1
|
Fan Q, Sun B, Chao J. Advancements in Engineering Tetrahedral Framework Nucleic Acids for Biomedical Innovations. SMALL METHODS 2024:e2401360. [PMID: 39487613 DOI: 10.1002/smtd.202401360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Tetrahedral framework nucleic acids (tFNAs) are renowned for their controllable self-assembly, exceptional programmability, and excellent biocompatibility, which have led to their widespread application in the biomedical field. Beyond these features, tFNAs demonstrate unique chemical and biological properties including high cellular uptake efficiency, structural bio-stability, and tissue permeability, which are derived from their distinctive 3D structure. To date, an extensive range of tFNA-based nanostructures are intelligently designed and developed for various biomedical applications such as drug delivery, gene therapy, biosensing, and tissue engineering, among other emerging fields. In addition to their role in drug delivery systems, tFNAs also possess intrinsic properties that render them highly effective as therapeutic agents in the treatment of complex diseases, including arthritis, neurodegenerative disorders, and cardiovascular diseases. This dual functionality significantly enhances the utility of tFNAs in biomedical research, presenting valuable opportunities for the development of next-generation medical technologies across diverse therapeutic and diagnostic platforms. Consequently, this review comprehensively introduces the latest advancements of tFNAs in the biomedical field, with a focus on their benefits and applications as drug delivery nanoplatforms, and their inherent capabilities as therapeutic agents. Furthermore, the current limitations, challenges, and future perspectives of tFNAs are explored.
Collapse
Affiliation(s)
- Qin Fan
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Bicheng Sun
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing, 210000, China
| |
Collapse
|
2
|
Sample M, Liu H, Diep T, Matthies M, Šulc P. Hairygami: Analysis of DNA Nanostructures' Conformational Change Driven by Functionalizable Overhangs. ACS NANO 2024; 18:30004-30016. [PMID: 39421963 DOI: 10.1021/acsnano.4c10796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
DNA origami is a widely used method to construct nanostructures by self-assembling designed DNA strands. These structures are often used as "pegboards" for templated assembly of proteins, gold nanoparticles, aptamers, and other molecules, with applications ranging from therapeutics and diagnostics to plasmonics and photonics. Imaging these structures using atomic force microscopy (AFM) or transmission electron microscope (TEM) does not capture their full conformation ensemble as they only show their shape flattened on a surface. However, certain conformations of the nanostructure can position guest molecules into distances unaccounted for in their intended design, thus leading to spurious interactions between guest molecules that are designed to be separated. Here, we use molecular dynamics simulations to capture a conformational ensemble of two-dimensional (2D) DNA origami tiles and show that introducing single-stranded overhangs, which are typically used for functionalization of the origami with guest molecules, induces a curvature of the tile structure in the bulk. We show that the shape deformation is of entropic origin, with implications for the design of robust DNA origami breadboards as well as a potential approach to modulate structure shape by introducing overhangs. We then verify experimentally that the DNA overhangs introduce curvature into the DNA origami tiles under divalent as well as monovalent salt buffer conditions. We further experimentally verify that DNA origami functionalized with attached proteins also experiences such induced curvature. We provide the developed simulation code implementing the enhanced sampling to characterize the conformational space of DNA origami as open source software.
Collapse
Affiliation(s)
- Matthew Sample
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Liu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
| | - Thong Diep
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
| | - Michael Matthies
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Department of Bioscience, TU Munich, School of Natural Sciences, Garching 85748, Germany
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Bioscience, TU Munich, School of Natural Sciences, Garching 85748, Germany
| |
Collapse
|
3
|
Zhang C, Wu R, Sun F, Lin Y, Liang Y, Teng J, Liu N, Ouyang Q, Qian L, Yan H. Parallel molecular data storage by printing epigenetic bits on DNA. Nature 2024; 634:824-832. [PMID: 39443776 PMCID: PMC11499255 DOI: 10.1038/s41586-024-08040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
DNA storage has shown potential to transcend current silicon-based data storage technologies in storage density, longevity and energy consumption1-3. However, writing large-scale data directly into DNA sequences by de novo synthesis remains uneconomical in time and cost4. We present an alternative, parallel strategy that enables the writing of arbitrary data on DNA using premade nucleic acids. Through self-assembly guided enzymatic methylation, epigenetic modifications, as information bits, can be introduced precisely onto universal DNA templates to enact molecular movable-type printing. By programming with a finite set of 700 DNA movable types and five templates, we achieved the synthesis-free writing of approximately 275,000 bits on an automated platform with 350 bits written per reaction. The data encoded in complex epigenetic patterns were retrieved high-throughput by nanopore sequencing, and algorithms were developed to finely resolve 240 modification patterns per sequencing reaction. With the epigenetic information bits framework, distributed and bespoke DNA storage was implemented by 60 volunteers lacking professional biolab experience. Our framework presents a new modality of DNA data storage that is parallel, programmable, stable and scalable. Such an unconventional modality opens up avenues towards practical data storage and dual-mode data functions in biomolecular systems.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China.
| | - Ranfeng Wu
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
| | - Fajia Sun
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Yisheng Lin
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
| | - Yuan Liang
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Jiongjiong Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, China.
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing, China.
| | - Hao Yan
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Yang L, Li Q, Ge Z, Fan C, Huang W. DNA Mechanics: From Single Stranded to Self-Assembled. NANO LETTERS 2024; 24:11768-11778. [PMID: 39259830 DOI: 10.1021/acs.nanolett.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
DNA encodes genetic information and forms various structural conformations with distinct physical, chemical, and biological properties. Over the past 30 years, advancements in force manipulation technology have enabled the precise manipulation of DNA at nanometer and piconewton resolutions. This mini-review discusses these force manipulation techniques for exploring the mechanical properties of DNA at the single-molecule level. We summarize the distinct mechanical features of different DNA forms while considering the impact of the force geometry. We highlight the role of DNA mechanics in origami structures that serve as self-assembled building blocks or mechanically responsive/active nanomachines. Accordingly, we emphasize how DNA mechanics are integral to the functionality of origami structures for achieving mechanical capabilities. Finally, we provide an outlook on the intrinsic mechanical properties of DNA, from single stranded to self-assembled higher-dimensional structures. This understanding is expected to inspire new design strategies in DNA mechanics, paving the way for innovative applications and technologies.
Collapse
Affiliation(s)
- Linfeng Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenmao Huang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Javornik U, Pérez-Romero A, López-Chamorro C, Smith RM, Dobado JA, Palacios O, Bera MK, Nyman M, Plavec J, Galindo MA. Unveiling the solution structure of a DNA duplex with continuous silver-modified Watson-Crick base pairs. Nat Commun 2024; 15:7763. [PMID: 39237564 PMCID: PMC11377744 DOI: 10.1038/s41467-024-51876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
The challenge of transforming organized DNA structures into their metallized counterparts persists in the scientific field. In this context, utilizing DNA molecules modified with 7-deazapurine, provides a transformative solution. In this study, we present the solution structure of a DNA duplex that can be transformed into its metallized equivalent while retaining the natural base pairing arrangement through the creation of silver-modified Watson-Crick base pairs. Unlike previously documented X-ray structures, our research demonstrates the feasibility of preserving the intrinsic DNA self-assembly while incorporating AgI into the double helix, illustrating that the binding of silver does not disrupt the canonical base-pairing organization. Moreover, in our case, the uninterrupted AgI chain deviates from forming conventional straight linear chains; instead, it adheres to a helical arrangement dictated by the underlying DNA structure. This research challenges conventional assumptions and opens the door to precisely design structures based on the organization of highly stable Ag-DNA assemblies.
Collapse
Affiliation(s)
- Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Antonio Pérez-Romero
- Departamento de Química Inorgánica, Universidad de Granada, 18001, Granada, Spain
| | | | - Rachelle M Smith
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - José A Dobado
- Departamento de Química Orgánica, Universidad de Granada, 18001, Granada, Spain
| | - Oscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA.
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| | - Miguel A Galindo
- Departamento de Química Inorgánica, Universidad de Granada, 18001, Granada, Spain.
| |
Collapse
|
6
|
Islas P, Platnich CM, Gidi Y, Karimi R, Ginot L, Saliba D, Luo X, Cosa G, Sleiman HF. Automated Synthesis of DNA Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403477. [PMID: 39049795 DOI: 10.1002/adma.202403477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/10/2024] [Indexed: 07/27/2024]
Abstract
DNA nanotechnology has revolutionized the ability to position matter at the nanoscale, but the preparation of DNA-based architectures remains laborious. To facilitate the formation of custom structures, a fully automated method is reported to produce sequence- and size-defined DNA nanotubes. By programming the sequential addition of desired building blocks, rigid DX-tile-based DNA nanotubes and flexible wireframe DNA structures are attained, where the total number of possible constructs increases as a power function of the number of different units available. Using single-molecule fluorescence imaging, the kinetics and yield of each synthetic step can be quantitatively determined, revealing differences in self-assembly dynamics as the nanotube is built up from the solid support and providing new insights into DNA self-assembly. The exploitation of automation for both assembly and analysis (through an ad-hoc developed K-means clustering algorithm) facilitates a workflow wherein the synthesis parameters may be iteratively improved upon, demonstrating how a single-molecule "assembly-analysis-optimization" sequence can be used to generate complex, noncovalent materials in good yield. The presented synthetic strategy is generalizable, making use of equipment already available in most standard laboratories and represents the first fully automated supramolecular assembly on a solid support.
Collapse
Affiliation(s)
- Patricia Islas
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Yasser Gidi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Ryan Karimi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Lorianne Ginot
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Daniel Saliba
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
7
|
Ofoegbu PC, Knappe GA, Romanov A, Draper BE, Bathe M, Jarrold MF. Charge Detection Mass Spectrometry Enables Molecular Characterization of Nucleic Acid Nanoparticles. ACS NANO 2024; 18:23301-23309. [PMID: 39151088 DOI: 10.1021/acsnano.4c06313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Nucleic acid nanoparticles (NANPs) are increasingly used in preclinical investigations as delivery vectors. Tools that can characterize assembly and assess quality will accelerate their development and clinical translation. Standard techniques used to characterize NANPs, like gel electrophoresis, lack the resolution for precise characterization. Here, we introduce the use of charge detection mass spectrometry (CD-MS) to characterize these materials. Using this technique, we determined the mass of NANPs varying in size, shape, and molecular mass, NANPs varying in production quality due to formulations lacking component oligonucleotides, and NANPs functionalized with protein and nucleic acid-based secondary molecules. Based on these demonstrations, CD-MS is a promising tool to precisely characterize NANPs, enabling more precise assessments of the manufacturing and processing of these materials.
Collapse
Affiliation(s)
- Polycarp C Ofoegbu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benjamin E Draper
- Megadalton Solutions Inc, 3750 E Bluebird Ln, Bloomington, Indiana 47401, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Young OJ, Dembele H, Rajwar A, Kwon IC, Ryu JH, Shih WM, Zeng YC. Cargo quantification of functionalized DNA origami for therapeutic application. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609963. [PMID: 39253502 PMCID: PMC11383041 DOI: 10.1101/2024.08.27.609963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. Our study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. This work may serve as a valuable resource for groups researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.
Collapse
Affiliation(s)
- Olivia J. Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hawa Dembele
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anjali Rajwar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - William M. Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang C. Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
10
|
Lee JY, Kim Y, Kim DN. Predicting the effect of binding molecules on the shape and mechanical properties of structured DNA assemblies. Nat Commun 2024; 15:6446. [PMID: 39085236 PMCID: PMC11291742 DOI: 10.1038/s41467-024-50871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Chemo-mechanical deformation of structured DNA assemblies driven by DNA-binding ligands has offered promising avenues for biological and therapeutic applications. However, it remains elusive how to effectively model and predict their effects on the deformation and mechanical properties of DNA structures. Here, we present a computational framework for simulating chemo-mechanical change of structured DNA assemblies. We particularly quantify the effects of ethidium bromide (EtBr) intercalation on the geometry and mechanical properties of DNA base-pairs through molecular dynamics simulations and integrated them into finite-element-based structural analysis to predict the shape and properties of DNA objects. The proposed model captures various structural changes induced by EtBr-binding such as shape variation, flexibility modulation, and supercoiling instability. It enables a rational design of structured DNA assemblies with tunable shapes and mechanical properties by binding molecules.
Collapse
Affiliation(s)
- Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Yanggyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea.
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea.
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea.
| |
Collapse
|
11
|
Mogheiseh M, Hasanzadeh Ghasemi R. Design and simulation of a wireframe DNA origami nanoactuator. J Chem Phys 2024; 161:045101. [PMID: 39037143 DOI: 10.1063/5.0214313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024] Open
Abstract
This paper explores the use of deoxyribonucleic acid (DNA) origami structures as nanorobot components. Investigating the functional properties of DNA origami structures can facilitate the fabrication of DNA origami-based nanorobots. The wireframe structure stands out as one of the most interesting DNA origami structures. Hence, the present study aims to employ these structures to create DNA origami nanoactuators. The research delves into the design of DNA origami structures with the aim of opening under specific temperature conditions. Short DNA strands (staples) are one of the crucial parts of DNA origami structures, and the appropriate design of these strands can lead to the creation of structures with different properties. Thus, the components of the DNA origami nanoactuator are tailored to enable intentional opening at specific temperatures while maintaining stability at lower temperatures. This structural modification showcases the functional property of the DNA origami structure. The engineered DNA origami nanoactuator holds potential applications in medicine. By carrying drugs under specific temperature conditions and releasing them under different temperature conditions, it can serve as a platform for smart drug delivery purposes.
Collapse
Affiliation(s)
- Maryam Mogheiseh
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
12
|
Liu Y, Wang R, Chen Q, Chang Y, Chen Q, Fukumoto K, Wang B, Yu J, Luo C, Ma J, Chen X, Murayama Y, Umeda K, Kodera N, Harada Y, Sekine SI, Li J, Tadakuma H. Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices. NANO LETTERS 2024; 24:8410-8417. [PMID: 38920331 PMCID: PMC11249008 DOI: 10.1021/acs.nanolett.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
Collapse
Affiliation(s)
- Yuxiang Liu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Ruixuan Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qimingxing Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Yan Chang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qi Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Kodai Fukumoto
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Bingxun Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jianchen Yu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Changfeng Luo
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jiayuan Ma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Zhejiang
Provincial Key Laboratory of Pancreatic Disease Hangzhou, Zhejiang University School of Medicine First Affiliated
Hospital, Zhejiang 310009, People’s Republic
of China
| | - Yuko Murayama
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kenichi Umeda
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shun-ichi Sekine
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Jianfeng Li
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| | - Hisashi Tadakuma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
13
|
Elonen A, Wimbes L, Mohammed A, Orponen P. DNAforge: a design tool for nucleic acid wireframe nanostructures. Nucleic Acids Res 2024; 52:W13-W18. [PMID: 38747339 PMCID: PMC11223811 DOI: 10.1093/nar/gkae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 07/06/2024] Open
Abstract
DNAforge is an online tool that provides a unified, user-friendly interface to several recent design methods for DNA and RNA wireframe nanostructures, with the possibility of integrating additional methods into the same framework. Currently, DNAforge supports three design methods for DNA nanostructures and two for RNA nanostructures. The tool enables the design, visualisation and sequence generation for highly complex wireframe nanostructures with a simple fully automated process. DNAforge is freely accessible at https://dnaforge.org/.
Collapse
Affiliation(s)
- Antti Elonen
- Department of Computer Science, Aalto University, Finland
| | - Leon Wimbes
- Department of Computer Science, Aalto University, Finland
- Department of Mathematics and Computer Science, Philipps University of Marburg, Germany
| | | | - Pekka Orponen
- Department of Computer Science, Aalto University, Finland
| |
Collapse
|
14
|
Wei X, Chen C, Popov AV, Bathe M, Hernandez R. Binding Site Programmable Self-Assembly of 3D Hierarchical DNA Origami Nanostructures. J Phys Chem A 2024; 128:4999-5008. [PMID: 38875485 DOI: 10.1021/acs.jpca.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
DNA nanotechnology has broad applications in biomedical drug delivery and programmable materials. Characterization of the self-assembly of DNA origami and quantum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchical nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multimeric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of different multimeric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the αγ positions (of the pentagon) make larger nanostructures than those with binding sites at the αβ positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis.
Collapse
Affiliation(s)
- Xingfei Wei
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chi Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander V Popov
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Wu H, Zhang T, Qin Y, Xia X, Bai T, Gu H, Wei B. Expanding DNA Origami Design Freedom with De Novo Synthesized Scaffolds. J Am Chem Soc 2024; 146:16076-16084. [PMID: 38803270 DOI: 10.1021/jacs.4c03148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The construction of DNA origami nanostructures is heavily dependent on the folding of the scaffold strand, which is typically a single-stranded DNA genome extracted from a bacteriophage (M13). Custom scaffolds can be prepared in a number of methods, but they are not widely accessible to a broad user base in the DNA nanotechnology community. Here, we explored new design and construction possibilities with custom scaffolds prepared in our cost- and time-efficient production pipeline. According to the pipeline, we de novo produced a variety of scaffolds of specified local and global sequence characteristics and consequent origami constructs of modular arrangement in morphologies and functionalities. Taking advantage of this strategy of template-free scaffold production, we also designed and produced three-letter-coded scaffolds that can fold into designated morphologies rapidly at room temperature. The expanded design and construction freedom immediately brings in many new research opportunities and invites many more on the horizon.
Collapse
Affiliation(s)
- Hongrui Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yan Qin
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xinwei Xia
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201108 ,China
| | - Tanxi Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Hongzhou Gu
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201108 ,China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Xie X, Ji M, Yan X, Yu Y, Wang Y, Ma N, Xing H, Tian Y. Layer-Controllable "2.5D" DNA Origami Crystals Synthesized by a Hierarchical Assembly Strategy. Angew Chem Int Ed Engl 2024; 63:e202402312. [PMID: 38578652 DOI: 10.1002/anie.202402312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The finite periodic arrangement of functional nanomaterials on the two-dimensional scale enables the integration and enhancement of individual properties, making them an important research topic in the field of tuneable nanodevices. Although layer-controllable lattices such as graphene have been successfully synthesized, achieving similar control over colloidal nanoparticles remains a challenge. DNA origami technology has achieved remarkable breakthroughs in programmed nanoparticle assembly. Based on this technology, we proposed a hierarchical assembly strategy to construct a universal DNA origami platform with customized layer properties, which we called 2.5-dimensional (2.5D) DNA origami crystals. Methodologically, this strategy divides the assembly procedure into two steps: 1) array synthesis, and 2) lattice synthesis, which means that the layer properties, including layer number, interlayer distance, and surface morphology, can be flexibly customized based on the independent designs in each step. In practice, these synthesized 2.5D crystals not only pioneer the expansion of the DNA origami crystal library to a wider range of dimensions, but also highlight the technological potential for templating 2.5D colloidal nanomaterial lattices.
Collapse
Affiliation(s)
- Xiaolin Xie
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Min Ji
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xuehui Yan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yifan Yu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yong Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ningning Ma
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Silva-Santos AR, Sousa Rosa S, Marques MPC, Azevedo AM, Prazeres DMF. Quantification of ssDNA Scaffold Production by Ion-Pair Reverse Phase Chromatography. ACS OMEGA 2024; 9:22619-22624. [PMID: 38826531 PMCID: PMC11137683 DOI: 10.1021/acsomega.3c10533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 06/04/2024]
Abstract
DNA origami is an emerging technology that can be used as a nanoscale platform in numerous applications ranging from drug delivery systems to biosensors. The DNA nanostructures are assembled from large single-stranded DNA (ssDNA) scaffolds, ranging from hundreds to thousands of nucleotides and from short staple strands. Scaffolds are usually obtained by asymmetric PCR (aPCR) or Escherichia coli infection/transformation with phages or phagemids. Scaffold quantification is typically based on agarose gel electrophoresis densitometry for molecules obtained by aPCR, or by UV absorbance, in the case of scaffolds obtained by infection or transformation. Although these methods are well-established and easy-to-apply, the results obtained are often inaccurate due to the lack of selectivity and sensitivity in the presence of impurities. Herein, we present an HPLC method based on ion-pair reversed-phase (IP-RP) chromatography to quantify DNA scaffolds. Using IP-RP chromatography, ssDNA products (449 and 1000 nt) prepared by aPCR were separated from impurities and from the double stranded (ds) DNA byproduct. Additionally, both ss and dsDNA were quantified with high accuracy. The method was used to guide the optimization of the production of ssDNA by aPCR, which targeted the maximization of the ratio of ssDNA to dsDNA obtained. Moreover, ssDNA produced from phage infection of E. coli cells was also quantified by IP-RP using commercial ssDNA from the M13mp18 phage as a standard.
Collapse
Affiliation(s)
- A. Rita Silva-Santos
- iBB—Institute for Bioengineering
and Biosciences, Department of Bioengineering, Instituto Superior
Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sara Sousa Rosa
- iBB—Institute for Bioengineering
and Biosciences, Department of Bioengineering, Instituto Superior
Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marco P. C. Marques
- Department
of Biochemical Engineering, University College
London, Bernard Katz Building, Gordon Street, London WC1H 0AH, U.K.
| | - Ana M. Azevedo
- iBB—Institute for Bioengineering
and Biosciences, Department of Bioengineering, Instituto Superior
Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Duarte Miguel F. Prazeres
- iBB—Institute for Bioengineering
and Biosciences, Department of Bioengineering, Instituto Superior
Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
18
|
Cecconello A, Cencini A, Rilievo G, Tonolo F, Litti L, Vianello F, Willner I, Magro M. Chiroplasmonic DNA Scaffolded "Fusilli" Structures. NANO LETTERS 2024; 24:5944-5951. [PMID: 38588536 DOI: 10.1021/acs.nanolett.3c04943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
DNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl2. Atomic force microscopy (AFM) characterization showed several micrometer long tubular structures that were used as templates for the positioning of plasmonic nanoparticles (NPs) along a three-dimensional helical path using DNA tethers. As imaged by high-resolution scanning transmission electron microscopy (HR-STEM) and modeled by theoretical calculations, the NPs distributed into a "fusilli" fashion (i.e., a helical pasta shape), displaying chiroptical activity as revealed by a bisignated CD absorption, centered at the plasmon resonance wavelength. The present structures contribute to enrich the ever-developing arena of chiroplasmonic DNA-based nanomaterials and demonstrate that large assemblies are attainable for their future application to develop metamaterials.
Collapse
Affiliation(s)
- Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, via marzolo 1, 35131 Padova, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
19
|
Sharma A, Zhu Y, Spangler EJ, Hoang TB, Laradji M. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles. ACS NANO 2024; 18:12957-12969. [PMID: 38720633 DOI: 10.1021/acsnano.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane's curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs' self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics.
Collapse
Affiliation(s)
- Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Thang B Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
20
|
Ge W, Wang Y, Xiao SJ. Three-Point-Star Deoxyribonucleic Acid Tiles with the Core Arm Length at Three Half-Turns for Two-Dimensional Archimedean Tilings and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10326-10333. [PMID: 38686650 DOI: 10.1021/acs.langmuir.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
2D Archimedean tiling and complex tessellation patterns assembled from soft materials including modular DNA tiles have attracted great interest because of their specific structures and potential applications in nanofabrication, nanoelectronics, nanophotonics, biomedical sensing, drug delivery, therapeutics, etc. Traditional three- and four-point-star DNA tiles with the core arm length at two half-turns (specified as three- and four-point-star-E previously and abbreviated as 3PSE and 4PSE tiles here) have been applied to assemble intricate tessellations through tuning the size of inserted nT (n = 1-7, T is thymine) loops on helper strands at the tile center. Following our recent findings using a new type of four-point-star tiles with the core arm length at three half-turns (specified as four-point-star-O previously and abbreviated as 4PSO tiles here) to assemble DNA tubes and flat 2D arrays, we report here the cross-hybridization weaving architectures at the tile center to construct three new 3PSO tiles with circular DNA oligonucleotides of 96-nt (nucleotides) serving as the scaffolds, further the monotonous and combinatory E- and O-tilings on one type of 3PSO tiles to create 2D Archimedean tiling patterns (6.6.6) and (4.8.8), and finally, the combination of 3PSO with 4PSO as well as 2PSO tiles to tile into complex tessellation patterns. The easy realization of regular and intricate DNA tessellations with 2-4PSO tiles not only richens the fundamental DNA modules and complex DNA nanostructures in types but also broadens the potential application scopes of DNA nanostructures in nanofabrication, DNA computing, biomedicine, etc.
Collapse
Affiliation(s)
- Wei Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yantong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
22
|
Patiño Padial T, Del Grosso E, Gentile S, Baranda Pellejero L, Mestre R, Paffen LJMM, Sánchez S, Ricci F. Synthetic DNA-based Swimmers Driven by Enzyme Catalysis. J Am Chem Soc 2024; 146:12664-12671. [PMID: 38587543 DOI: 10.1021/jacs.4c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Here, we report DNA-based synthetic nanostructures decorated with enzymes (hereafter referred to as DNA-enzyme swimmers) that self-propel by converting the enzymatic substrate to the product in solution. The DNA-enzyme swimmers are obtained from tubular DNA structures that self-assemble spontaneously by the hybridization of DNA tiles. We functionalize these DNA structures with two different enzymes, urease and catalase, and show that they exhibit concentration-dependent movement and enhanced diffusion upon addition of the enzymatic substrate (i.e., urea and H2O2). To demonstrate the programmability of such DNA-based swimmers, we also engineer DNA strands that displace the enzyme from the DNA scaffold, thus acting as molecular "brakes" on the DNA swimmers. These results serve as a first proof of principle for the development of synthetic DNA-based enzyme-powered swimmers that can self-propel in fluids.
Collapse
Affiliation(s)
- Tania Patiño Padial
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lorena Baranda Pellejero
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rafael Mestre
- School of Electronics and Computer Science (ECS), University of Southampton, University Road, Southampton SO17 1BJ, U.K
| | - Lars J M M Paffen
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
23
|
Everson HR, Neyra K, Scarton DV, Chandrasekhar S, Green CM, Schmidt TL, Medintz IL, Veneziano R, Mathur D. Purification of DNA Nanoparticles Using Photocleavable Biotin Tethers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22334-22343. [PMID: 38635042 PMCID: PMC11261745 DOI: 10.1021/acsami.3c18955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The number of applications of self-assembled deoxyribonucleic acid (DNA) origami nanoparticles (DNA NPs) has increased drastically, following the development of a variety of single-stranded template DNA (ssDNA) that can serve as the scaffold strand. In addition to viral genomes, such as M13 bacteriophage and lambda DNAs, enzymatically produced ssDNA from various template sources is rapidly gaining traction and being applied as the scaffold for DNA NP preparation. However, separating fully formed DNA NPs that have custom scaffolds from crude assembly mixes is often a multistep process of first separating the ssDNA scaffold from its enzymatic amplification process and then isolating the assembled DNA NPs from excess precursor strands. Only then is the DNA NP sample ready for downstream characterization and application. In this work, we highlight a single-step purification of custom sequence- or M13-derived scaffold-based DNA NPs using photocleavable biotin tethers. The process only requires an inexpensive ultraviolet (UV) lamp, and DNA NPs with up to 90% yield and high purity are obtained. We show the versatility of the process in separating two multihelix bundle structures and a wireframe polyhedral architecture.
Collapse
Affiliation(s)
- Heather R Everson
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Dylan V Scarton
- College of Science, Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, Virginia 22030, United States
- Institute for Advanced Biomedical Research, George Mason University, Manassas, Virginia 20110, United States
| | | | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | | | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Remi Veneziano
- Institute for Advanced Biomedical Research, George Mason University, Manassas, Virginia 20110, United States
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
24
|
Iinuma R, Chen X, Masubuchi T, Ueda T, Tadakuma H. Size-Selective Capturing of Exosomes Using DNA Tripods. J Am Chem Soc 2024; 146:10293-10298. [PMID: 38569597 PMCID: PMC11027911 DOI: 10.1021/jacs.3c11067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.
Collapse
Affiliation(s)
- Ryosuke Iinuma
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- JSR
Corporation, Ibaraki, 305-0841, Japan
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s Republic of China
| | - Takeya Masubuchi
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- Department
of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Takuya Ueda
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- Graduate
School of Science and Engineering, Waseda
University, Tokyo 162-8480, Japan
| | - Hisashi Tadakuma
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic
of China
| |
Collapse
|
25
|
Khoshouei A, Kempf G, Mykhailiuk V, Griessing JM, Honemann MN, Kater L, Cavadini S, Dietz H. Designing Rigid DNA Origami Templates for Molecular Visualization Using Cryo-EM. NANO LETTERS 2024; 24. [PMID: 38602296 PMCID: PMC11057029 DOI: 10.1021/acs.nanolett.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
DNA origami, a method for constructing nanostructures from DNA, offers potential for diverse scientific and technological applications due to its ability to integrate various molecular functionalities in a programmable manner. In this study, we examined the impact of internal crossover distribution and the compositional uniformity of staple strands on the structure of multilayer DNA origami using cryogenic electron microscopy (cryo-EM) single-particle analysis. A refined DNA object was utilized as an alignment framework in a host-guest model, where we successfully resolved an 8 kDa thrombin binding aptamer (TBA) linked to the host object. Our results broaden the spectrum of DNA in structural applications.
Collapse
Affiliation(s)
- Ali Khoshouei
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Georg Kempf
- Friedrich
Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Volodymyr Mykhailiuk
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Johanna Mariko Griessing
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Maximilian Nicolas Honemann
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Lukas Kater
- Friedrich
Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich
Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hendrik Dietz
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
26
|
Postigo A, Martínez-Vicente P, Baumann KN, Del Barrio J, Hernández-Ainsa S. Assessing the influence of small structural modifications in simple DNA-based nanostructures on their role as drug nanocarriers. Biomater Sci 2024; 12:1549-1557. [PMID: 38305143 DOI: 10.1039/d3bm01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
DNA nanotechnology leverages Watson-Crick-Franklin base-pairing interactions to build complex DNA-based nanostructures (DNS). Due to DNA specific self-assembly properties, DNS can be designed with a total control of their architecture, which has been demonstrated to have an impact on the overall DNS features. Indeed, structural properties such as the shape, size and flexibility of DNS can influence their biostability as well as their ability to internalise into cells. We present here two series of simple DNS with small and precise variations related to their length or flexibility and study the influence that these structural changes have on their overall properties as drug nanocarriers. Results indicate that shorter and more flexible DNS present higher stability towards nuclease degradation. These structural changes also have a certain effect on their cell internalisation ability and drug release rate. Consequently, drug-loaded DNS cytotoxicity varies according to the design, with lower cell viability values obtained in the DNS exhibiting faster drug release and larger cell interaction rates. In summary, small changes in the structure of simple DNS can have an influence on their overall capabilities as drug nanocarriers. The effects reported here could guide the design of simple DNS for future therapeutic uses.
Collapse
Affiliation(s)
- Alejandro Postigo
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | | | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- ARAID Foundation, Government of Aragon, Zaragoza 50018, Spain
| |
Collapse
|
27
|
Neyra K, Everson HR, Mathur D. Dominant Analytical Techniques in DNA Nanotechnology for Various Applications. Anal Chem 2024; 96:3687-3697. [PMID: 38353660 PMCID: PMC11261746 DOI: 10.1021/acs.analchem.3c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
DNA nanotechnology is rapidly gaining traction in numerous applications, each bearing varying degrees of tolerance to the quality and quantity necessary for viable nanostructure function. Despite the distinct objectives of each application, they are united in their reliance on essential analytical techniques, such as purification and characterization. This tutorial aims to guide the reader through the current state of DNA nanotechnology analytical chemistry, outlining important factors to consider when designing, assembling, purifying, and characterizing a DNA nanostructure for downstream applications.
Collapse
Affiliation(s)
- Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Heather R Everson
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| |
Collapse
|
28
|
Li L, Ding Y, Xie G, Luo S, Liu X, Wang L, Shi J, Wan Y, Fan C, Ouyang X. DNA Framework-Templated Fabrication of Ultrathin Electroactive Gold Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202318646. [PMID: 38231189 DOI: 10.1002/anie.202318646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Generally, two-dimensional gold nanomaterials have unique properties and functions that offer exciting application prospects. However, the crystal phases of these materials tend to be limited to the thermodynamically stable crystal structure. Herein, we report a DNA framework-templated approach for the ambient aqueous synthesis of freestanding and microscale amorphous gold nanosheets with ultrathin sub-nanometer thickness. We observe that extended single-stranded DNA on DNA nanosheets can induce site-specific metallization and enable precise modification of the metalized nanostructures at predefined positions. More importantly, the as-prepared gold nanosheets can serve as an electrocatalyst for glucose oxidase-catalyzed aerobic oxidation, exhibiting enhanced electrocatalytic activity (~3-fold) relative to discrete gold nanoclusters owing to a larger electrochemical active area and wider band gap. The proposed DNA framework-templated metallization strategy is expected to be applicable in a broad range of fields, from catalysis to new energy materials.
Collapse
Affiliation(s)
- Le Li
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yawen Ding
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Gang Xie
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lihua Wang
- Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| |
Collapse
|
29
|
Liu Y, Dai Z, Xie X, Li B, Jia S, Li Q, Li M, Fan C, Liu X. Spacer-Programmed Two-Dimensional DNA Origami Assembly. J Am Chem Soc 2024; 146:5461-5469. [PMID: 38355136 DOI: 10.1021/jacs.3c13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Two-dimensional (2D) DNA origami assembly represents a powerful approach to the programmable design and construction of advanced 2D materials. Within the context of hybridization-mediated 2D DNA origami assembly, DNA spacers play a pivotal role as essential connectors between sticky-end regions and DNA origami units. Here, we demonstrated that programming the spacer length, which determines the binding radius of DNA origami units, could effectively tune sticky-end hybridization reactions to produce distinct 2D DNA origami arrays. Using DNA-PAINT super-resolution imaging, we unveiled the significant impact of spacer length on the hybridization efficiency of sticky ends for assembling square DNA origami (SDO) units. We also found that the assembly efficiency and pattern diversity of 2D DNA origami assemblies were critically dependent on the spacer length. Remarkably, we realized a near-unity yield of ∼98% for the assembly of SDO trimers and tetramers via this spacer-programmed strategy. At last, we revealed that spacer lengths and thermodynamic fluctuations of SDO are positively correlated, using molecular dynamics simulations. Our study thus paves the way for the precision assembly of DNA nanostructures toward higher complexity.
Collapse
Affiliation(s)
- Yongjun Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheze Dai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bochen Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
DeLuca M, Sensale S, Lin PA, Arya G. Prediction and Control in DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2024; 7:626-645. [PMID: 36880799 DOI: 10.1021/acsabm.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
31
|
Liu Y, Li B, Wang F, Li Q, Jia S, Liu X, Li M. Quantitative Analysis of Resistance to Deformation of the DNA Origami Framework Supported by Struts. ACS APPLIED BIO MATERIALS 2024; 7:1311-1316. [PMID: 38303492 DOI: 10.1021/acsabm.3c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Nanostructures with controlled shapes are of particular interest due to their consistent physical and chemical properties and their potential for assembly into complex superstructures. The use of supporting struts has proven to be effective in the construction of precise DNA polyhedra. However, the influence of struts on the structure of DNA origami frameworks on the nanoscale remains unclear. In this study, we developed a flexible square DNA origami (SDO) framework and enhanced its structural stability by incorporating interarm supporting struts (SDO-s). Comparing the framework with and without such struts, we found that SDO-s demonstrated a significantly improved resistance to deformation. We assessed the deformability of these two DNA origami structures through the statistical analysis of interior angles of polygons based on atomic force microscopy and transmission electron microscopy data. Our results showed that SDO-s exhibited more centralized interior angle distributions compared to SDO, reducing from 30-150° to 60-120°. Furthermore, molecular dynamics simulations indicated that supporting struts significantly decreased the thermodynamic fluctuations of the SDO-s, as described by the root-mean-square fluctuation parameter. Finally, we experimentally demonstrated that the 2D arrays assembled from SDO-s exhibited significantly higher quality than those assembled from SDO. These quantitative analyses provide an understanding of how supporting struts can enhance the structural integrity of DNA origami frameworks.
Collapse
Affiliation(s)
- Yongjun Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bochen Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Wang Y, Wang H, Li Y, Yang C, Tang Y, Lu X, Fan J, Tang W, Shang Y, Yan H, Liu J, Ding B. Chemically Conjugated Branched Staples for Super-DNA Origami. J Am Chem Soc 2024; 146:4178-4186. [PMID: 38301245 DOI: 10.1021/jacs.3c13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
DNA origami, comprising a long folded DNA scaffold and hundreds of linear DNA staple strands, has been developed to construct various sophisticated structures, smart devices, and drug delivery systems. However, the size and diversity of DNA origami are usually constrained by the length of DNA scaffolds themselves. Herein, we report a new paradigm of scaling up DNA origami assembly by introducing a novel branched staple concept. Owing to their covalent characteristics, the chemically conjugated branched DNA staples we describe here can be directly added to a typical DNA origami assembly system to obtain super-DNA origami with a predefined number of origami tiles in one pot. Compared with the traditional two-step coassembly system (yields <10%), a much greater yield (>80%) was achieved using this one-pot strategy. The diverse superhybrid DNA origami with the combination of different origami tiles can be also efficiently obtained by the hybrid branched staples. Furthermore, the branched staples can be successfully employed as the effective molecular glues to stabilize micrometer-scale, super-DNA origami arrays (e.g., 10 × 10 array of square origami) in high yields, paving the way to bridge the nanoscale precision of DNA origami with the micrometer-scale device engineering. This rationally developed assembly strategy for super-DNA origami based on chemically conjugated branched staples presents a new avenue for the development of multifunctional DNA origami-based materials.
Collapse
Affiliation(s)
- Yuang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Changping Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Tang
- Arizona State University, Tempe, Arizona 85281, United States
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jing Fan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wantao Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hao Yan
- Arizona State University, Tempe, Arizona 85281, United States
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Wamhoff EC, Ronsard L, Feldman J, Knappe GA, Hauser BM, Romanov A, Case JB, Sanapala S, Lam EC, Denis KJS, Boucau J, Barczak AK, Balazs AB, Diamond MS, Schmidt AG, Lingwood D, Bathe M. Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds. Nat Commun 2024; 15:795. [PMID: 38291019 PMCID: PMC10828404 DOI: 10.1038/s41467-024-44869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Protein-based virus-like particles (P-VLPs) are commonly used to spatially organize antigens and enhance humoral immunity through multivalent antigen display. However, P-VLPs are thymus-dependent antigens that are themselves immunogenic and can induce B cell responses that may neutralize the platform. Here, we investigate thymus-independent DNA origami as an alternative material for multivalent antigen display using the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, the primary target of neutralizing antibody responses. Sequential immunization of mice with DNA-based VLPs (DNA-VLPs) elicits protective neutralizing antibodies to SARS-CoV-2 in a manner that depends on the valency of the antigen displayed and on T cell help. Importantly, the immune sera do not contain boosted, class-switched antibodies against the DNA scaffold, in contrast to P-VLPs that elicit strong B cell memory against both the target antigen and the scaffold. Thus, DNA-VLPs enhance target antigen immunogenicity without generating scaffold-directed immunity and thereby offer an important alternative material for particulate vaccine design.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Larance Ronsard
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Jared Feldman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Blake M Hauser
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Evan C Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Kerri J St Denis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Amy K Barczak
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Alejandro B Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA.
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Wojnar MK, Kundu K, Kairalapova A, Wang X, Ozarowski A, Berkelbach TC, Hill S, Freedman DE. Ligand field design enables quantum manipulation of spins in Ni 2+ complexes. Chem Sci 2024; 15:1374-1383. [PMID: 38274078 PMCID: PMC10806831 DOI: 10.1039/d3sc04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024] Open
Abstract
Creating the next generation of quantum systems requires control and tunability, which are key features of molecules. To design these systems, one must consider the ground-state and excited-state manifolds. One class of systems with promise for quantum sensing applications, which require water solubility, are d8 Ni2+ ions in octahedral symmetry. Yet, most Ni2+ complexes feature large zero-field splitting, precluding manipulation by commercial microwave sources due to the relatively large spin-orbit coupling constant of Ni2+ (630 cm-1). Since low lying excited states also influence axial zero-field splitting, D, a combination of strong field ligands and rigidly held octahedral symmetry can ameliorate these challenges. Towards these ends, we performed a theoretical and computational analysis of the electronic and magnetic structure of a molecular qubit, focusing on the impact of ligand field strength on D. Based on those results, we synthesized 1, [Ni(ttcn)2](BF4)2 (ttcn = 1,4,7-trithiacyclononane), which we computationally predict will have a small D (Dcalc = +1.15 cm-1). High-field high-frequency electron paramagnetic resonance (EPR) data yield spin Hamiltonian parameters: gx = 2.1018(15), gx = 2.1079(15), gx = 2.0964(14), D = +0.555(8) cm-1 and E = +0.072(5) cm-1, which confirm the expected weak zero-field splitting. Dilution of 1 in the diamagnetic Zn analogue, [Ni0.01Zn0.99(ttcn)2](BF4)2 (1') led to a slight increase in D to ∼0.9 cm-1. The design criteria in minimizing D in 1via combined computational and experimental methods demonstrates a path forward for EPR and optical addressability of a general class of S = 1 spins.
Collapse
Affiliation(s)
- Michael K Wojnar
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Krishnendu Kundu
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | | | - Xiaoling Wang
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | | | - Stephen Hill
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
- Department of Physics, Florida State University Florida 32306 USA
| | - Danna E Freedman
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
35
|
Zheng M, Ye J, Liu H, Wu Y, Shi Y, Xie Y, Wang S. FAM Tag Size Separation-Based Capture-Systematic Evolution of Ligands by Exponential Enrichment for Sterigmatocystin-Binding Aptamers with High Specificity. Anal Chem 2024; 96:710-720. [PMID: 38175632 DOI: 10.1021/acs.analchem.3c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sterigmatocystin (ST) is a known toxin whose aptamer has rarely been reported because ST is a water-insoluble small-molecule target with few active sites, leading to difficulty in obtaining its aptamer using traditional target fixation screening methods. To obtain aptamer for ST, we incorporated FAM tag size separation into the capture-systematic evolution of ligands by exponential enrichment and combined it with molecular activation for aptamer screening. The screening process was monitored using a quantitative polymerase chain reaction fluorescence amplification curve and recovery of negative-, counter-, and positive-selected ssDNA. The affinity and specificity of the aptamer were verified by constructing an aptamer-affinity column, and the binding sites were predicted using molecular docking simulations. The results showed that the Kd value of the H Seq02 aptamer was 25.3 nM. The aptamer-affinity column based on 2.3 nmol of H Seq02 exhibited a capacity of about 80 ng, demonstrating better specificity than commercially available antibody affinity columns. Molecular simulation docking predicted the binding sites for H Seq02 and ST, further explaining the improved specificity. In addition, circular dichroism and isothermal titration calorimetry were used to verify the interaction between the aptamer and target ST. This study lays the foundation for the development of a new ST detection method.
Collapse
Affiliation(s)
- Mengyao Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Jin Ye
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yu Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yakun Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yanli Xie
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Songxue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| |
Collapse
|
36
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
37
|
Wang S, Lin PA, DeLuca M, Zauscher S, Arya G, Ke Y. Controlling Silicification on DNA Origami with Polynucleotide Brushes. J Am Chem Soc 2024; 146:358-367. [PMID: 38117542 PMCID: PMC10785815 DOI: 10.1021/jacs.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
DNA origami has been used as biotemplates for growing a range of inorganic materials to create novel organic-inorganic hybrid nanomaterials. Recently, the solution-based silicification of DNA has been used to grow thin silica shells on DNA origami. However, the silicification reaction is sensitive to the reaction conditions and often results in uncontrolled DNA origami aggregation, especially when growth of thicker silica layers is desired. Here, we investigated how site-specifically placed polynucleotide brushes influence the silicification of DNA origami. Our experiments showed that long DNA brushes, in the form of single- or double-stranded DNA, significantly suppress the aggregation of DNA origami during the silicification process. Furthermore, we found that double-stranded DNA brushes selectively promote silica growth on DNA origami surfaces. These observations were supported and explained by coarse-grained molecular dynamics simulations. This work provides new insights into our understanding of the silicification process on DNA and provides a powerful toolset for the development of novel DNA-based organic-inorganic nanomaterials.
Collapse
Affiliation(s)
- Shuang Wang
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Po-An Lin
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Marcello DeLuca
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Stefan Zauscher
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
38
|
Shen F, Wang H, Liu Z, Sun L. DNA Nanostructures: Self-Adjuvant Carriers for Highly Efficient Subunit Vaccines. Angew Chem Int Ed Engl 2024; 63:e202312624. [PMID: 37737971 DOI: 10.1002/anie.202312624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Subunit vaccines based on antigen proteins or epitopes of pathogens or tumors show advantages in immunological precision and high safety, but are often limited by their low immunogenicity. Adjuvants can boost immune responses by stimulating immune cells or promoting antigen uptake by antigen presenting cells (APCs), yet existing clinical adjuvants struggle in simultaneously achieving these dual functions. Additionally, the spatial organization of antigens might be crucial to their immunogenicity. Hence, superior adjuvants should potently stimulate the immune system, precisely arrange antigens, and effectively deliver antigens to APCs. Recently, precisely organizing and delivering antigens with the unique editability of DNA nanostructures has been proposed, presenting unique abilities in significantly improving the immunogenicity of antigens. In this minireview, we will discuss the principles behind using DNA nanostructures as self-adjuvant carriers and review the latest advancements in this field. The potential and challenges associated with self-adjuvant DNA nanostructures will also be discussed.
Collapse
Affiliation(s)
- Fengyun Shen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 201240, China
| | - Haihan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
39
|
Aba G, Scheeren FA, Sharp TH. Design and Synthesis of DNA Origami Nanostructures to Control TNF Receptor Activation. Methods Mol Biol 2024; 2800:35-53. [PMID: 38709476 DOI: 10.1007/978-1-0716-3834-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Clustering of type II tumor necrosis factor (TNF) receptors (TNFRs) is essential for their activation, yet currently available drugs fail to activate signaling. Some strategies aim to cluster TNFR by using multivalent streptavidin or scaffolds based on dextran or graphene. However, these strategies do not allow for control of the valency or spatial organization of the ligands, and consequently control of the TNFR activation is not optimal. DNA origami nanostructures allow nanometer-precise control of the spatial organization of molecules and complexes, with defined spacing, number and valency. Here, we demonstrate the design and characterization of a DNA origami nanostructure that can be decorated with engineered single-chain TNF-related apoptosis-inducing ligand (SC-TRAIL) complexes, which show increased cell killing compared to SC-TRAIL alone on Jurkat cells. The information in this chapter can be used as a basis to decorate DNA origami nanostructures with various proteins, complexes, or other biomolecules.
Collapse
Affiliation(s)
- Göktuğ Aba
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
40
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
41
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
42
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
43
|
Lee JY, Koh H, Kim DN. A computational model for structural dynamics and reconfiguration of DNA assemblies. Nat Commun 2023; 14:7079. [PMID: 37925463 PMCID: PMC10625641 DOI: 10.1038/s41467-023-42873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Recent advances in constructing a structured DNA assembly whose configuration can be dynamically changed in response to external stimuli have demanded the development of an efficient computational modeling approach to expedite its design process. Here, we present a computational framework capable of analyzing both equilibrium and non-equilibrium dynamics of structured DNA assemblies at the molecular level. The framework employs Langevin dynamics with structural and hydrodynamic finite element models that describe mechanical, electrostatic, base stacking, and hydrodynamic interactions. Equilibrium dynamic analysis for various problems confirms the solution accuracy at a near-atomic resolution, comparable to molecular dynamics simulations and experimental measurements. Furthermore, our model successfully simulates a long-time-scale close-to-open-to-close dynamic reconfiguration of the switch structure in response to changes in ion concentration. We expect that the proposed model will offer a versatile way of designing responsive and reconfigurable DNA machines.
Collapse
Affiliation(s)
- Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Heeyuen Koh
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
44
|
Giammanco G, Veneziano R, Dunn B, Such N, Cressman JR, Chitnis PV. DNA-Based Near-Infrared Voltage Sensors. ACS Sens 2023; 8:3680-3686. [PMID: 37725687 PMCID: PMC10616843 DOI: 10.1021/acssensors.3c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Indocyanine green (ICG) is an FDA approved dye widely used for fluorescence imaging in research, surgical navigation, and medical diagnostics. However, ICG has a few drawbacks, such as concentration-dependent aggregation and absorbance, nonspecific cellular targeting, and rapid photobleaching. Here, we report a novel DNA-based nanosensor platform that utilizes monomers of ICG and cholesterol. Using DNA origami, we can attach ICG to a DNA structure, maintaining its concentration, preserving its near-infrared (NIR) absorbance, and allowing attachment of targeting moieties. We characterized the nanosensors' absorbance, stability in blood, and voltage sensing in vitro. This study presents a novel DNA-based ICG nanosensor platform for cellular voltage sensing for future in vivo applications.
Collapse
Affiliation(s)
- Giovanni Giammanco
- Department
of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Remi Veneziano
- Department
of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
- Institute
for Advanced Biomedical Research, George
Mason University, Manassas, Virginia 20110, United States
| | - Bryce Dunn
- Department
of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Nicholas Such
- Department
of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - John R. Cressman
- Department
of Physics, George Mason University, Fairfax, Virginia 22030, United States
| | - Parag V. Chitnis
- Department
of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
- Center
for Adaptive Systems for Brain-body Interactions, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
45
|
Hanke M, Dornbusch D, Tomm E, Grundmeier G, Fahmy K, Keller A. Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants. NANOSCALE 2023; 15:16590-16600. [PMID: 37747200 DOI: 10.1039/d3nr02045b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The structural stability of DNA origami nanostructures in various chemical environments is an important factor in numerous applications, ranging from biomedicine and biophysics to analytical chemistry and materials synthesis. In this work, the stability of six different 2D and 3D DNA origami nanostructures is assessed in the presence of three different chaotropic salts, i.e., guanidinium sulfate (Gdm2SO4), guanidinium chloride (GdmCl), and tetrapropylammonium chloride (TPACl), which are widely employed denaturants. Using atomic force microscopy (AFM) to quantify nanostructural integrity, Gdm2SO4 is found to be the weakest and TPACl the strongest DNA origami denaturant, respectively. Despite different mechanisms of actions of the selected salts, DNA origami stability in each environment is observed to depend on DNA origami superstructure. This is especially pronounced for 3D DNA origami nanostructures, where mechanically more flexible designs show higher stability in both GdmCl and TPACl than more rigid ones. This is particularly remarkable as this general dependence has previously been observed under Mg2+-free conditions and may provide the possibility to optimize DNA origami design toward maximum stability in diverse chemical environments. Finally, it is demonstrated that melting temperature measurements may overestimate the stability of certain DNA origami nanostructures in certain chemical environments, so that such investigations should always be complemented by microscopic assessments of nanostructure integrity.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Daniel Dornbusch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Emilia Tomm
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
46
|
Zhu Y, Sharma A, Spangler EJ, Laradji M. Non-close-packed hexagonal self-assembly of Janus nanoparticles on planar membranes. SOFT MATTER 2023; 19:7591-7601. [PMID: 37755137 DOI: 10.1039/d3sm00984j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The adhesion modes of an ensemble of spherical Janus nanoparticles on planar membranes are investigated through large-scale molecular dynamics simulations of a coarse-grained implicit-solvent model. We found that the Janus nanoparticles adhering to planar membranes exhibit a rich phase behavior that depends on their adhesion energy density and areal number density. In particular, effective repulsive membrane-curvature-mediated interactions between the Janus nanoparticles lead to their self-assembly into an ordered hexagonal superlattice at intermediate densities and intermediate to high adhesion energy density, with a lattice constant determined by their areal density. The melting behavior of the hexagonal superlattice proceeds through a two-stage melting scenario in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young classical theory of two-dimensional melting.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
47
|
Ng C, Samanta A, Mandrup OA, Tsang E, Youssef S, Klausen LH, Dong M, Nijenhuis MAD, Gothelf KV. Folding Double-Stranded DNA into Designed Shapes with Triplex-Forming Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302497. [PMID: 37311656 DOI: 10.1002/adma.202302497] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/07/2023] [Indexed: 06/15/2023]
Abstract
The compaction and organization of genomic DNA is a central mechanism in eukaryotic cells, but engineered architectural control over double-stranded DNA (dsDNA) is notably challenging. Here, long dsDNA templates are folded into designed shapes via triplex-mediated self-assembly. Triplex-forming oligonucleotides (TFOs) bind purines in dsDNA via normal or reverse Hoogsteen interactions. In the triplex origami methodology, these non-canonical interactions are programmed to compact dsDNA (linear or plasmid) into well-defined objects, which demonstrate a variety of structural features: hollow and raster-filled, single- and multi-layered, with custom curvatures and geometries, and featuring lattice-free, square-, or honeycomb-pleated internal arrangements. Surprisingly, the length of integrated and free-standing dsDNA loops can be modulated with near-perfect efficiency; from hundreds down to only six bp (2 nm). The inherent rigidity of dsDNA promotes structural robustness and non-periodic structures of almost 25.000 nt are therefore formed with fewer unique starting materials, compared to other DNA-based self-assembly methods. Densely triplexed structures also resist degradation by DNase I. Triplex-mediated dsDNA folding is methodologically straightforward and orthogonal to Watson-Crick-based methods. Moreover, it enables unprecedented spatial control over dsDNA templates.
Collapse
Affiliation(s)
- Cindy Ng
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Ole Aalund Mandrup
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Sarah Youssef
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Lasse Hyldgaard Klausen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Mingdong Dong
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Minke A D Nijenhuis
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| |
Collapse
|
48
|
Adhikari S, Minevich B, Redeker D, Michelson AN, Emamy H, Shen E, Gang O, Kumar SK. Controlling the Self-Assembly of DNA Origami Octahedra via Manipulation of Inter-Vertex Interactions. J Am Chem Soc 2023; 145:19578-19587. [PMID: 37651692 DOI: 10.1021/jacs.3c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Recent studies have demonstrated novel strategies for the organization of nanomaterials into three-dimensional (3D) ordered arrays with prescribed lattice symmetries using DNA-based self-assembly strategies. In one approach, the nanomaterial is sequestered into DNA origami frames or "material voxels" and then coordinated into ordered arrays based on the voxel geometry and the corresponding directional interactions based on its valency. While the lattice symmetry is defined by the valency of the bonds, a larger-scale morphological development is affected by assembly processes and differences in energies of anisotropic bonds. To facilely model this assembly process, we investigate the self-assembly behavior of hard particles with six interacting vertices via theory and Monte Carlo simulations and exploration of corresponding experimental systems. We demonstrate that assemblies with different 3D crystalline morphologies but the same lattice symmetry can be formed depending on the relative strength of vertex-to-vertex interactions in orthogonal directions. We observed three distinct assembly morphologies for such systems: cube-like, sheet-like, and cylinder-like. A simple analytical theory inspired by well-established ideas in the areas of protein crystallization, based on calculating the second virial coefficient of patchy hard spheres, captures the simulation results and thus represents a straightforward means of modeling this self-assembly process. To complement the theory and simulations, experimental studies were performed to investigate the assembly of octahedral DNA origami frames with varying binding energies at their vertices. X-ray scattering confirms the robustness of the formed nanoscale lattices for different binding energies, while both optical and electron microscopy imaging validated the theoretical predictions on the dependence of the distinct morphologies of assembled state on the interaction strengths in the three orthogonal directions.
Collapse
Affiliation(s)
- Sabin Adhikari
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Daniel Redeker
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Aaron Noam Michelson
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hamed Emamy
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Eric Shen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
49
|
Azzaroni O, Piccinini E, Fenoy G, Marmisollé W, Ariga K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. NANOTECHNOLOGY 2023; 34:472001. [PMID: 37567153 DOI: 10.1088/1361-6528/acef26] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.
Collapse
Affiliation(s)
- Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Gonzalo Fenoy
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0825, Japan
| |
Collapse
|
50
|
Nixon SR, Phukan IK, Armijo BJ, Ebrahimi SB, Samanta D. Proximity-Driven DNA Nanosensors. ECS SENSORS PLUS 2023; 2:030601. [PMID: 37424706 PMCID: PMC10323711 DOI: 10.1149/2754-2726/ace068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
In proximity-driven sensing, interactions between a probe and an analyte produce a detectable signal by causing a change in distance of two probe components or signaling moieties. By interfacing such systems with DNA-based nanostructures, platforms that are highly sensitive, specific, and programmable can be designed. In this Perspective, we delineate the advantages of using DNA building blocks in proximity-driven nanosensors and provide an overview of recent progress in the field, from sensors that rapidly detect pesticides in food to probes that identify rare cancer cells in blood. We also discuss current challenges and identify key areas that need further development.
Collapse
Affiliation(s)
- Sara R. Nixon
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Imon Kanta Phukan
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Brian J. Armijo
- Department of Chemistry, Southwestern University, Georgetown, TX 78626, United States of America
| | - Sasha B. Ebrahimi
- Drug Product Development—Steriles, GlaxoSmithKline, Collegeville, PA 19426, United States of America
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|