feedstocks, providing desirable chemical diversity in the products.
Collapse
Affiliation(s)
- Guangwu Sun
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Herui Liu
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Baobiao Dong
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuchao Zhang
- Scientific Experiment Center, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zilong Zhao
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Mondal A, Fu GC. Photoinduced, Copper-Catalyzed Enantioconvergent Synthesis of β-Aminoalcohol Derivatives. J Am Chem Soc 2025; 147:10859-10863. [PMID: 40126211 DOI: 10.1021/jacs.5c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In view of the frequent occurrence of carbon-nitrogen bonds in organic compounds, the development of powerful new methods for the construction of such bonds is expected to greatly impact many of the fields that utilize organic molecules. While the substitution of an alkyl electrophile by a nitrogen nucleophile is a seemingly straightforward approach to generating a carbon-nitrogen bond, in practice classical substitution pathways have very substantial limitations in the case of unactivated secondary and tertiary alkyl electrophiles. Recent reports that transition metals can catalyze certain substitution reactions of such electrophiles are therefore of considerable significance; however, virtually no methods have been developed wherein absolute stereochemistry is controlled together with carbon-nitrogen bond formation. Herein, we address this dual challenge of reactivity and enantioselectivity, describing a photoinduced, copper-catalyzed enantioconvergent synthesis of β-aminoalcohol derivatives via the coupling of anilines with racemic, unactivated β-haloethers. We apply this method to a catalytic asymmetric synthesis of metolachlor, and we report an array of mechanistic studies that are consistent with the reaction pathway that we propose.
Collapse
Affiliation(s)
- Arup Mondal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Dong V, Wang M, Hou X, Corio S, Digal L, Hirschi J. Copper Catalysis with Arynes: Unlocking Site-Selective Arylation of Pyrazoles. RESEARCH SQUARE 2025:rs.3.rs-6323411. [PMID: 40235503 PMCID: PMC11998777 DOI: 10.21203/rs.3.rs-6323411/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Arynes are among the most reactive species in organic chemistry-six-membered rings so strained that their energy rivals that of a hand grenade. 1 Since their discovery in 1902, chemists have used arynes to achieve innovative transformations and access diverse natural products, however, their application for catalytic cross-coupling remains unrealized. 2 A major challenge in late-stage functionalization is the selective N -arylation of unsymmetric pyrazoles to create a core found in blockbuster medicines worth over nineteen billion dollars annually. 3 Traditional cross-coupling methods usually favor one type of regioisomer and thus, limit late-stage access to alternatives that could speed up drug discovery. 4,5 Here, we show that copper catalysis harnesses arynes to achieve switchable arylation of pyrazoles. By tuning metallotautomers via ligand choice, we direct N -arylation to either nitrogen site in a pyrazole, unlocking site-selective control. 6,7 Mechanistic studies reveal how steric and electronic forces guide regioselectivity and turn an unpredictable process into a precise synthetic tool.
Collapse
|
6
|
Zhou J, Zhang Z, Cao Y, Xie W. Multiligand-enabled, copper-catalyzed Hiyama coupling of arylsilanes with unactivated secondary alkyl halides: reaction development and mechanistic insights. Chem Sci 2025; 16:5109-5117. [PMID: 39975764 PMCID: PMC11833680 DOI: 10.1039/d4sc07441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Construction of carbon-carbon bonds is the cornerstone in organic synthesis, and Hiyama coupling is the representative synthetic approach for realizing linkages between silyl compounds and organohalides. In previous literature, such couplings are mainly utilized for the bond formations of arylsilanes with sp2-aryl halides, yet Hiyama couplings with sp3-hybridized alkyl halides still remain scarce. Copper catalysis has recently been scrutinized in several important transformations of unactivated secondary alkyl halides, whereas their conversions with organosilanes are far less developed. Herein, we leverage a multiligand catalysis to offer a solution for efficient copper-catalyzed Hiyama couplings with such unactivated alkyl halides. Detailed mechanistic studies disclosed that the incorporation of an NHC ligand with a phenanthroline-copper system would dramatically enhance the reaction efficiency, where the copper species with NHC and phenanthroline-type ligands were most likely to account for the C(sp2)-Si bond activation and C(sp2)-C(sp3) bond formation process, respectively.
Collapse
Affiliation(s)
- Jiajing Zhou
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
| | - Zhiqiang Zhang
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
| | - Yan Cao
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
| | - Weilong Xie
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
7
|
Thillman A, Kill EC, Erickson AN, Wang D. Visible-Light-Driven Catalytic Dehalogenation of Trichloroacetic Acid and α-Halocarbonyl Compounds: Multiple Roles of Copper. ACS Catal 2025; 15:3873-3881. [PMID: 40078408 PMCID: PMC11894595 DOI: 10.1021/acscatal.4c07845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Herein, we report the reaction development and mechanistic studies of visible-light-driven Cu-catalyzed dechlorination of trichloroacetic acid for the highly selective formation of monochloroacetic acid. Visible-light-driven transition metal catalysis via an inner-sphere pathway features the dual roles of transition metal species in photoexcitation and substrate activation steps, and a detailed mechanistic understanding of their roles is crucial for the further development of light-driven catalysis. This catalytic method, which features environmentally desired ascorbic acid as the hydrogen atom source and water/ethanol as the solvent, can be further applied to the dehalogenation of a variety of halocarboxylic acids and amides. Spectroscopic, X-ray crystallographic, and kinetic studies have revealed the detailed mechanism of the roles of copper in photoexcitation, thermal activation of the first C-Cl bond, and excited-state activation of the second C-Cl bond via excited-state chlorine atom transfer.
Collapse
Affiliation(s)
- Abigail
J. Thillman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Erin C. Kill
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Alexander N. Erickson
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Dian Wang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
8
|
Fu F, Liu Y, Liu M, Li Z, Zhong W, Li Y, Li K, Wang J, Huang Y, Li Y, Liu W, Zhang Y, Xiang K, Liu H, Wang P, Liu D. Non-noble Metal Single-Molecule Photocatalysts for the Overall Photosynthesis of Hydrogen Peroxide. J Am Chem Soc 2025; 147:6390-6403. [PMID: 39681837 DOI: 10.1021/jacs.4c09445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Despite the great progress in molecule photocatalytic solar energy conversion, it is particularly challenging to realize a photocatalytic overall reaction in a non-noble metal complex, which represents a new paradigm for photosynthesis. In this study, a class of novel non-noble metal complexes with head-to-tail geometry were designed and readily synthesized via the coordination of triphenylamine-modified 2,2': 6',2″-terpyridine ligands with Zn2+. As expected, these complexes exhibited the desired through-space charge-transfer transition, generating both long-lived excited states (on the order of microseconds) and separate redox centers under visible-light irradiation. These complexes have particularly low exciton binding energies, which make them excellent heterogeneous single molecular photocatalysts for the overall photosynthetic production of H2O2. Remarkably, a high H2O2 evolution rate (8862 μmol g-1 h-1) was achieved in pure H2O under an air atmosphere via precise molecular tailoring, revealing the unparalleled advantages of molecular photocatalysts in improving the catalytic rate of H2O2 production. This is the first time that single-molecule photocatalysts have been used to efficiently complete the photosynthesis of H2O2. This study presents a new paradigm for photocatalytic energy conversion and provides unique insights into the design of molecular photocatalysts.
Collapse
Affiliation(s)
- Fan Fu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yongxin Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingliang Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wanying Zhong
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yaqin Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yi Zhang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaisong Xiang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
9
|
Wang R, Liang YJ, Bian KJ, Xu J, Zhou SY, Jin RX, Guan W, Wang XS. Bioinspired Copper/Amine Cooperative Catalysis Enables Asymmetric Radical Azidation. J Am Chem Soc 2025; 147:6644-6653. [PMID: 39940082 DOI: 10.1021/jacs.4c15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Asymmetric radical transformations (ARTs) are vital for constructing chiral drugs and materials, while the highly reactive nature of radicals often imposes a challenge in selectivity control of these processes. Inspired by the principles of enzyme-cofactor cooperation to enhance stereochemical induction in enantioselective radical transformations, we developed an enantioselective asymmetric radical azidation via cooperative organo- and transition metal catalysis. This approach enables the efficient synthesis of heavily functionalized tertiary azides from readily available aldehydes. The key to this enantioselective process is the use of both chiral organocatalysts to transiently convert aldehydes to the corresponding chiral radical cationic species upon oxidation along with a detailed screening of chiral metal-azide catalysts to cooperatively enhance stereoinduction in carbon-azide bond formation. DFT studies suggest a favorable stereocontrol model and validate the crucial roles of chirality pairing of both catalytic schemes. We envision that this copper/amine cooperative catalysis could offer a useful strategy of constructing tetrasubstituted stereogenic carbon in asymmetric radical transformation development.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Liang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, People's Republic of China
| | - Kang-Jie Bian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jie Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Si-Yuan Zhou
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ruo-Xing Jin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Li J, Wang P, Bai B, Xiao Y, Wan YF, Yan Y, Li F, Song G, Li G, Wang C, Zhang XP, Dong J, Kang T, Xue D. Synthesis, Characterization, and Catalytic Activity of Ni(0) (DQ)dtbbpy, an Air-Stable, Bifunctional Red-Light-Sensitive Precatalyst. J Am Chem Soc 2025; 147:5851-5859. [PMID: 39910783 DOI: 10.1021/jacs.4c14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Despite a well-established and growing body of work on nickel(0) precatalysts, the potential of nickel(0) complexes as bifunctional precatalysts remains underexplored. In this study, we synthesized, characterized, and evaluated the catalytic activity of (Ni(0)(DQ)dtbbpy), a bifunctional, red-light-sensitive, and air-stable nickel(0) complex. Owing to its unique photophysical properties, it effectively catalyzed the etherification and amination of aryl bromides under 620-630 nm light irradiation, functioning as both a photocatalyst and an active metal catalyst. Mechanistic studies and density functional theory (DFT) calculations further confirmed the exceptional absorption properties of Ni(0)(DQ)dtbbpy in the red-light region, as well as the electron transfer process triggered by red-light irradiation.
Collapse
Affiliation(s)
- Jingsheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Pengpeng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoyu Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yulin Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ya-Fei Wan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Fei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Tengfei Kang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
11
|
Saha P, Jin M, Huang DCY. Defluorinative C-O Coupling between Trifluoromethylarenes and Alcohols via Copper Photoredox Catalysis. Angew Chem Int Ed Engl 2025; 64:e202419591. [PMID: 39743826 DOI: 10.1002/anie.202419591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
Fluorine-containing compounds have shown unparalleled impacts in the realm of functional molecules, and the ability to prepare novel structures has been crucial in unlocking new properties for applications in pharmaceutical and materials science. Herein, we report a copper-catalyzed, photoinduced defluorinative C-O coupling between trifluoromethylarenes and alcohols. This method allows for direct access to a wide selection of difluorobenzylether (ArCF2OR) molecules, including a compound displaying liquid crystal behavior. Through slight modification of the protocol, we were able to generate difluorobenzyliodide (ArCF2I) products, another class of synthetically useful fluorine-bearing molecules. Mechanistic investigations first suggested that ArCF2I can serve as a reservoir to steadily supply the key ArCF2⋅ radical species. Furthermore, experimental evidence supported a mechanism consisting of two collaborative cycles: C-F activation operated by a homoleptic Cu(I) coordinated by two bisphosphine ligands as the photocatalyst and C-O coupling promoted by a Cu(I) ligated by a single bisphosphine ligand. The critical roles of the two salt additives, lithium iodide and zinc acetate, in orchestrating the two cycles were also elucidated. This dual-role copper catalyst demonstrates the power of base metal photoredox catalysis in achieving both substrate activation and chemical bond formation via a single catalytic system.
Collapse
Affiliation(s)
- Priya Saha
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (ICReDD List-PF), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Dennis Chung-Yang Huang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
12
|
Dooley C, Ibba F, Botlik BB, Palladino C, Goult CA, Gao Y, Lister A, Paton RS, Lloyd-Jones GC, Gouverneur V. Enantioconvergent nucleophilic substitution via synergistic phase-transfer catalysis. Nat Catal 2025; 8:107-115. [PMID: 40017632 PMCID: PMC11860226 DOI: 10.1038/s41929-024-01288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/23/2024] [Indexed: 03/01/2025]
Abstract
Catalytic enantioconvergent nucleophilic substitution reactions of alkyl halides are highly valuable transformations, but they are notoriously difficult to implement. Specifically, nucleophilic fluorination is a renowned challenge, especially when inexpensive alkali metal fluorides are used as fluorinating reagents due to their low solubility, high hygroscopicity and Brønsted basicity. Here we report a solution by developing the concept of synergistic hydrogen bonding phase-transfer catalysis. Key to our strategy is the combination of a chiral bis-urea hydrogen bond donor (HBD) and an onium salt-two phase-transfer catalysts essential for the solubilization of potassium fluoride-as a well-characterized ternary HBD-onium fluoride complex. Mechanistic investigations indicate that this chiral ternary complex is capable of enantiodiscrimination of racemic benzylic bromides and α-bromoketones, and upon fluoride delivery affords fluorinated products in high yields and enantioselectivities. This work provides a foundation for enantioconvergent fluorination chemistry enabled through the combination of a HBD catalyst with a co-catalyst specifically curated to meet the requirement of the electrophile.
Collapse
Affiliation(s)
- Claire Dooley
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Francesco Ibba
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Bence B. Botlik
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | | | - Yuan Gao
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | | | - Robert S. Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO USA
| | | | | |
Collapse
|
13
|
Bentley K, Hareram MD, Wang GW, Millman AAV, Perez-Ortega I, Nichols LM, Bories CC, Walker LE, Woodward AW, Golovanov AP, Natrajan LS, Larrosa I. Bis-Cycloruthenated Complexes in Visible Light-Induced C-H Alkylation with Epoxides. J Am Chem Soc 2025; 147:5035-5042. [PMID: 39901642 PMCID: PMC11826993 DOI: 10.1021/jacs.4c14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Bis-cycloruthenated complexes (BCRCs) of the type [Ru(N^C)2L2] are proposed to be key reactive intermediates in the Ru(II)-catalyzed directed C-H functionalization of arenes. While the exceptional ground state reactivity of BCRCs toward a number of electrophiles has been explored, their reactivity upon photoexcitation is still unknown. Herein, we report studies on the photoexcitation of BCRCs that establish their capability to access chemically useful excited states. Remarkably, photoexcited BCRCs demonstrate greatly increased reactivity toward the electron transfer processes required for alkyl halide activation, overcoming current limitations of their ground-state reactivity. We have demonstrated this reactivity by expanding upon the current chemical space occupied by Ru-catalyzed C-H functionalization to include ortho-alkylation with epoxides.
Collapse
Affiliation(s)
- Kurt Bentley
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mishra Deepak Hareram
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gang-Wei Wang
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- State
Key Laboratory of Applied Organic Chemistry & College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Alexander A. V. Millman
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ignacio Perez-Ortega
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Luke M. Nichols
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Cassandre C. Bories
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lauren E. Walker
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Adam W. Woodward
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alexander P. Golovanov
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Louise S. Natrajan
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Igor Larrosa
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
14
|
Zhang F, Li Y, Zhou X, Zhao Q, Li X, Zhang FL, Wang YF, Zhou X. Quenching Rate Constants of Lewis Base-Boryl Radical by Substrates: a Laser Flash Photolysis Study. Chemistry 2025; 31:e202403949. [PMID: 39532687 DOI: 10.1002/chem.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The advanced strategy using Lewis base-boryl radicals (LBRs) has recently been proposed for the addition of alkyl substituents to the full-carbon quaternary center of an organic molecule. However, as the rate-determining step in the whole route, reaction rate constants of LBRs with substrates are extremely lacking. In this paper, 4-dimethylaminopyridine (DMAP)-BH2⋅ was selected as a representative of LBRs, and its reactions with six monochloro-substituted substrates, including three methyl chlorobenzoates and three chlorinated acetanilides were studied in experiments and theoretical calculations. The bimolecular reaction rate constants, kq, were determined using laser flash photolysis approach. By comparing activation energies along the two addition pathways, we have clarified the rate-determining step as the attacking to carbonyl oxygen instead of chlorine atom. Furthermore, noncovalent interaction (NCI) analyses on these substrates indicate that weak interactions, such as hydrogen-bonding and van der Waals interactions, have significant influence on the reactivity of these substrates. Our study provides concrete clues to extend this synthetic strategy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanming Li
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xi Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qiang Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuelian Li
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoguo Zhou
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Chen J, Ruan P, Fan H, Zhang X, He S, Hou J, Ye M, Li Y, Lv G, Wu Y. Dual Photoredox and Copper-Catalyzed Asymmetric Remote C(sp 3)-H Alkylation of Hydroxamic Acid Derivatives with Glycine Derivatives. J Org Chem 2025; 90:1219-1232. [PMID: 39810319 DOI: 10.1021/acs.joc.4c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Dual photoredox and copper-catalyzed remote asymmetric C(sp)3-H alkylation of hydroxamic acid derivatives with glycine derivatives via a 1,5-hydrogen transfer (1,5-HAT) process has been realized. The reaction was characterized by redox-neutral and mild conditions, good yields, excellent enantioselectivity, and broad substrate scope. This protocol provides a straightforward and efficient strategy to prepare highly valuable enantioenriched noncanonical α-amino acids. Moreover, the potential synthetic value of this reaction was demonstrated in late-stage asymmetric alkylation of dipeptides with a high diastereomeric ratio.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pingping Ruan
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Hongying Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shiyun He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinyu Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meiling Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guanghui Lv
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Lee S, Kim M, Han H, Son J. Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations. Beilstein J Org Chem 2025; 21:200-216. [PMID: 39877860 PMCID: PMC11773186 DOI: 10.3762/bjoc.21.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Over the past decade, dioxazolones have been widely used as N-acylamide sources in amidation processes of challenging substrates, typically employing precious transition metals. However, these catalytic systems often present several challenges associated with cost, toxicity, stability, and recyclability. Among the 3d transition metals, copper catalysts have been gaining increasing attention owing to their abundance, cost-effectiveness, and sustainability. Recently, these catalytic systems have been applied to the chemical transformation of dioxazolones, conferring a convenient protocol towards amidated products. This review highlights recent advancements in the synthetic transformations of dioxazolones, with particular examples of copper salts.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
| | - Minsuk Kim
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| | - Hyewon Han
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
| | - Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
17
|
Kim Y, Jang WJ. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein J Org Chem 2025; 21:155-178. [PMID: 39834892 PMCID: PMC11744695 DOI: 10.3762/bjoc.21.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.
Collapse
Affiliation(s)
- Yemin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
18
|
Pham LN, Olding A, Ho CC, Bissember AC, Coote ML. Investigating Competing Inner- and Outer-Sphere Electron-Transfer Pathways in Copper Photoredox-Catalyzed Atom-Transfer Radical Additions: Closing the Cycle. Angew Chem Int Ed Engl 2025; 64:e202415792. [PMID: 39317646 DOI: 10.1002/anie.202415792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
This integrated computational and experimental study comprehensively examines the viability of competing inner-sphere electron transfer (ISET) and outer-sphere electron transfer (OSET) processes in [Cu(dap)2]+-mediated atom-transfer radical additions (ATRA) of olefins and CF3SO2Cl that can deliver both R-SO2Cl and R-Cl products. Five sterically- and electronically-varied representative alkenes were selected from which to explore and reconcile a range of experimentally observed outcomes. Findings are consistent with photoexcited [Cu(dap)2]+ initiating photoelectron transfer via ISET and the subsequent regeneration of the oxidized catalyst via ISET in the ground state to close the catalytic cycle and liberate products. R-SO2Cl/R-Cl product ratios appear to be primarily governed by the relative rates of direct catalyst regeneration {i.e., [Cu(dap)2SO2Cl]⋅++R⋅} and ligand exchange {i.e., [Cu(dap)2SO2Cl]⋅++Cl- }. Through this work, a more consistent and more complete conceptual framework has been developed to better understand this chemistry and how catalyst regeneration occurs. It is this important ground state process, which closes the catalytic cycle, and ultimately controls the enantioselectivity of ATRA reactions employing chiral copper photocatalysts.
Collapse
Affiliation(s)
- Le Nhan Pham
- Institute for Nanoscale Science and Technology, Flinders University, South Australia, Australia
| | - Angus Olding
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, South Australia, Australia
| |
Collapse
|
19
|
Li Z, Wang B, Fan S, Zhang C, Sun J. Catalytic Enantioselective Nucleophilic Amination of α-Halo Carbonyl Compounds with Free Amines. J Am Chem Soc 2025; 147:576-584. [PMID: 39725608 DOI: 10.1021/jacs.4c12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Catalytic enantioselective substitution of the readily available racemic α-halo carbonyl compounds by nitrogen nucleophiles represents one of the most convenient and direct approaches to access enantioenriched α-amino carbonyl compounds. Distinct from the two available strategies involving radicals and enolate ions, herein we have developed a new protocol featuring an electronically opposite way to weaken/cleave the carbon-halogen bond. A suitable chiral anion-based catalyst enables effective asymmetric control over the key positively charged intermediates. This protocol not only allows free amines to serve as nucleophiles but also permits different types of carbonyl compounds (ketones, esters, and amides) to participate in the enantioselective C-N bond formation, thereby providing a valuable complement to the known strategies that are limited to certain carbonyl substrates and/or nitrogen nucleophiles. Preliminary studies indicated that an SN2 pathway is operational and kinetic resolution is involved.
Collapse
Affiliation(s)
- Zhiyang Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Baocheng Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Shuaixin Fan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
20
|
Wu Z, Li X, Li Y, Cao LA, Li Z, Wang X, Liu W, Feng E. Mild and Efficient Preparation of N-Heterocyclic Organic Molecules by Catalyst-free and Solvent-free Methods. Curr Org Synth 2025; 22:253-262. [PMID: 38362693 DOI: 10.2174/0115701794285717240124053728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
AIMS The small organic molecular compounds with biological activity containing C-C and C-N or C-O bonding were efficiently prepared without catalyst and solvent in the hydrothermal synthesis reactor. OBJECTIVES Our goal was to explore new applications for the more environmentally friendly and efficient synthesis of bis(indolyl)methyl, xanthene, quinazolinone, and N-heterocyclic derivatives in hydrothermal synthesis reactors under solvent-free and catalyst-free conditions. METHODS A greener and more efficient method was successfully developed for the synthesis of bis(indolyl)methyl, heteroanthracene, quinazolinone, and N-heterocyclic derivatives using a hydrothermal synthesis reactor in a solvent- and catalyst-free manner. RESULTS In a hydrothermal synthesis reactor, bis(indoyl)methyl, xanthene, quinazolinone, and N-heterocyclic derivatives were synthesized without catalysts and solvents. CONCLUSION Overall, it is proved once again that the catalyst-free and solvent-free synthesis method has universal value and is a more ideal and environmentally friendly new method, especially the hydrothermal reactor for synthesis.
Collapse
Affiliation(s)
- Zhiqiang Wu
- School of Chemistry and Chemical Engineering; Key Laboratory of Green Catalytic Materials and Technology of Ningxia Province, Ningxia Normal University, Guyuan, 756000, P. R. China
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Xuesong Li
- School of Chemistry and Chemical Engineering; Key Laboratory of Green Catalytic Materials and Technology of Ningxia Province, Ningxia Normal University, Guyuan, 756000, P. R. China
| | - Yueyi Li
- School of Chemistry and Chemical Engineering; Key Laboratory of Green Catalytic Materials and Technology of Ningxia Province, Ningxia Normal University, Guyuan, 756000, P. R. China
| | - Lin-An Cao
- School of Chemistry and Chemical Engineering; Key Laboratory of Green Catalytic Materials and Technology of Ningxia Province, Ningxia Normal University, Guyuan, 756000, P. R. China
| | - Zhenliang Li
- School of Chemistry and Chemical Engineering; Key Laboratory of Green Catalytic Materials and Technology of Ningxia Province, Ningxia Normal University, Guyuan, 756000, P. R. China
| | - Xuming Wang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Wanyi Liu
- School of Physics Electronic and Electrical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Enke Feng
- School of Chemistry and Chemical Engineering; Key Laboratory of Green Catalytic Materials and Technology of Ningxia Province, Ningxia Normal University, Guyuan, 756000, P. R. China
| |
Collapse
|
21
|
Laohapaisan P, Roy I, Nagib DA. Chiral pyrrolidines via an enantioselective Hofmann-Löffler-Freytag reaction. CHEM CATALYSIS 2024; 4:101149. [PMID: 39897703 PMCID: PMC11785401 DOI: 10.1016/j.checat.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Radical C-H aminations enable rapid access to the most common heterocycles in medicines (e.g. pyrrolidines), yet stereocontrol of these powerful transformations remains a challenge. Here, we report the discovery of the first enantio- and regio- selective C-H imination, which readily converts ketones to enantioenriched pyrrolidines. This enantioselective Hofmann-Löffler-Freytag reaction mechanism entails iminyl radical generation from an oxime by a chiral Cu catalyst that facilitates 1,5-H-atom transfer (HAT) to form a remote C-radical, regioselectively. The selective capture of this alkyl radical as an organocopper(III) complex then mediates highly stereoselective reductive elimination to unprotected pyrrolines. The broad steric and electronic scope of this remote C-H amination has been probed systematically, along with key mechanistic aspects of enantiodetermination, radical intermediacy, and atypical Cu(III) ligands that enable this uniquely selective C-N coupling. Importantly, either (1) reductions or (2) nucleophilic additions to these enantioenriched pyrrolines provide the most rapid syntheses of chiral pyrrolidines to date.
Collapse
Affiliation(s)
| | | | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
22
|
Sagadevan A, Murugesan K, Bakr OM, Rueping M. Copper nanoclusters: emerging photoredox catalysts for organic bond formations. Chem Commun (Camb) 2024; 60:13858-13866. [PMID: 39530552 DOI: 10.1039/d4cc04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advancements in fine chemical synthesis and drug discovery continuously demand the development of new and more efficient catalytic systems. In this regard, numerous transition metal-based catalysts have been developed and successfully applied in industrial processes. However, the need for innovative catalyst systems to further enhance the efficiency of chemical transformations and industrial applications persists. Metal nanoclusters (NCs) represent a distinct class of ultra-small nanoparticles (<3 nm) characterized by a precise number of metal atoms coordinated with a defined number of ligands. This structure confers abundant unsaturated active sites and unique electronic and optical properties, setting them apart from conventional nanoparticles or bulk metals. The well-defined structure and monodisperse nature of NCs make them particularly attractive for catalytic applications. Among these, copper-based nanoclusters have emerged as versatile and sustainable catalysts for challenging organic bond-forming reactions. Their unique properties, including natural abundance, accessible oxidation states, diverse ligand architectures, and strong photophysical characteristics, contribute to their growing prominence in this field. In this review, we discuss the photocatalytic activities of Cu-based nanoclusters, focusing on their applications in cross-coupling reactions (C-C and C-N), click reactions, multicomponent couplings, and oxidation reactions.
Collapse
Affiliation(s)
- Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
23
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 PMCID: PMC11955248 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
24
|
Chen X, Li HH, Kramer S. Photoinduced Copper-Catalyzed Enantioselective Allylic C(sp 3)-H Oxidation of Acyclic 1-Aryl-2-alkyl Alkenes as Limiting Substrates. Angew Chem Int Ed Engl 2024; 63:e202413190. [PMID: 39132953 DOI: 10.1002/anie.202413190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
Herein, we disclose a simple copper-catalyzed method for enantioselective allylic C(sp3)-H oxidation of unsymmetrical acyclic alkenes, specifically 1-aryl-2-alkyl alkenes. The C-H substrates are used in limiting amounts, and the products are obtained with high enantioselectivity, E/Z-selectivity, and regioselectivity. The method exhibits broad functional group tolerance, and E/Z-alkene mixtures are suitable C-H substrates. The transformation is enabled by light irradiation, which sustains the enantioselective copper catalysis by photoinduced oxidant homolysis.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Heng-Hui Li
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
25
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
26
|
Feng J, Xi LL, Lu CJ, Liu RR. Transition-metal-catalyzed enantioselective C-N cross-coupling. Chem Soc Rev 2024; 53:9560-9581. [PMID: 39171573 DOI: 10.1039/d4cs00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Chiral amine scaffolds are among the most important building blocks in natural products, drug molecules, and functional materials, which have prompted chemists to focus more on their synthesis. Among the accomplishments in chiral amine synthesis, transition-metal-catalyzed enantioselective C-N cross-coupling is considered one of the most efficient protocols. This approach combines traditional C(sp2)-N cross-coupling methods (such as the Buchwald-Hartwig reaction Ullmann-type reaction, and Chan-Evans-Lam reaction), aryliodonium salt chemistry and radical chemistry, providing an attractive pathway to a wide range of structurally diverse chiral amines with high enantioselectivity. This review summarizes the established protocols and offers a comprehensive outlook on the promising enantioselective C-N cross-coupling reaction.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
- Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, China
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
27
|
Li P, Zheng E, Li G, Luo Y, Huo X, Ma S, Zhang W. Stereodivergent access to non-natural α-amino acids via enantio- and Z/ E-selective catalysis. Science 2024; 385:972-979. [PMID: 39208090 DOI: 10.1126/science.ado4936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The precise control of Z and E configurations of the carbon-carbon double bond in alkene synthesis has long been a fundamental challenge in synthetic chemistry, even more pronounced when simultaneously striving to achieve enantioselectivity [(Z,R), (Z,S), (E,R), (E,S)]. Moreover, enantiopure non-natural α-amino acids are highly sought after in organic and medicinal chemistry. In this study, we report a ligand-controlled stereodivergent synthesis of non-natural α-quaternary amino acids bearing trisubstituted alkene moieties in high yields with excellent enantioselectivity and Z/E selectivities. This success is achieved through a palladium/copper-cocatalyzed three-component assembly of readily available aryl iodides, allenes, and aldimine esters by simply tuning the chiral ligands of the palladium and copper catalysts.
Collapse
Affiliation(s)
- Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - En Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Sokolova D, Lurshay TC, Rowbotham JS, Stonadge G, Reeve HA, Cleary SE, Sudmeier T, Vincent KA. Selective hydrogenation of nitro compounds to amines by coupled redox reactions over a heterogeneous biocatalyst. Nat Commun 2024; 15:7297. [PMID: 39181899 PMCID: PMC11344822 DOI: 10.1038/s41467-024-51531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Cleaner synthesis of amines remains a key challenge in organic chemistry because of their prevalence in pharmaceuticals, agrochemicals and synthetic building blocks. Here, we report a different paradigm for chemoselective hydrogenation of nitro compounds to amines, under mild, aqueous conditions. The hydrogenase enzyme releases electrons from H2 to a carbon black support which facilitates nitro-group reduction. For 30 nitroarenes we demonstrate full conversion (isolated yields 78 - 96%), with products including pharmaceuticals benzocaine, procainamide and mesalazine, and 4-aminophenol - precursor to paracetamol (acetaminophen). We also showcase gram-scale synthesis of procainamide with 90% isolated yield. We demonstrate potential for extension to aliphatic substrates. The catalyst is highly selective for reduction of the nitro group over other unsaturated bonds, tolerant to a wide range of functional groups, and exhibits excellent stability in reactions lasting up to 72 hours and full reusability over 5 cycles with a total turnover number over 1 million, indicating scope for direct translation to fine chemical manufacturing.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Tara C Lurshay
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, M1 7DN, UK
| | - Georgia Stonadge
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK
| | - Sarah E Cleary
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK.
| | - Tim Sudmeier
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
29
|
Wang Y, Das S, Aboulhosn K, Champagne SE, Gemmel PM, Skinner KC, Ragsdale SW, Zimmerman PM, Narayan ARH. Nature-Inspired Radical Pyridoxal-Mediated C-C Bond Formation. J Am Chem Soc 2024; 146:23321-23329. [PMID: 39106078 DOI: 10.1021/jacs.4c05997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Pyridoxal-5'-phosphate (PLP) and derivatives of this cofactor enable a plethora of reactions in both enzyme-mediated and free-in-solution transformations. With few exceptions in each category, such chemistry has predominantly involved two-electron processes. This sometimes poses a significant challenge for using PLP to build tetrasubstituted carbon centers, especially when the reaction is reversible. The ability to access radical pathways is paramount to broadening the scope of reactions catalyzed by this coenzyme. In this study, we demonstrate the ability to access a radical PLP-based intermediate and engage this radical intermediate in a number of C-C bond-forming reactions. By selection of an appropriate oxidant, single-electron oxidation of the quinonoid intermediate can be achieved, which can subsequently be applied to C-C bond-forming reactions. Through this radical reaction pathway, we synthesized a series of α-tertiary amino acids and esters to investigate the substrate scope and identify nonproductive reaction pathways. Beyond the amino acid model system, we demonstrate that other classes of amine substrates can be applied in this reaction and that a range of small molecule reagents can serve as coupling partners to the semiquinone radical. We anticipate that this versatile semiquinone radical species will be central to the development of a range of novel reactions.
Collapse
Affiliation(s)
- Ye Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kareem Aboulhosn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah E Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Philipp M Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin C Skinner
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
31
|
Liu H, Tian L, Zhang Z, Wang L, Li J, Liang X, Zhuang J, Yin H, Yang D, Zhao G, Su F, Wang D, Li Y. Atomic-Level Asymmetric Tuning of the Co 1-N 3P 1 Catalyst for Highly Efficient N-Alkylation of Amines with Alcohols. J Am Chem Soc 2024; 146:20518-20529. [PMID: 38995120 DOI: 10.1021/jacs.4c07197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Despite the extensive development of non-noble metals for the N-alkylation of amines with alcohols, the exploitation of catalysts with high selectivity, activity, and stability still faces challenges. The controllable modification of single-atom sites through asymmetric coordination with a second heteroatom offers new opportunities for enhancing the intrinsic activity of transition metal single-atom catalysts. Here, we prepared the asymmetric N/P hybrid coordination of single-atom Co1-N3P1 by absorbing the Co-P complex on ZIF-8 using a concise impregnation-pyrolysis process. The catalyst exhibits ultrahigh activity and selectivity in the N-alkylation of aniline and benzyl alcohol, achieving a turnover number (TON) value of 3480 and a turnover frequency (TOF) value of 174-h. The TON value is 1 order of magnitude higher than the reported catalysts and even 37-fold higher than that of the homogeneous catalyst CoCl2(PPh3)2. Furthermore, the catalyst maintains its high activity and selectivity even after 6 cycles of usage. Controlling experiments and isotope labeling experiments confirm that in the asymmetric Co1-N3P1 system, the N-alkylation of aniline with benzyl alcohol proceeds via a transfer hydrogenation mechanism involving the monohydride route. Theoretical calculations prove that the superior activity of asymmetric Co1-N3P1 is attributed to the higher d-band energy level of Co sites, which leads to a more stable four-membered ring transition state and a lower reaction energy barrier compared to symmetrical Co1-N4.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Luyao Tian
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Zhentao Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Jialu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jiahao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hang Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Guofeng Zhao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
32
|
Song C, Bai X, Li B, Dang Y, Yu S. Photoexcited Palladium-Catalyzed Deracemization of Allenes. J Am Chem Soc 2024. [PMID: 39024194 DOI: 10.1021/jacs.4c07126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The different enantiomers of specific chiral molecules frequently exhibit disparate biological, physiological, or pharmacological properties. Therefore, the efficient synthesis of single enantiomers is of particular importance not only to the pharmaceutical sector but also to other industrial sectors, such as agrochemical and fine chemical industries. Deracemization, a process during which a racemic mixture is converted into a nonracemic product with 100% atom economy and theoretical yield, is the most straightforward method to access enantioenriched molecules but a challenging task due to a decrease in entropy and microscopic reversibility. Axially chiral allenes bear a distinctive structure of two orthogonal cumulative π-systems and are acknowledged as synthetically versatile synthons in organic synthesis. The selective creation of axially chiral allenes with high optical purity under mild reaction conditions has always been a very popular and hot topic in organic synthesis but remains challenging. Herein, a photoexcited palladium-catalyzed deracemization of nonprefunctionalized disubstituted allenes is disclosed. This method provides an efficient and economical strategy to accommodate a broad scope of allenes with good enantioselectivities and yields (53 examples, up to 96% yield and 95% ee). The use of a suitable chiral palladium complex with visible light irradiation is an essential factor in achieving this transformation. A metal-to-ligand charge transfer mechanism was proposed based on control experiments and density functional theory calculations. Quantum mechanical studies implicate dual modes of asymmetric induction behind our new protocol: (1) sterically controlled stereoselective binding of one allene enantiomer under the ground-state and (2) facile, noncovalent interaction-driven excited-state isomerization toward the opposite enantiomer. The success of this newly established photochemical deracemization strategy should provide inspiration for expansion to other multisubstituted allenes and will open up a new mode for enantioselective excited-state palladium catalysis.
Collapse
Affiliation(s)
- Changhua Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangbin Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Luo H, Yang Y, Fu Y, Yu F, Gao L, Ma Y, Li Y, Wu K, Lin L. In situ copper photocatalysts triggering halide atom transfer of unactivated alkyl halides for general C(sp3)-N couplings. Nat Commun 2024; 15:5647. [PMID: 38969653 PMCID: PMC11226431 DOI: 10.1038/s41467-024-50082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Direct reduction of unactivated alkyl halides for C(sp3)-N couplings under mild conditions presents a significant challenge in organic synthesis due to their low reduction potential. Herein, we introduce an in situ formed pyridyl-carbene-ligated copper (I) catalyst that is capable of abstracting halide atom and generating alkyl radicals for general C(sp3)-N couplings under visible light. Control experiments confirmed that the mono-pyridyl-carbene-ligated copper complex is the active species responsible for catalysis. Mechanistic investigations using transient absorption spectroscopy across multiple decades of timescales revealed ultrafast intersystem crossing (260 ps) of the photoexcited copper (I) complexes into their long-lived triplet excited states (>2 μs). The non-Stern-Volmer quenching dynamics of the triplets by unactivated alkyl halides suggests an association between copper (I) complexes and alkyl halides, thereby facilitating the abstraction of halide atoms via inner-sphere single electron transfer (SET), rather than outer-sphere SET, for the formation of alkyl radicals for subsequent cross couplings.
Collapse
Affiliation(s)
- Hang Luo
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yupeng Yang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian, Dalian, Liaoning, 116023, China
| | - Yukang Fu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fangnian Yu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lei Gao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yunpeng Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian, Dalian, Liaoning, 116023, China.
| | - Luqing Lin
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
34
|
Zhang J, Huan XD, Wang X, Li GQ, Xiao WJ, Chen JR. Recent advances in C(sp 3)-N bond formation via metallaphoto-redox catalysis. Chem Commun (Camb) 2024; 60:6340-6361. [PMID: 38832416 DOI: 10.1039/d4cc01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The C(sp3)-N bond is ubiquitous in natural products, pharmaceuticals, biologically active molecules and functional materials. Consequently, the development of practical and efficient methods for C(sp3)-N bond formation has attracted more and more attention. Compared to the conventional ionic pathway-based thermal methods, photochemical processes that proceed through radical mechanisms by merging photoredox and transition-metal catalyses have emerged as powerful and alternative tools for C(sp3)-N bond formation. In this review, recent advances in the burgeoning field of C(sp3)-N bond formation via metallaphotoredox catalysis have been highlighted. The contents of this review are categorized according to the transition metals used (copper, nickel, cobalt, palladium, and iron) together with photocatalysis. Emphasis is placed on methodology achievements and mechanistic insight, aiming to inspire chemists to invent more efficient radical-involved C(sp3)-N bond-forming reactions.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiao-Die Huan
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xin Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Guo-Qing Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| |
Collapse
|
35
|
Yan W, Poore AT, Yin L, Carter S, Ho YS, Wang C, Yachuw SC, Cheng YH, Krause JA, Cheng MJ, Zhang S, Tian S, Liu W. Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition. J Am Chem Soc 2024; 146:15176-15185. [PMID: 38770641 DOI: 10.1021/jacs.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Stephen C Yachuw
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu-Ho Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
36
|
Popov AG, Viviani VR, Skumial P, Jefferson TL, Salman SG, Baxter HH, Hull KL. Copper-Catalyzed Three-Component 1,5-Carboamination of Vinylcyclopropanes. Org Lett 2024. [PMID: 38810616 DOI: 10.1021/acs.orglett.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The 1,5-copper-catalyzed carboamination of vinylcyclopropanes is presented. A carbon-centered radical, formed upon reduction of an alkyl halide by Cu(I), adds across the alkene of a vinylcyclopropane, triggering ring opening to generate a benzylic radical, which, finally, undergoes copper-mediated amination to afford a homoallylic amine. The reaction occurs with outstanding regio- and good to very good diastereoselectivities. The scope of the reaction is demonstrated with respect to all three components: alkyl halide, vinylcyclopropane, and amine nucleophile. A total of 38 examples are presented with an average yield of 60%.
Collapse
Affiliation(s)
- Andrei G Popov
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Vincent R Viviani
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Piotr Skumial
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Theodore L Jefferson
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Samer G Salman
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Henry H Baxter
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Liu C, Ma Y, Lian R, Chen J, Yang M, Cheng J. Regulation of Photogenerated Redox Species through High Crystallinity Carbon Nitride for Improved C-S Coupling Reactions. CHEMSUSCHEM 2024; 17:e202301882. [PMID: 38242851 DOI: 10.1002/cssc.202301882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
A novel and efficient approach for the synthesis of α, β-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Yukun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Ronghong Lian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiayin Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
38
|
Ren J, Sun Z, Zhao S, Huang J, Wang Y, Zhang C, Huang J, Zhang C, Zhang R, Zhang Z, Ji X, Shao Z. Enantioselective synthesis of chiral α,α-dialkyl indoles and related azoles by cobalt-catalyzed hydroalkylation and regioselectivity switch. Nat Commun 2024; 15:3783. [PMID: 38710722 DOI: 10.1038/s41467-024-48175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
General, catalytic and enantioselective construction of chiral α,α-dialkyl indoles represents an important yet challenging objective to be developed. Herein we describe a cobalt catalyzed enantioselective anti-Markovnikov alkene hydroalkylation via the remote stereocontrol for the synthesis of α,α-dialkyl indoles and other N-heterocycles. This asymmetric C(sp3)-C(sp3) coupling features high flexibility in introducing a diverse set of alkyl groups at the α-position of chiral N-heterocycles. The utility of this methodology has been demonstrated by late-stage functionalization of drug molecules, asymmetric synthesis of bioactive molecules, natural products and functional materials, and identification of a class of molecules exhibiting anti-apoptosis activities in UVB-irradiated HaCaT cells. Ligands play a vital role in controlling the reaction regioselectivity. Changing the ligand from bi-dentate L6 to tridentate L12 enables CoH-catalyzed Markovnikov hydroalkylation. Mechanistic studies disclose that the anti-Markovnikov hydroalkylation involves a migratory insertion process while the Markovnikov hydroalkylation involves a MHAT process.
Collapse
Affiliation(s)
- Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- Southwest United Graduate School, 650092, Kunming, China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinyuan Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Yukun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Cheng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinhai Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chenhao Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ruipu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 430079, Wuhan, China.
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- School of Pharmacy, Yunnan University, 650500, Kunming, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- Southwest United Graduate School, 650092, Kunming, China.
| |
Collapse
|
39
|
Liu DP, Zhang XS, Liu S, Hu XG. Dehydroxylative radical N-glycosylation of heterocycles with 1-hydroxycarbohydrates enabled by copper metallaphotoredox catalysis. Nat Commun 2024; 15:3401. [PMID: 38649350 PMCID: PMC11035684 DOI: 10.1038/s41467-024-47711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
N-Glycosylated heterocycles play important roles in biological systems and drug development. The synthesis of these compounds heavily relies on ionic N-glycosylation, which is usually constrained by factors such as labile glycosyl donors, precious metal catalysts, and stringent conditions. Herein, we report a dehydroxylative radical method for synthesizing N-glycosides by leveraging copper metallaphotoredox catalysis, in which stable and readily available 1-hydroxy carbohydrates are activated for direct N-glycosylation. Our method employs inexpensive photo- and copper- catalysts and can tolerate some extent of water. The reaction exhibits a broad substrate scope, encompassing 76 examples, and demonstrates high stereoselectivity, favoring 1,2-trans selectivity for furanoses and α-selectivity for pyranoses. It also exhibits high site-selectivity for substrates containing multiple N-atoms. The synthetic utility is showcased through the late-stage functionalization of bioactive compounds and pharmaceuticals like Olaparib, Axitinib, and Metaxalone. Mechanistic studies prove the presence of glycosyl radicals and the importance of copper metallaphotoredox catalysis.
Collapse
Affiliation(s)
- Da-Peng Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiao-Sen Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
40
|
Dang QQ, Liu XN, Li H, Wen ZK. Desulfurative Functionalization of β-Acyl Allylic Sulfides with N-H Free Indoles Highly Regioselective at C3 and N1 Positions: Rapid Access to α-Branched Enones. J Org Chem 2024; 89:5200-5206. [PMID: 38500359 DOI: 10.1021/acs.joc.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A regiodivergent allylation of 1H-indoles highly selectively at the C3 and N1 positions with β-acyl allylic sulfides through desulfurative C-C/C-N bond-forming reactions has been developed under mild conditions. Notably, the remarkable site-selective switch can be achieved by a delicate choice of solvents and bases. This cost-efficient method displays a broad substrate scope, good functional compatibility, and excellent site-selectivity, thus offering a divergent synthesis of indole substituted α-branched enones, which possess diverse potential opportunities for further applications and derivatization.
Collapse
Affiliation(s)
- Qin-Qin Dang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xue-Ni Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhen-Kang Wen
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
41
|
Du XY, Fang JH, Chen JJ, Shen B, Liu WL, Zhang JY, Ye XM, Yang NY, Gu QS, Li ZL, Yu P, Liu XY. Copper-Catalyzed Enantioconvergent Radical N-Alkylation of Diverse (Hetero)aromatic Amines. J Am Chem Soc 2024; 146:9444-9454. [PMID: 38513075 DOI: 10.1021/jacs.4c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.
Collapse
Affiliation(s)
- Xuan-Yi Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Heng Fang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Jun Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boming Shen
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei-Long Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Yong Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Man Ye
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
42
|
Cai YM, Liu XT, Xu LL, Shang M. Electrochemical Ni-Catalyzed Decarboxylative C(sp 3 )-N Cross-Electrophile Coupling. Angew Chem Int Ed Engl 2024; 63:e202315222. [PMID: 38299697 DOI: 10.1002/anie.202315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
A new electrochemical transformation is presented that enables chemists to couple simple alkyl carboxylic acid derivatives with an electrophilic amine reagent to construct C(sp3 )-N bond. The success of this reaction hinges on the merging of cooperative electrochemical reduction with nickel catalysis. The chemistry exhibits a high degree of practicality, showcasing its wide applicability with 1°, 2°, 3° carboxylic acids and remarkable compatibility with diverse functional groups, even in the realm of late-stage functionalization. Furthermore, extensive mechanistic studies have unveiled the engagement of alkyl radicals and iminyl radicals; and elucidated the multifaceted roles played by i Pr2 O, Ni catalyst, and electricity.
Collapse
Affiliation(s)
- Yue-Ming Cai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Ting Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin-Lin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
43
|
Zhang W, Tian Y, Liu XD, Luan C, Liu JR, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioselective C(sp 3 )-SCF 3 Coupling of Carbon-Centered Benzyl Radicals with (Me 4 N)SCF 3. Angew Chem Int Ed Engl 2024; 63:e202319850. [PMID: 38273811 DOI: 10.1002/anie.202319850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Dong Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Luan
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji-Ren Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
44
|
Chen YH, Duan M, Lin SL, Liu YW, Cheng JK, Xiang SH, Yu P, Houk KN, Tan B. Organocatalytic aromatization-promoted umpolung reaction of imines. Nat Chem 2024; 16:408-416. [PMID: 38062248 DOI: 10.1038/s41557-023-01384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/24/2023] [Indexed: 03/07/2024]
Abstract
The umpolung functionalization of imines bears vast synthetic potential, but polarity inversion is less efficient compared with the carbonyl counterparts. Strong nucleophiles are often required to react with the N-electrophiles without catalytic and stereochemical control. Here we show an effective strategy to realize umpolung of imines promoted by organocatalytic aromatization. The attachment of strongly electron-withdrawing groups to imines could enhance the umpolung reactivity by both electronegativity and aromatic character, enabling the direct amination of (hetero)arenes with good efficiencies and stereoselectivities. Additionally, the application of chiral Brønsted acid catalyst furnishes (hetero)aryl C-N atropisomers or enantioenriched aliphatic amines via dearomative amination from N-electrophilic aromatic precursors. Control experiments and density functional theory calculations suggest an ionic mechanism for the umpolung reaction of imines. This disconnection expands the options to forge C-N bonds stereoselectively on (hetero)arenes, which represents an important synthetic pursuit, especially in medicinal chemistry.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Si-Li Lin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Yu-Wei Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Jun Kee Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
45
|
Liu H, Sun G, Zhang Y, Li Y, Dong B, Gao B. Acid-Catalyzed Highly Enantioselective Synthesis of α-Amino Acid Derivatives from Sulfinamides and Alkynes. Org Lett 2024; 26:1601-1606. [PMID: 38373161 DOI: 10.1021/acs.orglett.3c04158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
An enantioselective difunctionalization of activated alkynes using chiral sulfinamide reagents is developed. It is an atom and chirality transfer process that allows for the modular synthesis of optically active α-amino acid derivatives under mild conditions. The reaction proceeds through an acid-catalyzed [2,3]-sigmatropic rearrangement mechanism with predictable stereochemistry and a broad scope.
Collapse
Affiliation(s)
- Herui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Guangwu Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yuchao Zhang
- Institute of Basic Medicine and Cancer (IBMC) Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yongxi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Baobiao Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Bing Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
46
|
Wu X, Xia H, Gao C, Luan B, Wu L, Zhang C, Yang D, Hou L, Liu N, Xia T, Li H, Qu J, Chen Y. Modular α-tertiary amino ester synthesis through cobalt-catalysed asymmetric aza-Barbier reaction. Nat Chem 2024; 16:398-407. [PMID: 38082178 DOI: 10.1038/s41557-023-01378-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/20/2023] [Indexed: 03/07/2024]
Abstract
Unnatural chiral α-tertiary amino acids containing two different carbon-based substituents at the α-carbon centre are widespread in biologically active molecules. This sterically rigid scaffold is becoming a growing research interest in drug discovery. However, a robust protocol for chiral α-tertiary amino acid synthesis remains scarce due to the challenge of stereoselectively constructing sterically encumbered tetrasubstituted stereogenic carbon centres. Herein we report a cobalt-catalysed enantioselective aza-Barbier reaction of ketimines with various unactivated alkyl halides, including alkyl iodides, alkyl bromides and alkyl chlorides, enabling the formation of chiral α-tertiary amino esters with a high level of enantioselectivity and excellent functional group tolerance. Primary, secondary and tertiary organoelectrophiles are all tolerated in this asymmetric reductive addition protocol, which provides a complementary method for the well-exploited enantioselective nucleophilic addition with moisture- and air-sensitive organometallic reagents. Moreover, the three-component transformation of α-ketoester, amine and alkyl halide represents a formal asymmetric deoxygenative alkylamination of the carbonyl group.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Hanyu Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenyang Gao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Liting Hou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Haiyan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
47
|
Tian Y, Li XT, Liu JR, Cheng J, Gao A, Yang NY, Li Z, Guo KX, Zhang W, Wen HT, Li ZL, Gu QS, Hong X, Liu XY. A general copper-catalysed enantioconvergent C(sp 3)-S cross-coupling via biomimetic radical homolytic substitution. Nat Chem 2024; 16:466-475. [PMID: 38057367 DOI: 10.1038/s41557-023-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.
Collapse
Affiliation(s)
- Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Xi-Tao Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jian Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhuang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kai-Xin Guo
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wei Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Han-Tao Wen
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
48
|
Song G, Song J, Li Q, Nong DZ, Dong J, Li G, Fan J, Wang C, Xiao J, Xue D. Werner Salt as Nickel and Ammonia Source for Photochemical Synthesis of Primary Aryl Amines. Angew Chem Int Ed Engl 2024; 63:e202314355. [PMID: 37914669 DOI: 10.1002/anie.202314355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Cheap, stable and easy-to-handle Werner ammine salts have been known for more than a century; but they have been rarely used in organic synthesis. Herein, we report that the Werner hexammine complex [Ni(NH3 )6 ]Cl2 can be used as both a nitrogen and a catalytic nickel source that allow for the efficient amination of aryl chlorides in the presence of a catalytic amount of bipyridine ligand under the irradiation of 390-395 nm light without the need of any additional catalysts. More than 80 aryl chlorides, including more than 20 drug molecules, were aminated, demonstrating the practicality and generality of this method in synthetic chemistry. A slow NH3 release mechanism is in operation, obviating the problem of catalyst poisoning. Still interestingly, we show that the Werner salt can be easily recovered and reused, solving the problem of difficult recovery of transition metal nickel catalysts. The protocol thus provides an efficient new strategy for the synthesis of primary aryl amines.
Collapse
Affiliation(s)
- Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Jiameng Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Ding-Zhan Nong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| |
Collapse
|
49
|
Ma B, Gong Y, Long Y, Chen Z, Yuan Y, Yang J. Synthesis of Acylhydroquinones through Visible-Light-Mediated Hydroacylation of Quinones with α-Keto Acids. J Org Chem 2024; 89:1669-1680. [PMID: 38204383 DOI: 10.1021/acs.joc.3c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A mild and eco-friendly visible-light-induced protocol for the hydroacylation of quinones with α-keto acids has been developed. In the absence of any catalyst or additive, the decarboxylative hydroacylation proceeded smoothly under visible-light irradiation at room temperature. A wide range of quinones and α-keto acids were well-tolerated and afforded hydroacylation products up to 88% isolated yield. The reaction can be scaled up, and the induced groups are useful for further synthetic applications. Preliminarily, mechanistic studies indicated that photoactive quinones absorb visible light to facilitate the transformation.
Collapse
Affiliation(s)
- Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yawen Gong
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun'e Long
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhiyong Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
50
|
Li Z, Wang B, Zhang C, Lo WY, Yang L, Sun J. Catalytic Enantioselective Nucleophilic α-Chlorination of Ketones with NaCl. J Am Chem Soc 2024; 146:2779-2788. [PMID: 38238317 DOI: 10.1021/jacs.3c12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Catalytic enantioselective α-chlorination of ketones is a highly desirable process. Different from the conventional approaches that employ corrosive electrophilic chlorination reagents, the process disclosed here employs nucleophilic chloride, aqueous NaCl solution, and even seawater, as green inexpensive chlorine sources. This mechanistically distinct and electronically opposite approach provides facile access to diverse highly enantioenriched acyclic α-chloro ketones that are less straightforward by conventional approaches. With a chiral thiourea catalyst, a range of racemic α-keto sulfonium salts underwent enantioconvergent carbon-chlorine bond formation with high efficiency and excellent enantioselectivity under mild conditions. The sulfonium motif plays a crucial triple role by permitting smooth dynamic kinetic resolution to take place via a chiral anion binding mechanism in a well-designed phase-transfer system. This protocol represents a new general platform for the asymmetric nucleophilic α-functionalization of carbonyl compounds.
Collapse
Affiliation(s)
- Zhiyang Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing First Rd, Shenzhen 518057, China
| | - Baocheng Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Wai Yam Lo
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Liangliang Yang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing First Rd, Shenzhen 518057, China
| |
Collapse
|