1
|
Wang A, Shao P. Effects of Organic Maceral on Biogenic Coalbed Gas Generation from Bituminous Coal. ACS OMEGA 2022; 7:18139-18145. [PMID: 35664615 PMCID: PMC9161391 DOI: 10.1021/acsomega.2c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Clarifying the effect of organic maceral on biogenic coalbed gas generation is important to understand the mechanism of biogenic coalbed gas generation and to develop bioengineering of coalbed gas. Bituminous coals in the Huainan mining area of China were selected as the research object, and the organic macerals were enriched through manual separation and floatation-sedimentation experiments first. Then, the simulated biogas generation experiments were carried out by using raw coal, single vitrinite, and inertinite, respectively. The results showed that all the bituminous coal, vitrinite, and inertinite could be biodegraded to generate biogas. The gas production yield of vitrinite was11.5 mL/g, which was more than that of raw coal (9.8 mL/g) and inertinite (6.26 mL/g). The production processes showed the stage characteristics of rapid increase and continuous decrease, but the gas production peak of inertinite lagged behind that of raw coal and vitrinite. Vitrinite content was positively correlated with total gas production, while inertinite could inhibit biogas production. CH4 composition in simulated biogas from vitrinite was the most, and that from inertinite was the least, while there was a positive correlation between vitrinite content and CH4 composition. The above evidence showed that vitrinite in bituminous coal is more easily biodegradable. There were significant positive correlations between chloroform bitumen "A", H, and H/C to total gas production, and they can be used as important indicators to evaluate the output of coalbed biogas.
Collapse
Affiliation(s)
- Aikuan Wang
- Key
Laboratory of Coalbed Methane Resources & Reservoir Formation
Process, Ministry of Education, China University
of Mining & Technology, Xuzhou 221008, China
- School
of Resources and Geosciences, China University
of Mining & Technology, Xuzhou 221116, China
| | - Pei Shao
- Department
of Surveying and Planning, Shangqiu Normal
University, Shangqiu 476000, China
| |
Collapse
|
2
|
Lee JA, Stolyar S, Marx CJ. Aerobic Methoxydotrophy: Growth on Methoxylated Aromatic Compounds by Methylobacteriaceae. Front Microbiol 2022; 13:849573. [PMID: 35359736 PMCID: PMC8963497 DOI: 10.3389/fmicb.2022.849573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Pink-pigmented facultative methylotrophs have long been studied for their ability to grow on reduced single-carbon (C1) compounds. The C1 groups that support methylotrophic growth may come from a variety of sources. Here, we describe a group of Methylobacterium strains that can engage in methoxydotrophy: they can metabolize the methoxy groups from several aromatic compounds that are commonly the product of lignin depolymerization. Furthermore, these organisms can utilize the full aromatic ring as a growth substrate, a phenotype that has rarely been described in Methylobacterium. We demonstrated growth on p-hydroxybenzoate, protocatechuate, vanillate, and ferulate in laboratory culture conditions. We also used comparative genomics to explore the evolutionary history of this trait, finding that the capacity for aromatic catabolism is likely ancestral to two clades of Methylobacterium, but has also been acquired horizontally by closely related organisms. In addition, we surveyed the published metagenome data to find that the most abundant group of aromatic-degrading Methylobacterium in the environment is likely the group related to Methylobacterium nodulans, and they are especially common in soil and root environments. The demethoxylation of lignin-derived aromatic monomers in aerobic environments releases formaldehyde, a metabolite that is a potent cellular toxin but that is also a growth substrate for methylotrophs. We found that, whereas some known lignin-degrading organisms excrete formaldehyde as a byproduct during growth on vanillate, Methylobacterium do not. This observation is especially relevant to our understanding of the ecology and the bioengineering of lignin degradation.
Collapse
Affiliation(s)
- Jessica A. Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, United States
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - Sergey Stolyar
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, United States
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
3
|
Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, Yamamoto K, Mayumi D, Sakata S, Bai L, Cheng L, Nielsen JL, Kamagata Y, Wagner T, Welte CU. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. THE ISME JOURNAL 2021; 15:3549-3565. [PMID: 34145392 PMCID: PMC8630106 DOI: 10.1038/s41396-021-01025-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Methane-generating archaea drive the final step in anaerobic organic compound mineralization and dictate the carbon flow of Earth's diverse anoxic ecosystems in the absence of inorganic electron acceptors. Although such Archaea were presumed to be restricted to life on simple compounds like hydrogen (H2), acetate or methanol, an archaeon, Methermicoccus shengliensis, was recently found to convert methoxylated aromatic compounds to methane. Methoxylated aromatic compounds are important components of lignin and coal, and are present in most subsurface sediments. Despite the novelty of such a methoxydotrophic archaeon its metabolism has not yet been explored. In this study, transcriptomics and proteomics reveal that under methoxydotrophic growth M. shengliensis expresses an O-demethylation/methyltransferase system related to the one used by acetogenic bacteria. Enzymatic assays provide evidence for a two step-mechanisms in which the methyl-group from the methoxy compound is (1) transferred on cobalamin and (2) further transferred on the C1-carrier tetrahydromethanopterin, a mechanism distinct from conventional methanogenic methyl-transfer systems which use coenzyme M as final acceptor. We further hypothesize that this likely leads to an atypical use of the methanogenesis pathway that derives cellular energy from methyl transfer (Mtr) rather than electron transfer (F420H2 re-oxidation) as found for methylotrophic methanogenesis.
Collapse
Affiliation(s)
- Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Stefanie Berger
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Utrecht, The Netherlands
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Susumu Sakata
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Liping Bai
- Key Laboratory of Energy Microbiology and Its Application of Ministry of Agriculture, Biogas Institute of Ministry of Agriculture, Chengdu, China
| | - Lei Cheng
- Key Laboratory of Energy Microbiology and Its Application of Ministry of Agriculture, Biogas Institute of Ministry of Agriculture, Chengdu, China
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tristan Wagner
- Microbial Metabolism research group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Wang B, Ndayisenga F, Zhang G, Yu Z. Deciphering the initial products of coal during methanogenic bioconversion: Based on an untargeted metabolomics approach. GCB BIOENERGY 2021; 13:967-978. [DOI: 10.1111/gcbb.12824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/28/2021] [Indexed: 01/22/2025]
Abstract
AbstractAlthough the process of microbial degradation of coal to produce biomethane has got much attention from many research works, the products profiles of coal at the initial stage of methanogenic bioconversion are not clear yet. In this study, five coal‐degrading bacterial strains (CD1, CD10, CD20, CD24, and CD25) from a methanogenic community were isolated and identified. Among them, CD1 and CD24 belong to Paenibacillus sp., CD10 and CD20 belong to Bacillus sp., and CD25 belongs to Stenotrophomonas sp. After biotreatment of lignite and bituminous coal, the kinds of newly produced compounds were 33 and 45, respectively. Metabolomics analysis showed that a large number of alkane compounds and heterocyclic aromatic compounds were produced after degradation of bituminous coal and lignite by isolated bacteria, and most of the compounds had been produced in a hydroxylated or acylated manner, indicating that the initial microbial treatment enhanced the bioavailability of coal. Some alkaloids and biosurfactants were also detected in the aforementioned products, such as glycerophosphocholine, proveratrol A, proveratrol B, surfactin, etc. These microbial metabolites may play an important role in solubilization during the degradation of coal. This study added to the understanding of the complicated metabolic process of methanogenic coal bioconversion and enabled effective production of biomethane with appropriate metabolic strategies.
Collapse
Affiliation(s)
- Bobo Wang
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Fabrice Ndayisenga
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Guilong Zhang
- Agro‐Environmental Protection Institute Ministry of Agriculture and Rural Affairs China
| | - Zhisheng Yu
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Welte CU, de Graaf R, Dalcin Martins P, Jansen RS, Jetten MSM, Kurth JM. A novel methoxydotrophic metabolism discovered in the hyperthermophilic archaeon Archaeoglobus fulgidus. Environ Microbiol 2021; 23:4017-4033. [PMID: 33913565 PMCID: PMC8359953 DOI: 10.1111/1462-2920.15546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Methoxylated aromatic compounds (MACs) are important components of lignin found in significant amounts in the subsurface. Recently, the methanogenic archaeon Methermicoccus shengliensis was shown to be able to use a variety of MACs during methoxydotrophic growth. After a molecular survey, we found that the hyperthermophilic non‐methanogenic archaeon Archaeoglobus fulgidus also encodes genes for a bacterial‐like demethoxylation system. In this study, we performed growth and metabolite analysis, and used transcriptomics to investigate the response of A. fulgidus during growth on MACs in comparison to growth on lactate. We observed that A. fulgidus converts MACs to their hydroxylated derivatives with CO2 as the main product and sulfate as electron acceptor. Furthermore, we could show that MACs improve the growth of A. fulgidus in the presence of organic substrates such as lactate. We also found evidence that other archaea such as Bathyarchaeota, Lokiarchaeota, Verstraetearchaeota, Korarchaeota, Helarchaeota and Nezhaarchaeota encode a demethoxylation system. In summary, we here describe the first non‐methanogenic archaeon with the ability to grow on MACs indicating that methoxydotrophic archaea might play a so far underestimated role in the global carbon cycle.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Rob de Graaf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
6
|
Lu Y, Chai C, Zhou Z, Ge Z, Yang M. Influence of bioconversion on pore structure of bituminous coal. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yiyu Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing University Chongqing China
- National & Local Joint Engineering Laboratory of Gas Drainage in Complex Coal SeamChongqing University Chongqing China
| | - Chengjuan Chai
- State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing University Chongqing China
- National & Local Joint Engineering Laboratory of Gas Drainage in Complex Coal SeamChongqing University Chongqing China
| | - Zhe Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing University Chongqing China
- Postdoctoral Station of Safety Science and EngineeringChongqing University Chongqing China
| | - Zhaolong Ge
- State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing University Chongqing China
- National & Local Joint Engineering Laboratory of Gas Drainage in Complex Coal SeamChongqing University Chongqing China
| | - Mengmeng Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing University Chongqing China
- National & Local Joint Engineering Laboratory of Gas Drainage in Complex Coal SeamChongqing University Chongqing China
| |
Collapse
|
7
|
Tamaki H. Cultivation Renaissance in the Post-Metagenomics Era: Combining the New and Old. Microbes Environ 2019; 34:117-120. [PMID: 31243255 PMCID: PMC6594738 DOI: 10.1264/jsme2.me3402rh] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
8
|
Abstract
The methane concentration in the Earth's atmosphere is rising, and, as methane is a potent greenhouse gas, it contributes considerably to climate change. It is produced by methanogenic archaea that thrive in anoxic habitats and can be oxidized by methane-oxidizing bacteria or archaea. In this Perspective, recent innovations and discoveries in archaeal methane microbiology are discussed and a future outlook on how novel methane-metabolizing archaea might be cultivated is provided.
Collapse
|
9
|
Zhang R, Liu S, Bahadur J, Elsworth D, Wang Y, Hu G, Liang Y. Changes in pore structure of coal caused by coal-to-gas bioconversion. Sci Rep 2017. [PMID: 28630465 PMCID: PMC5476654 DOI: 10.1038/s41598-017-04110-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N2 and CO2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show that the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, Old Main, PA, 16802, USA
| | - Shimin Liu
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, Old Main, PA, 16802, USA.
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400094, India
| | - Derek Elsworth
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, Old Main, PA, 16802, USA
| | - Yi Wang
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, Old Main, PA, 16802, USA
| | - Guanglong Hu
- Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, Old Main, PA, 16802, USA
| | - Yanna Liang
- Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|