1
|
Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200871. [PMID: 39351073 PMCID: PMC11440307 DOI: 10.1016/j.omton.2024.200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.
Collapse
Affiliation(s)
- Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
He Y, Zhu M, Lai X, Zhang H, Jiang W. The roles of PD-L1 in the various stages of tumor metastasis. Cancer Metastasis Rev 2024; 43:1475-1488. [PMID: 38733457 DOI: 10.1007/s10555-024-10189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The interaction between tumor programmed death ligand 1 (PD-L1) and T-cell programmed cell death 1 (PD-1) has long been acknowledged as a mechanism for evading immune surveillance. Recent studies, however, have unveiled a more nuanced role of tumor-intrinsic PD-L1 in reprograming tumoral phenotypes. Preclinical models emphasize the synchronized effects of both intracellular and extracellular PD-L1 in promoting metastasis, with intricate interactions with the immune system. This review aims to summarize recent findings to elucidate the spatiotemporal heterogeneity of PD-L1 expression and the pro-metastatic roles of PD-L1 in the entire process of tumor metastasis. For example, PD-L1 regulates the epithelial-to-mesenchymal transition (EMT) process, facilitates the survival of circulating tumor cells, and induces the formation of immunosuppressive environments at pre-metastatic niches and metastatic sites. And the complexed and dynamic regulation process of PD-L1 for tumor metastasis is related to the spatiotemporal heterogeneity of PD-L1 expression and functions from tumor primary sites to various metastatic sites. This review extends the current understandings for the roles of PD-L1 in mediating tumor metastasis and provides new insights into therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Yinjun He
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, 310009, China
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China
| | - Ming Zhu
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China
| | - Xuan Lai
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China.
| | - Weiqin Jiang
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, 310009, China.
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Poghosyan S, Frenkel N, van den Bent L, Raats D, Spaapen T, Laoukili J, Borel Rinkes I, Kranenburg O, Hagendoorn J. VEGF-C propagates 'onward' colorectal cancer metastasis from liver to lung. Br J Cancer 2024:10.1038/s41416-024-02892-4. [PMID: 39521880 DOI: 10.1038/s41416-024-02892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The formation of lung metastasis as part of the progression of colon cancer is a poorly understood process. Theoretically, liver metastases could seed lung metastases. METHODS To assess the contribution of the liver lymphatic vasculature to metastatic spread to the lungs, we generated murine liver-metastasis-derived organoids overexpressing vascular endothelial growth factor (VEGF)-C. The organoids were reimplanted into the mouse liver for tumour generation and onward metastasis. RESULTS Liver metastases from patients with concomitant lung metastases showed higher expression of VEGF-C, lymphatic vessel hyperplasia, and tumour cell invasion into lymphatic vessels when compared to those without lung metastases. Reimplantation of VEGF-C overexpressing organoids into the mouse liver showed that VEGF-C caused peritumoral lymphatic vessel hyperplasia, lymphatic tumour cell invasion, and lung metastasis formation. This change in metastatic organotropism was accompanied by reduced expression of WNT-driven adult stem cell markers, and increased expression of fetal stem cell markers and NOTCH pathway genes. Further NOTCH pathway inhibition with γ-secretase inhibitor (DAPT) in vivo results in a slight reduction in lung metastases and a decrease in lymphatic hyperplasia and invasion in VEGF-C-overexpressing tumours. CONCLUSION Collectively, these data indicate that VEGF-C can drive onward metastasis from the liver to the lung and suggest that targeting VEGF-C/NOTCH pathways may impair the progression of colorectal cancer.
Collapse
Affiliation(s)
- Susanna Poghosyan
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
| | - Nicola Frenkel
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Lotte van den Bent
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Danielle Raats
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Tessa Spaapen
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Jamila Laoukili
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Inne Borel Rinkes
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Onno Kranenburg
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Jeroen Hagendoorn
- Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| |
Collapse
|
4
|
Bezrookove V, Kianian S, McGeever L, Jones R, Caressi C, Nosrati M, Kim KB, Leong SP, Miller JR, Desprez PY, Kashani-Sabet M. The Molecular Evolution of Melanoma Distant Metastases. J Invest Dermatol 2024; 144:2530-2540.e1. [PMID: 38582370 DOI: 10.1016/j.jid.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The evolution of primary melanoma to lymph node and distant metastasis is incompletely understood. We examined the genomic diversity in melanoma progression in matched primary melanomas and lymph node and distant metastases from 17 patients. FISH analysis revealed cancer cell fractions with monotonic copy number alterations, including PHIP gain and PTEN loss, in the metastatic cascade. By contrast, the cancer cell fraction with copy number alterations for BPTF and MITF was reduced in lymph node metastases but increased in distant metastases. Separately, the cancer cell fraction with NCOA3 copy number alteration was comparable between primary tumors and lymph node metastases yet increased in distant metastases. These results suggest enrichment of the phosphoinositide 3-kinase and MITF pathways in the transition through the metastatic cascade. By contrast, next-generation sequencing analysis did not identify a consistent pattern of changes in variant allele frequency while revealing several intriguing findings, including decreased variant allele frequency in distant metastases and distinct drivers in lymph node versus distant metastases. These results provide evidence that distant melanoma metastasis does not always emanate from lymph node metastasis. These results enhance our understanding of clonal patterns of melanoma metastasis, with possible implications for targeted therapy and metastasis competency.
Collapse
Affiliation(s)
- Vladimir Bezrookove
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Sara Kianian
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Lea McGeever
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Robyn Jones
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Chongshan Caressi
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Stanley P Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - James R Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA.
| |
Collapse
|
5
|
Rong J, Deng W. Survival Benefits of Postoperative Chemotherapy in Patients With Colorectal Mucinous Adenocarcinoma: An Analysis Utilizing Propensity Score Matching From the Surveillance, Epidemiology, and End Results Database. Am Surg 2024; 90:2969-2984. [PMID: 38849300 DOI: 10.1177/00031348241257469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
OBJECTIVE This study aimed to investigate the characteristics of patients with colorectal mucinous adenocarcinoma (MAC) who benefit from postoperative chemotherapy (POCT) and to develop effective postoperative survival nomograms for predicting overall survival (OS) in colorectal MAC patients. METHODS Data of colorectal MAC patients who underwent surgery from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2020 were collected. Patients were grouped based on POCT, and intergroup analysis was performed using 1:1 propensity score matching (PSM). Kaplan-Meier (K-M) curves were used to compare the prognosis between the 2 groups. Cox analysis was employed to identify factors associated with OS in patients with colorectal MAC who underwent POCT. The variance inflation factor (VIF) and bilateral stepwise regression were used to determine factors included in the model. Additionally, a nomogram was constructed to predict postoperative survival outcomes for patients. The discriminative ability of the nomograms was evaluated using the C-index and calibration curve analysis, the decision curve analysis (DCA) assessed the clinical utility of the nomogram, and the receiver operating characteristic (ROC) curve evaluated the nomograms' performance. RESULTS This study encompassed 6829 patients with colorectal MAC, among whom 2258 received POCT, and 4571 did not. Whether pre or post PSM, patients in the POCT group consistently exhibited a superior median OS compared to those in the postoperative non-chemotherapy group (P < .0001). For colorectal MAC patients undergoing POCT, OS was correlated with factors such as patient age, carcinoembryonic antigen levels, tumor deposits, perineural invasion (PNI), lymph node examination count, T staging, and Grade staging. Notably, a significant chemotherapy advantage was observed in patients without perineural invasion, those with lymph node examination counts exceeding 12, and patients with moderately differentiated tumors. The overall colorectal MAC patient postoperative OS predictive nomogram demonstrated a C-index of .74, with a calibration curve near the diagonal and a DCA curve indicating positive net benefits. In comparison to TNM staging, the ROC curves of the nomogram at 1 year, 3 years, and 5 years demonstrated superior predictive capabilities (AUC: .80 vs .71, .78 vs .71, .77 vs .70). CONCLUSION This study revealed the characteristics of colorectal MAC patients who benefit from POCT and established effective prognostic nomograms, which can aid clinicians in designing personalized treatment plans for individual patients and promote precision medicine.
Collapse
Affiliation(s)
- Jun Rong
- Department of Gastrointestinal Surgery, Pingxiang People's Hospital, Pingxiang, China
| | - Wensheng Deng
- Department of Gastrointestinal Surgery, Pingxiang People's Hospital, Pingxiang, China
| |
Collapse
|
6
|
Chen H, Ji L, Wong A, Chu Y, Feng W, Zhu Y, Wang J, Comeo E, Kim DH, Stocks MJ, Gershkovich P. Delivery of imiquimod to intestinal lymph nodes following oral administration. Int J Pharm 2024; 667:124895. [PMID: 39486489 DOI: 10.1016/j.ijpharm.2024.124895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Intestinal lymph nodes are involved in the progression of colorectal cancer (CRC). Tumours suppress the activation of dendritic cells (DCs) in draining lymph nodes, diminishing anti-cancer immune response. Imiquimod (IMQ) facilitates DCs activation via toll-like receptor 7, suggesting that targeted delivery of IMQ to intestinal lymph nodes can improve the treatment of CRC. This study aims to enhance the delivery of IMQ to intestinal lymph nodes by a highly lipophilic prodrug approach. Amide prodrugs were synthesised by conjugating IMQ with saturated and unsaturated medium- to long-chain fatty acids. Their potential for intestinal lymphatic transport was assessed by their affinity to chylomicrons and solubility in long-chain triglycerides. Further selection of prodrug candidates was determined by resistance to enzymatic hydrolysis in intestinal lumen and release of IMQ in the lymphatics using fasting state simulated intestinal fluid supplemented with esterases, brush border enzyme vesicles and plasma. Key pharmacokinetic parameters and biodistribution in rats were assessed for the most promising compounds, prodrugs 5 and 8. The plasma concentration-time profile of IMQ following oral administration of the prodrugs was less erratic in comparison to the administration of unmodified IMQ. The lymph-to-plasma ratios of IMQ concentration increased 1.9- and 1.7-fold using prodrugs 5 and 8 in comparison to administration of unmodified IMQ, respectively. Importantly, the average concentration of IMQ in mesenteric lymph nodes (MLN) was 11.2- and 7.6-fold higher than in plasma following the administration of prodrugs 5 and 8, respectively. Additionally, the non-specific wide distribution of IMQ into various organs and tissues was reduced with prodrugs. This work suggests that the highly lipophilic prodrug approach can efficiently deliver IMQ to intestinal lymphatics. In addition, this study demonstrates the feasibility of an amide prodrug approach for intestinal lymphatic targeting.
Collapse
Affiliation(s)
- Haojie Chen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Abigail Wong
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yufei Zhu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Junting Wang
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eleonora Comeo
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Dong-Hyun Kim
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
7
|
Li ZZ, Zhou K, Wu Q, Liu B, Bu LL. Lymph node metastasis in cancer: Clearing the clouds to see the dawn. Crit Rev Oncol Hematol 2024; 204:104536. [PMID: 39426554 DOI: 10.1016/j.critrevonc.2024.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Lymph node metastasis (LNM) is often regarded as an indicator of poor prognosis in various cancers. Despite over three centuries of exploration since its discovery, the molecular mechanisms underlying LNM remain inconclusive. This review summarizes the molecular mechanisms of LNM, using the "PUMP+" principle for clarification. Pathological examination remains the gold standard for LNM diagnosis, yet there is a need to explore early diagnostic strategies that can effectively improve patient outcomes. With the advent of immunotherapy, discussions on the fate of lymph nodes (LN) have emerged, emphasizing the importance of preserving LN integrity prior to immunotherapy. This, in turn, poses higher demands for diagnostic accuracy and precision treatment of LNM. This review comprehensively discusses the molecular mechanisms, diagnostic methods, and treatment strategies for cancer lymph node metastasis, along with current bottlenecks and future directions in this field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
8
|
Burr R, Leshchiner I, Costantino CL, Blohmer M, Sundaresan T, Cha J, Seeger K, Guay S, Danysh BP, Gore I, Jacobs RA, Slowik K, Utro F, Rhrissorrakrai K, Levovitz C, Barth JL, Dubash T, Chirn B, Parida L, Sequist LV, Lennerz JK, Mino-Kenudson M, Maheswaran S, Naxerova K, Getz G, Haber DA. Developmental mosaicism underlying EGFR-mutant lung cancer presenting with multiple primary tumors. NATURE CANCER 2024:10.1038/s43018-024-00840-y. [PMID: 39406916 DOI: 10.1038/s43018-024-00840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/10/2024] [Indexed: 10/30/2024]
Abstract
Although the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple tumors at presentation in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. In the present study, we identified ten patients with early stage, resectable, non-small cell lung cancer who presented with multiple, anatomically distinct, EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole-exome sequencing (WES) and hypermutable poly(guanine) (poly(G)) repeat genotyping as orthogonal methods for lineage tracing. In four patients, developmental mosaicism, assessed by WES and poly(G) lineage tracing, indicates a common non-germline cell of origin. In two other patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. Thus, in addition to germline variants, developmental mosaicism defines a distinct mechanism of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for their etiology and clinical management.
Collapse
Affiliation(s)
- Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Boston University, Boston, MA, USA
| | - Christina L Costantino
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tilak Sundaresan
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karsen Seeger
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Sara Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian P Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ira Gore
- Ascension St. Vincent's Birmingham, Birmingham, AL, USA
| | - Raquel A Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Brian Chirn
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | | | - Lecia V Sequist
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Serio RN, Scheben A, Lu B, Gargiulo DV, Patruno L, Buckholtz CL, Chaffee RJ, Jibilian MC, Persaud SG, Staklinski SJ, Hassett R, Brault LM, Ramazzotti D, Barbieri CE, Siepel AC, Nowak DG. Clonal Lineage Tracing with Somatic Delivery of Recordable Barcodes Reveals Migration Histories of Metastatic Prostate Cancer. Cancer Discov 2024; 14:1990-2009. [PMID: 38969342 DOI: 10.1158/2159-8290.cd-23-1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The patterns by which primary tumors spread to metastatic sites remain poorly understood. Here, we define patterns of metastatic seeding in prostate cancer using a novel injection-based mouse model-EvoCaP (Evolution in Cancer of the Prostate), featuring aggressive metastatic cancer to bone, liver, lungs, and lymph nodes. To define migration histories between primary and metastatic sites, we used our EvoTraceR pipeline to track distinct tumor clones containing recordable barcodes. We detected widespread intratumoral heterogeneity from the primary tumor in metastatic seeding, with few clonal populations instigating most migration. Metastasis-to-metastasis seeding was uncommon, as most cells remained confined within the tissue. Migration patterns in our model were congruent with human prostate cancer seeding topologies. Our findings support the view of metastatic prostate cancer as a systemic disease driven by waves of aggressive clones expanding their niche, infrequently overcoming constraints that otherwise keep them confined in the primary or metastatic site. Significance: Defining the kinetics of prostate cancer metastasis is critical for developing novel therapeutic strategies. This study uses CRISPR/Cas9-based barcoding technology to accurately define tumor clonal patterns and routes of migration in a novel somatically engineered mouse model (EvoCaP) that recapitulates human prostate cancer using an in-house developed analytical pipeline (EvoTraceR).
Collapse
Affiliation(s)
- Ryan N Serio
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Billy Lu
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | | | - Lucrezia Patruno
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | | | - Ryan J Chaffee
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | | | - Stephen J Staklinski
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Rebecca Hassett
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Lise M Brault
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Christopher E Barbieri
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Urology, Weill Cornell Medicine, New York, New York
| | - Adam C Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Dawid G Nowak
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| |
Collapse
|
10
|
Brouwer NPM, Oguz Erdogan AS, van Vliet S, Rutgers N, Knijn N, van Lijnschoten G, Tan JJ, de Wilt JHW, Hugen N, Brown G, Simmer F, Nagtegaal ID. Unraveling the routes to distant metastases in colorectal cancer: Tumor deposits and lymph node metastases as the gateway. Cancer Commun (Lond) 2024; 44:1209-1213. [PMID: 39183541 DOI: 10.1002/cac2.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
| | - Ayse Selcen Oguz Erdogan
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Shannon van Vliet
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Natasja Rutgers
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Nikki Knijn
- Department of Pathology, PathologyDNA, Arnhem, Gelderland, The Netherlands
| | - Gesina van Lijnschoten
- Department of Pathology, Eurofins/Laboratoria voor Pathologie en Medische Microbiologie Nederland, Eindhoven, Noord-Brabant, The Netherlands
| | - Jessica Juliana Tan
- GI Cancer Imaging Research Unit, The Royal Marsden Hospital, Sutton, London, United Kingdom
| | | | - Niek Hugen
- Department of Surgery, Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
- Department of Surgery, Rijnstate Hospital, Arnhem, Gelderland, The Netherlands
| | - Gina Brown
- Imperial College London Hammersmith Campus, London, London, United Kingdom
| | - Femke Simmer
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Iris Dionne Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
11
|
Kalaei Z, Shekarchi AA, Hojjat-Farsangi M, Jalali P, Jadidi-Niaragh F. The prognostic and therapeutic potential of vimentin in colorectal cancer. Mol Biol Rep 2024; 51:1027. [PMID: 39347868 DOI: 10.1007/s11033-024-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Several cells and molecules in the tumor microenvironment have been introduced as effective factors in the prognosis and progression of colorectal cancer. As a key element of the intermediate filament family, vimentin is expressed by mesenchymal cells in a ubiquitous manner and contributes significantly to cellular integrity and stress resistance in colorectal cancer. Recent studies have shown that alterations in the expression patterns of intermediate filaments are significantly related to cancer progression, especially in phenotypes associated with cellular migration and invasion. In addition to its multiple biological roles, vimentin also has a substantial function in mediating the epithelial-mesenchymal transition. Therefore, evaluating vimentin as an effective factor involved in the prognosis of colorectal cancer and targeting it as a novel approach to cancer therapy have become one of the main goals of many researchers worldwide. In this article, we will review the various biological functions of vimentin, as well as its relationship with colorectal cancer with the aim of providing novel insights into its clinical importance in the prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Wassenaar ECE, Gorelick AN, Hung WT, Cheek DM, Kucukkose E, Lee IH, Blohmer M, Degner S, Giunta P, Wiezer RMJ, Raicu MG, Ubink I, Klaasen SJ, Lansu N, Watson EV, Corcoran RB, Boland G, Getz G, Kops GJPL, Juric D, Lennerz JK, Boerma D, Kranenburg O, Naxerova K. A unique interplay of access and selection shapes peritoneal metastasis evolution in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614736. [PMID: 39386634 PMCID: PMC11463674 DOI: 10.1101/2024.09.25.614736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Whether metastasis in humans can be accomplished by most primary tumor cells or requires the evolution of a specialized trait remains an open question. To evaluate whether metastases are founded by non-random subsets of primary tumor lineages requires extensive, difficult-to-implement sampling. We have realized an unusually dense multi-region sampling scheme in a cohort of 26 colorectal cancer patients with peritoneal metastases, reconstructing the evolutionary history of on average 28.8 tissue samples per patient with a microsatellite-based fingerprinting assay. To assess metastatic randomness, we evaluate inter- and intra-metastatic heterogeneity relative to the primary tumor and find that peritoneal metastases are more heterogeneous than liver metastases but less diverse than locoregional metastases. Metachronous peritoneal metastases exposed to systemic chemotherapy show significantly higher inter-lesion diversity than synchronous, untreated metastases. Projection of peritoneal metastasis origins onto a spatial map of the primary tumor reveals that they often originate at the deep-invading edge, in contrast to liver and lymph node metastases which exhibit no such preference. Furthermore, peritoneal metastases typically do not share a common subclonal origin with distant metastases in more remote organs. Synthesizing these insights into an evolutionary portrait of peritoneal metastases, we conclude that the peritoneal-metastatic process imposes milder selective pressures onto disseminating cancer cells than the liver-metastatic process. Peritoneal metastases' unique evolutionary features have potential implications for staging and treatment.
Collapse
Affiliation(s)
- Emma CE Wassenaar
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexander N Gorelick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Wei-Ting Hung
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Present address: Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - David M Cheek
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emre Kucukkose
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I-Hsiu Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Degner
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Peter Giunta
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Rene MJ Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Mihaela G Raicu
- Department of Pathology, St. Antonius Hospital, Nieuwegein, the Netherlands
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Inge Ubink
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Emma V. Watson
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Ryan B. Corcoran
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve Boland
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gad Getz
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Geert JPL Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Dejan Juric
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Djamila Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Cai J, Zhang W, Lu Y, Liu W, Zhou H, Liu M, Bi X, Liu J, Chen J, Yin Y, Deng Y, Luo Z, Yang Y, Chen Q, Chen X, Xu Z, Zhang Y, Wu C, Long Q, Huang C, Yan C, Liu Y, Guo L, Li W, Yuan P, Jiao Y, Song W, Wang X, Huang Z, Ying J, Zhao H. Single-cell exome sequencing reveals polyclonal seeding and TRPS1 mutations in colon cancer metastasis. Signal Transduct Target Ther 2024; 9:247. [PMID: 39307879 PMCID: PMC11417107 DOI: 10.1038/s41392-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.
Collapse
Affiliation(s)
- Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yalan Lu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjie Liu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueyang Zhang
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Qizhao Long
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Chunyuan Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucheng Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Verhagen MP, Xu T, Stabile R, Joosten R, Tucci FA, van Royen M, Trerotola M, Alberti S, Sacchetti A, Fodde R. The SW480 cell line as a model of resident and migrating colon cancer stem cells. iScience 2024; 27:110658. [PMID: 39246444 PMCID: PMC11379671 DOI: 10.1016/j.isci.2024.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Intra-tumor heterogeneity, i.e., the presence of diverse cell types and subpopulations within tumors, presents a significant obstacle in cancer treatment due to its negative consequences for resistance to therapy and disease recurrence. However, the mechanisms that underlie intra-tumor heterogeneity and result in the plethora of different cancer cells within a single lesion remain poorly understood. Here, we leverage the SW480 cell line as a model system to investigate the molecular and functional diversity of colon cancer cells. Through a combination of fluorescence-activated cell sorting (FACS) analysis and transcriptomic profiling, we identified three distinct subpopulations, namely resident cancer stem cells (rCSCs), migratory CSCs (mCSCs), and high-relapse cells (HRCs). These subpopulations show varying Wnt signaling levels and gene expression profiles mirroring their stem-like and functional properties. Examination of publicly available spatial transcriptomic data confirms the presence of these subpopulations in patient-derived cancers and reveals their distinct spatial distribution relative to the tumor microenvironment.
Collapse
Affiliation(s)
- Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tong Xu
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roberto Stabile
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Francesco A Tucci
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin van Royen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marco Trerotola
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Saverio Alberti
- Department of Biomedical Sciences, University of Messina, Messina, Italy
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
15
|
Koyyalagunta D, Ganesh K, Morris Q. Inferring cancer type-specific patterns of metastatic spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602790. [PMID: 39282311 PMCID: PMC11398359 DOI: 10.1101/2024.07.09.602790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The metastatic spread of a cancer can be reconstructed from DNA sequencing of primary and metastatic tumours, but doing so requires solving a challenging combinatorial optimization problem. This problem often has multiple solutions that cannot be distinguished based on current maximum parsimony principles alone. Current algorithms use ad hoc criteria to select among these solutions, and decide, a priori, what patterns of metastatic spread are more likely, which is itself a key question posed by studies of metastasis seeking to use these tools. Here we introduce Metient, a freely available open-source tool which proposes multiple possible hypotheses of metastatic spread in a cohort of patients and rescores these hypotheses using independent data on genetic distance of metastasizing clones and organotropism. Metient is more accurate and is up to 50x faster than current state-of-the-art. Given a cohort of patients, Metient can calibrate its parsimony criteria, thereby identifying shared patterns of metastatic dissemination in the cohort. Reanalyzing metastasis in 169 patients based on 490 tumors, Metient automatically identifies cancer type-specific trends of metastatic dissemination in melanoma, high-risk neuroblastoma and non-small cell lung cancer. Metient's reconstructions usually agree with semi-manual expert analysis, however, in many patients, Metient identifies more plausible migration histories than experts, and further finds that polyclonal seeding of metastases is more common than previously reported. By removing the need for hard constraints on what patterns of metastatic spread are most likely, Metient introduces a way to further our understanding of cancer type-specific metastatic spread.
Collapse
Affiliation(s)
- Divya Koyyalagunta
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quaid Morris
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
16
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
17
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
18
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
19
|
Akdag G, Isik D, Dogan A, Yildirim S, Kinikoglu O, Topal A, Oksuz S, Turkoglu E, Surmeli H, Basoglu T, Sever ON, Odabas H, Yildirim ME, Turan N. Does Adjuvant Chemotherapy Benefit Patients with T4 N0 Colon Cancer? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1372. [PMID: 39202652 PMCID: PMC11356621 DOI: 10.3390/medicina60081372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Colorectal cancer (CRC) poses a major global health challenge, with high incidence rates and ongoing treatment debates. Adjuvant chemotherapy benefits for high-risk subgroups, particularly stage II disease, remain controversial. This study seeks to clarify this issue by specifically examining the impact of adjuvant chemotherapy on disease-free survival (DFS) and overall survival (OS) in patients diagnosed with T4 colon cancer. Materials and Methods: This retrospective study analyzed patients undergoing radical surgery for T4 colon cancer between 2002 and 2023. Results: Our study of 184 pT4 pN0 colon cancer patients revealed that 79.3% received adjuvant chemotherapy. Multivariate analysis demonstrated significant DFS improvement: a 60% reduction in risk for those who received adjuvant therapy (0.40 95% CI: 0.25-0.62, p < 0.001). Lymphovascular invasion (LVI) and adjuvant treatment were also significantly associated with OS. Adjuvant treatment reduced mortality by 60% (HR: 0.40, 95% CI: 0.23-0.68, p = 0.001). Patients with LVI had a 1.9-fold increase in mortality (HR: 1.94, 95% CI: 1.17-3.20, p = 0.011). These findings underscore the potential value of adjuvant chemotherapy and highlight the importance of treatment completion in managing T4 colon cancer. Conclusions: Our study identifies LVI and adjuvant chemotherapy as key prognostic factors in T4 colon cancer patients. These results support the consideration of adjuvant chemotherapy in this patient population.
Collapse
Affiliation(s)
- Goncagul Akdag
- Dr Lütfi Kırdar Kartal Eğitim ve Araştırma Hastanesi, 34865 Istanbul, Turkey; (D.I.); (A.D.); (S.Y.); (O.K.); (A.T.); (S.O.); (E.T.); (H.S.); (T.B.); (O.N.S.); (H.O.); (M.E.Y.); (N.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lei PJ, Fraser C, Jones D, Ubellacker JM, Padera TP. Lymphatic system regulation of anti-cancer immunity and metastasis. Front Immunol 2024; 15:1449291. [PMID: 39211044 PMCID: PMC11357954 DOI: 10.3389/fimmu.2024.1449291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer dissemination to lymph nodes (LN) is associated with a worse prognosis, increased incidence of distant metastases and reduced response to therapy. The LN microenvironment puts selective pressure on cancer cells, creating cells that can survive in LN as well as providing survival advantages for distant metastatic spread. Additionally, the presence of cancer cells leads to an immunosuppressive LN microenvironment, favoring the evasion of anti-cancer immune surveillance. However, recent studies have also characterized previously unrecognized roles for tumor-draining lymph nodes (TDLNs) in cancer immunotherapy response, including acting as a reservoir for pre-exhausted CD8+ T cells and stem-like CD8+ T cells. In this review, we will discuss the spread of cancer cells through the lymphatic system, the roles of TDLNs in metastasis and anti-cancer immune responses, and the therapeutic opportunities and challenges in targeting LN metastasis.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Cameron Fraser
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jessalyn M. Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Timothy P. Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Nathanson SD, Dieterich LC, Zhang XHF, Chitale DA, Pusztai L, Reynaud E, Wu YH, Ríos-Hoyo A. Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Clin Exp Metastasis 2024; 41:417-437. [PMID: 37688650 DOI: 10.1007/s10585-023-10230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Health, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
- Cancer Center, Henry Ford Health, Detroit, MI, USA.
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emma Reynaud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
23
|
Leong SP, Witte MH. Cancer metastasis through the lymphatic versus blood vessels. Clin Exp Metastasis 2024; 41:387-402. [PMID: 38940900 PMCID: PMC11374872 DOI: 10.1007/s10585-024-10288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/10/2024] [Indexed: 06/29/2024]
Abstract
Whether cancer cells metastasize from the primary site to the distant sites via the lymphatic vessels or the blood vessels directly into the circulation is still under intense study. In this review article, we follow the journey of cancer cells metastasizing to the sentinel lymph nodes and beyond to the distant sites. We emphasize cancer heterogeneity and microenvironment as major determinants of cancer metastasis. Multiple molecules have been found to be associated with the complicated process of metastasis. Based on the large sentinel lymph node data, it is reasonable to conclude that cancer cells may metastasize through the blood vessels in some cases but in most cases, they use the sentinel lymph nodes as the major gateway to enter the circulation to distant sites.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, University of California School of Medicine, San Francisco, USA.
| | - Marlys H Witte
- Department of Surgery, Neurosurgery and Pediatrics, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| |
Collapse
|
24
|
Qin Q, Zhang Q, Li P, Wang R, Liu Y, Deng R, Zhang J, Nie Q, Zhou H, Zhou Y. The hybrid nanosystem for the identification and magnetic hyperthermia immunotherapy of metastatic sentinel lymph nodes as a multifunctional theranostic agent. Front Bioeng Biotechnol 2024; 12:1445829. [PMID: 39135950 PMCID: PMC11317281 DOI: 10.3389/fbioe.2024.1445829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Lymphatic metastasis is the main cause of early-stage tumor spread, making the identification and therapy of metastatic sentinel lymph nodes (SLNs) are highly desirable in clinic. Currently, suspected malignant SLNs typically undergo a series of independent operations in clinical practice, including imaging, staining, sentinel lymph node biopsy (SLNB) and lymph node dissection (LND), which brings inconvenience to diagnosis and treatment, and may cause postoperative complications for patients. Moreover, the ordinary removal of tumor-draining lymph nodes (TDLNs) may do harm to systemic immunity required for tumor eradication. Hence, we utilized the hybrid nanosystem (SPIOs + RPPs) we constructed before for the integrated staining, ultrasound imaging, and therapy of metastatic SLNs. In this study, SPIOs + RPPs could migrate into SLNs successfully to stain them black for easy visual identification. Beyond staining, the hybrid nanosystem could realize contrast enhanced ultrasound (CEUS) imaging in SLNs. Meanwhile, it could inhibit cancer cells to lower the tumor burden and reverse immune-suppressive microenvironment of metastatic SLNs effectively via magnetic hyperthermia immunotherapy in VX2 tumor-bearing rabbits with popliteal fossa lymph node metastasis. These findings indicate that SPIOs + RPPs is a potential multifunctional theranostic agent for detection and therapy of lymphatic metastasis.
Collapse
Affiliation(s)
- Qiaoxi Qin
- Department of Ultrasound, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Qin Zhang
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Pan Li
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ronghui Wang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Liu
- Department of Ultrasound, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Ruxi Deng
- Department of Ultrasound, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Juanmin Zhang
- Department of Ultrasound, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Quanyu Nie
- Department of Ultrasound, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hong Zhou
- Department of Ultrasound, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yang Zhou
- Department of Ultrasound, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
25
|
Ye LY, Li YS, Ge T, Liu LC, Si JX, Yang X, Fan WJ, Liu XZ, Zhang YN, Wang JW, Wang SB, Zou H, Zheng YL, Jin KT, Mao ZW, Cai Y, Mou XZ. Engineered Luminescent Oncolytic Vaccinia Virus Activation of Photodynamic-Immune Combination Therapy for Colorectal Cancer. Adv Healthc Mater 2024; 13:e2304136. [PMID: 38551143 DOI: 10.1002/adhm.202304136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Oncolytic virus therapy is currently regarded as a promising approach in cancer immunotherapy. It has greater therapeutic advantages for colorectal cancer that is prone to distant metastasis. However, the therapeutic efficacy and clinical application of viral agents alone for colorectal cancer remain suboptimal. In this study, an engineered oncolytic vaccinia virus (OVV-Luc) that expresses the firefly luciferase gene is developed and loaded Chlorin e6 (Ce6) onto the virus surface through covalent coupling, resulting in OVV-Luc@Ce6 (OV@C). The OV@C infiltrates tumor tissue and induces endogenous luminescence through substrate catalysis, resulting in the production of reactive oxygen species. This unique system eliminates the need for an external light source, making it suitable for photodynamic therapy (PDT) in deep tissues. Moreover, this synergistic effect between PDT and viral immunotherapy enhances dendritic cell maturation, macrophage polarization, and reversal of the immunosuppressive microenvironment. This synergistic effect has the potential to convert a "cold" into a "hot" tumor, it offers valuable insights for clinical translation and application.
Collapse
Affiliation(s)
- Lu-Yi Ye
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi-Shu Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Tong Ge
- Department of Emergency Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, China
| | - Long-Cai Liu
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Wei-Jiao Fan
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiao-Zhen Liu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - You-Ni Zhang
- Department of Emergency Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, China
| | - Shi-Bing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Hai Zou
- Department of Critical Care, Fudan University, Shanghai Cancer Center, Shanghai, 200032, China
| | - Yue-Liang Zheng
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Ke-Tao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Zheng-Wei Mao
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Cai
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiao-Zhou Mou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Department of Emergency Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, China
| |
Collapse
|
26
|
Hijazi A, Galon J. Principles of risk assessment in colon cancer: immunity is key. Oncoimmunology 2024; 13:2347441. [PMID: 38694625 PMCID: PMC11062361 DOI: 10.1080/2162402x.2024.2347441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
In clinical practice, the administration of adjuvant chemotherapy (ACT) following tumor surgical resection raises a critical dilemma for stage II colon cancer (CC) patients. The prognostic features used to identify high-risk CC patients rely on the pathological assessment of tumor cells. Currently, these factors are considered for stratifying patients who may benefit from ACT at early CC stages. However, the extent to which these factors predict clinical outcomes (i.e. recurrence, survival) remains highly controversial, also uncertainty persists regarding patients' response to treatment, necessitating further investigation. Therefore, an imperious need is to explore novel biomarkers that can reliably stratify patients at risk, to optimize adjuvant treatment decisions. Recently, we evaluated the prognostic and predictive value of Immunoscore (IS), an immune digital-pathology assay, in stage II CC patients. IS emerged as the sole significant parameter for predicting disease-free survival (DFS) in high-risk patients. Moreover, IS effectively stratified patients who would benefit most from ACT based on their risk of recurrence, thus predicting their outcomes. Notably, our findings revealed that digital IS outperformed the visual quantitative assessment of the immune response conducted by expert pathologists. The latest edition of the WHO classification for digestive tumor has introduced the evaluation of the immune response, as assessed by IS, as desirable and essential diagnostic criterion. This supports the revision of current cancer guidelines and strongly recommends the implementation of IS into clinical practice as a patient stratification tool, to guide CC treatment decisions. This approach may provide appropriate personalized therapeutic decisions that could critically impact early-stage CC patient care.
Collapse
Affiliation(s)
- Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Veracyte, Marseille, France
| |
Collapse
|
27
|
Xu ZY, Li ZZ, Cao LM, Zhong NN, Liu XH, Wang GR, Xiao Y, Liu B, Bu LL. Seizing the fate of lymph nodes in immunotherapy: To preserve or not? Cancer Lett 2024; 588:216740. [PMID: 38423247 DOI: 10.1016/j.canlet.2024.216740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Lymph node dissection has been a long-standing diagnostic and therapeutic strategy for metastatic cancers. However, questions over myriad related complications and survival outcomes are continuously debated. Immunotherapy, particularly neoadjuvant immunotherapy, has revolutionized the conventional paradigm of cancer treatment, yet has benefited only a fraction of patients. Emerging evidence has unveiled the role of lymph nodes as pivotal responders to immunotherapy, whose absence may contribute to drastic impairment in treatment efficacy, again posing challenges over excessive lymph node dissection. Hence, centering around this theme, we concentrate on the mechanisms of immune activation in lymph nodes and provide an overview of minimally invasive lymph node metastasis diagnosis, current best practices for activating lymph nodes, and the prognostic outcomes of omitting lymph node dissection. In particular, we discuss the potential for future comprehensive cancer treatment with effective activation of immunotherapy driven by lymph node preservation and highlight the challenges ahead to achieve this goal.
Collapse
Affiliation(s)
- Zhen-Yu Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
28
|
Wolf B, Jain RK. Unraveling a hidden player in lymphovascular invasion in bladder cancer. Cancer Cell 2024; 42:509-512. [PMID: 38458186 DOI: 10.1016/j.ccell.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Tumor invasion into the lymphatic vasculature represents a critical step during malignant progression of epithelial cancers. In this issue of Cancer Cell, Zheng et al. unravel how cancer-associated fibroblasts interact with lymphatic endothelial cells and the extracellular matrix to promote lymphatic tumor invasion and suggest that these processes could be treatment targets.
Collapse
Affiliation(s)
- Benjamin Wolf
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox-7, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox-7, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Banipal GS, Stimec BV, Andersen SN, Edwin B, Nesgaard JM, Šaltytė Benth J, Ignjatovic D. Are Metastatic Central Lymph Nodes (D3 volume) in right-sided Colon Cancer a Sign of Systemic Disease? A sub-group Analysis of an Ongoing Multicenter Trial. Ann Surg 2024; 279:648-656. [PMID: 37753647 PMCID: PMC10922660 DOI: 10.1097/sla.0000000000006099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Assess outcomes of patients with right-sided colon cancer with metastases in the D3 volume after personalized surgery. BACKGROUND Patients with central lymph node metastasis (D3-PNG) are considered to have a systemic disease with a poor prognosis. A 3-dimensional definition of the dissection volume allows the removal of all central nodes. MATERIALS AND METHODS D3-PNG includes consecutive patients from an ongoing clinical trial. Patients were stratified into residual disease negative (D3-RDN) and residual disease positive (D3-RDP) groups. D3-RDN was further stratified into 4 periods to identify a learning curve. A personalized D3 volume (defined through arterial origins and venous confluences) was removed " en bloc" through medial-to-lateral dissection, and the D3 volume of the specimen was analyzed separately. RESULTS D3-PNG contained 42 (26 females, 63.1 SD 9.9 y) patients, D3-RDN:29 (17 females, 63.4 SD 10.1 y), and D3-RDP:13 (9 females, 62.2 SD 9.7 y). The mean overall survival (OS) days were D3-PNG:1230, D3-RDN:1610, and D3-RDP:460. The mean disease-free survival (DFS) was D3-PNG:1023, D3-RDN:1461, and D3-RDP:74 days. The probability of OS/DFS were D3-PNG:52.1%/50.2%, D3-RDN:72.9%/73.1%, D3-RDP: 7.7%/0%. There is a significant change in OS/DFS in the D3-RDN from 2011-2013 to 2020-2022 (both P =0.046) and from 2014-2016 to 2020-2022 ( P =0.028 and P =0.005, respectively). CONCLUSION Our results indicate that surgery can achieve survival in most patients with central lymph node metastases by removing a personalized and anatomically defined D3 volume. The extent of mesenterectomy and the quality of surgery are paramount since a learning curve has demonstrated significantly improved survival over time despite the low number of patients. These results imply a place for the centralization of this patient group where feasible.
Collapse
Affiliation(s)
- Gurpreet Singh Banipal
- Department of Digestive Surgery, Akershus University Hospital, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bojan Vladimir Stimec
- Anatomy Sector, Teaching Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Solveig Norheim Andersen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Akershus University Hospital, Norway
| | - Bjorn Edwin
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Interventional Centre and Department of HPB Surgery, Rikshospitalet, Oslo University, Hospital, Oslo, Norway
| | - Jens Marius Nesgaard
- Department of Gastrointestinal Surgery, Vestfold Hospital Trust, Tonsberg, Norway
| | - Jurate Šaltytė Benth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Health Services Research Unit, Akershus University Hospital, Norway
| | - Dejan Ignjatovic
- Department of Digestive Surgery, Akershus University Hospital, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Liu ZL, Meng XY, Bao RJ, Shen MY, Sun JJ, Chen WD, Liu F, He Y. Single cell deciphering of progression trajectories of the tumor ecosystem in head and neck cancer. Nat Commun 2024; 15:2595. [PMID: 38519500 PMCID: PMC10959966 DOI: 10.1038/s41467-024-46912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and has high heterogeneity and unsatisfactory outcomes. To better characterize the tumor progression trajectory, we perform single-cell RNA sequencing of normal tissue, precancerous tissue, early-stage, advanced-stage cancer tissue, lymph node, and recurrent tumors tissue samples. We identify the transcriptional development trajectory of malignant epithelial cells and a tumorigenic epithelial subcluster regulated by TFDP1. Furthermore, we find that the infiltration of POSTN+ fibroblasts and SPP1+ macrophages gradually increases with tumor progression; their interaction or interaction with malignant cells also gradually increase to shape the desmoplastic microenvironment and reprogram malignant cells to promote tumor progression. Additionally, we demonstrate that during lymph node metastasis, exhausted CD8+ T cells with high CXCL13 expression strongly interact with tumor cells to acquire more aggressive phenotypes of extranodal expansion. Finally, we delineate the distinct features of malignant epithelial cells in primary and recurrent tumors, providing a theoretical foundation for the precise selection of targeted therapy for tumors at different stages. In summary, the current study offers a comprehensive landscape and deep insight into epithelial and microenvironmental reprogramming throughout initiation, progression, lymph node metastasis and recurrence of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Z L Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, 200011, China
| | - X Y Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, 200011, China
| | - R J Bao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - M Y Shen
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - J J Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, 200011, China
| | - W D Chen
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - F Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Y He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, 200011, China.
| |
Collapse
|
31
|
Jiang Y, Dong YH, Zhao SW, Liu DY, Zhang JY, Xu XY, Chen H, Chen H, Jin JB. Multiregion WES of metastatic pancreatic neuroendocrine tumors revealed heterogeneity in genomic alterations, immune microenvironment and evolutionary patterns. Cell Commun Signal 2024; 22:164. [PMID: 38448900 PMCID: PMC10916270 DOI: 10.1186/s12964-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs), though uncommon, have a high likelihood of spreading to other body parts. Previously, the genetic diversity and evolutionary patterns in metastatic PanNETs were not well understood. To investigate this, we performed multiregion sampling whole-exome sequencing (MRS-WES) on samples from 10 patients who had not received prior treatment for metastatic PanNETs. This included 29 primary tumor samples, 31 lymph node metastases, and 15 liver metastases. We used the MSK-MET dataset for survival analysis and validation of our findings. Our research indicates that mutations in the MEN1/DAXX genes might trigger the early stages of PanNET development. We categorized the patients based on the presence (MEN1/DAXXmut, n = 7) or absence (MEN1/DAXXwild, n = 3) of these mutations. Notable differences were observed between the two groups in terms of genetic alterations and clinically relevant mutations, confirmed using the MSK-MET dataset. Notably, patients with mutations in MEN1/DAXX/ATRX genes had a significantly longer median overall survival compared to those without these mutations (median not reached vs. 43.63 months, p = 0.047). Multiplex immunohistochemistry (mIHC) analysis showed a more prominent immunosuppressive environment in metastatic tumors, especially in patients with MEN1/DAXX mutations. These findings imply that MEN1/DAXX mutations lead PanNETs through a unique evolutionary path. The disease's progression pattern indicates that PanNETs can spread early, even before clinical detection, highlighting the importance of identifying biomarkers related to metastasis to guide personalized treatment strategies.
Collapse
Affiliation(s)
- Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yi-Han Dong
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shi-Wei Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China
| | - Dong-Yu Liu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Ji-Yang Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Xiao-Ya Xu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Hao Chen
- Bioinformatics Department, JMDNA Inc., Building 23, 500 Furonghua Road, Shanghai, 201203, People's Republic of China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Jia-Bin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
32
|
Tarhini AA, Castellano E, Eljilany I. Treatment of Stage III Resectable Melanoma-Adjuvant and Neoadjuvant Approaches. Cancer J 2024; 30:54-70. [PMID: 38527258 DOI: 10.1097/ppo.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Patients with stage III resectable melanoma carry a high risk of melanoma recurrence that ranges from approximately 40% to 90% at 5 years following surgical management alone. Postoperative systemic adjuvant therapy targets residual micrometastatic disease that could be the source of future recurrence and death from melanoma. Randomized phase III adjuvant trials reported significant improvements in overall survival with high-dose interferon α in 2 of 3 studies (compared with observation and GMK ganglioside vaccine) and with anti-cytotoxic T-lymphocyte antigen 4 ipilimumab at 10 mg/kg compared with placebo and ipilimumab 3 mg/kg compared with high-dose interferon α. In the modern era, more recent phase III trials demonstrated significant recurrence-free survival improvements with anti-programmed cell death protein 1, pembrolizumab, and BRAF-MEK inhibitor combination dabrafenib-trametinib (for BRAF mutant melanoma) versus placebo. Furthermore, anti-programmed cell death protein 1, nivolumab and pembrolizumab have both been shown to significantly improve recurrence-free survival as compared with ipilimumab 10 mg/kg. For melanoma patients with clinically or radiologically detectable locoregionally advanced disease, emerging data support an important role for preoperative systemic neoadjuvant therapy. Importantly, a recent cooperative group trial (S1801) reported superior event-free survival rates with neoadjuvant versus adjuvant therapy. Collectively, current data from neoadjuvant immunotherapy and targeted therapy trials support a future change in clinical practice in favor of neoadjuvant therapy for eligible melanoma patients.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- From the H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Islam Eljilany
- From the H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
33
|
Reeves MQ, Balmain A. Mutations, Bottlenecks, and Clonal Sweeps: How Environmental Carcinogens and Genomic Changes Shape Clonal Evolution during Tumor Progression. Cold Spring Harb Perspect Med 2024; 14:a041388. [PMID: 38052482 PMCID: PMC10910358 DOI: 10.1101/cshperspect.a041388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The transition from a single, initiated cell to a full-blown malignant tumor involves significant genomic evolution. Exposure to carcinogens-whether directly mutagenic or not-can drive progression toward malignancy, as can stochastic acquisition of cancer-promoting genetic events. Mouse models using both carcinogens and germline genetic manipulations have enabled precise inquiry into the evolutionary dynamics that take place as a tumor progresses from benign to malignant to metastatic stages. Tumor progression is characterized by changes in somatic point mutations and copy-number alterations, even though any single tumor can itself have a high or low burden of genomic alterations. Further, lineage-tracing, single-cell analyses and CRISPR barcoding have revealed the distinct clonal dynamics within benign and malignant tumors. Application of these tools in a range of mouse models can shed unique light on the patterns of clonal evolution that take place in both mouse and human tumors.
Collapse
Affiliation(s)
- Melissa Q Reeves
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
34
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Alexander NA, Schaub SK, Goff PH, Hippe DS, Park SY, Lachance K, Bierma M, Liao JJ, Apisarnthanarax S, Bhatia S, Tseng YD, Nghiem PT, Parvathaneni U. Increased risk of recurrence and disease-specific death following delayed postoperative radiation for Merkel cell carcinoma. J Am Acad Dermatol 2024; 90:261-268. [PMID: 37778663 PMCID: PMC11260506 DOI: 10.1016/j.jaad.2023.07.1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 07/27/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is often treated with surgery and postoperative radiation therapy (PORT). The optimal time to initiate PORT (Time-to-PORT [ttPORT]) is unknown. PURPOSE We assessed if delays in ttPORT were associated with inferior outcomes. METHODS Competing risk regression was used to evaluate associations between ttPORT and locoregional recurrence (LRR) for patients with stage I/II MCC in a prospective registry and adjust for covariates. Distant metastasis and death were competing risks. RESULTS The cohort included 124 patients with median ttPORT of 41 days (range: 8-125 days). Median follow-up was 55 months. 17 (14%) patients experienced a LRR, 14 (82%) of which arose outside the radiation field. LRR at 5 years was increased for ttPORT >8 weeks vs ≤ 8 weeks, 28.0% vs 9.2%, P = .006. There was an increase in the cumulative incidence of MCC-specific death with increasing ttPORT (HR = 1.14 per 1-week increase, P = .016). LIMITATIONS The relatively low number of LRRs limited the extent of our multivariable analyses. CONCLUSIONS Delay of PORT was associated with increased LRR, usually beyond the radiation field. This is consistent with the tendency of MCC to spread quickly via lymphatics. Initiation of PORT within 8 weeks was associated with improved locoregional control and MCC-specific survival.
Collapse
Affiliation(s)
- Nora A Alexander
- Department of Dermatology, University of Washington, Seattle, Washington; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stephanie K Schaub
- Department of Radiation Oncology, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Peter H Goff
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Song Y Park
- Department of Dermatology, University of Washington, Seattle, Washington
| | - Kristina Lachance
- Department of Dermatology, University of Washington, Seattle, Washington
| | - Marika Bierma
- Department of Dermatology, University of Washington, Seattle, Washington
| | - Jay J Liao
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | | | - Shailender Bhatia
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Yolanda D Tseng
- Department of Radiation Oncology, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Paul T Nghiem
- Department of Dermatology, University of Washington, Seattle, Washington
| | | |
Collapse
|
36
|
İsmail E, Kutlu B, Acar Hİ, Yörübulut M, Akkoca M, Kocaay AF, Elhan A, Kuzu MA. Lateral Lymph Node Dissection for Locally Advanced Rectal Carcinoma: A Step-by-Step Description of Surgical Anatomical Planes During Cadaveric Dissection and Minimally Invasive Surgery. Surg Laparosc Endosc Percutan Tech 2024; 34:101-107. [PMID: 38134383 DOI: 10.1097/sle.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Total mesorectal excision (TME) is accepted as gold standard method in rectal cancer globally. But there is no standard for lateral lymph nodes. Combination of neoadjuvant treatment plus lateral lymph node dissection (LLND) in select patients might be a promising method. Our purpose is to describe the anatomic landmarks of LLND on cadavers and minimally invasive surgery. MATERIALS AND METHODS Local advanced rectal cancer and lateral lymph node (LLN) metastasis are accepted as an indication of neoadjuvant treatment. LLND was performed according to preoperative imaging after radiochemotherapy. RESULTS Twenty-eight (10.5%) of 267 patients with rectal cancer who had suspected lateral lymph node metastasis (LLNM) with magnetic resonance imaging (MRI) underwent LLND in addition to TME after neoadjuvant chemoradiotherapy. Eight of them had LLNM. Three patients had bilateral LLND and only 1 had LLNM. The median number of harvested lymph nodes was 6. The rates of LLNM increased with the presence of poor prognosis markers. One regional and 1 distant recurrence were detected in patients who had no LLN metastasis compared with2 regional and 4 distant recurrences in the LLN-positive group. CONCLUSIONS Local advanced rectal cancer cases may benefit from LLND, but it does not appear to have an effect on overall survival. There is no consensus whether size and/or morphologic criteria in MRI are the ideal guide for LLND.
Collapse
Affiliation(s)
- Erkin İsmail
- Acibadem Hospital; Departments of General Surgery and Anatomy, Faculty of Medicine, Ankara University; SBU Etlik City Hospital, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang Y, Zhu T, Shi Q, Zhu G, Zhu S, Hou F. Tumor-draining lymph nodes: opportunities, challenges, and future directions in colorectal cancer immunotherapy. J Immunother Cancer 2024; 12:e008026. [PMID: 38242718 PMCID: PMC10806546 DOI: 10.1136/jitc-2023-008026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are potential immunotherapy targets that could expand the population of patients with colorectal cancer (CRC) who may benefit from immunotherapy. Currently, pathological detection of tumor cell infiltration limits the acquisition of immune information related to the resected lymph nodes. Understanding the immune function and metastatic risk of specific stages of lymph nodes can facilitate better discussions on the removal or preservation of lymph nodes, as well as the timing of immunotherapy. This review summarized the contribution of TDLNs to CRC responses to immune checkpoint blockade therapy, local immunotherapy, adoptive cell therapy, and cancer vaccines, and discussed the significance of these findings for the development of diagnostics based on TDLNs and the potential implications for guiding immunotherapy after a definitive diagnosis. Molecular pathology and immune spectrum diagnosis of TDLNs will promote significant advances in the selection of immunotherapy options and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yao Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghui Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siwei Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Braunstein LZ, Khan AJ. Optimization of Breast Cancer Regional Nodal Management. J Clin Oncol 2024; 42:123-126. [PMID: 38048518 PMCID: PMC10824369 DOI: 10.1200/jco.23.02121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023] Open
Affiliation(s)
- Lior Z. Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Atif J. Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
39
|
Shen P, Cheng P, Li Y, Zong G, Deng R, Qian C, Zhao Y, Wei Z, Lu Y. Unveiling the covert interaction between gut microbiota and neutrophils to drive colorectal cancer metastasis. Eur J Pharmacol 2024; 962:176217. [PMID: 38036200 DOI: 10.1016/j.ejphar.2023.176217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The formation of the microenvironment preceding liver metastasis is intricately linked to the intestinal tract. In recent years, mounting evidence has revealed the significant involvement of neutrophil extracellular traps (NETs) in tumor metastasis, particularly in liver metastasis. Disruption of the intestinal barrier can lead to the translocation of bacteria and their metabolites, such as lipopolysaccharide, into the liver. As the primary defense against pathogens, NETs help eliminate gut-derived toxins and shape the liver's inflammatory and immunosuppressive environment. However, this double-edged sword effect can potentially stimulate tumor metastasis by creating a fertile ground for the growth of intestinal tumor cells due to impaired liver tissue and reduced activity of killer immune cells. This comprehensive review systematically describes the influence factors and mechanisms of NETs in colon cancer metastasis and explores their potential as biomarkers and therapeutic targets for liver metastasis.
Collapse
Affiliation(s)
- Peiliang Shen
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanan Li
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
40
|
Delclaux I, Ventre KS, Jones D, Lund AW. The tumor-draining lymph node as a reservoir for systemic immune surveillance. Trends Cancer 2024; 10:28-37. [PMID: 37863720 PMCID: PMC10843049 DOI: 10.1016/j.trecan.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Early in solid tumor development, antigens are presented in tumor-draining lymph nodes (tdLNs), a process that is necessary to set up immune surveillance. Recent evidence indicates that tdLNs fuel systemic tumor-specific T cell responses which may halt cancer progression and facilitate future responses to immunotherapy. These protective responses, however, are subject to progressive dysfunction exacerbated by lymph node (LN) metastasis. We discuss emerging preclinical and clinical literature indicating that the tdLN is a crucial reservoir for systemic immunity that can potentiate immune surveillance. We also discuss the impact of LN metastasis and argue that a better understanding of the relationship between LN metastasis and systemic immunity will be necessary to direct regional disease management in the era of immunotherapy.
Collapse
Affiliation(s)
- Ines Delclaux
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Katherine S Ventre
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
41
|
Reticker-Flynn NE, Engleman EG. Lymph nodes: at the intersection of cancer treatment and progression. Trends Cell Biol 2023; 33:1021-1034. [PMID: 37149414 PMCID: PMC10624650 DOI: 10.1016/j.tcb.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Metastasis to lymph nodes (LNs) is a common feature of disease progression in most solid organ malignancies. Consequently, LN biopsy and lymphadenectomy are common clinical practices, not only because of their diagnostic utility but also as a means of deterring further metastatic spread. LN metastases have the potential to seed additional tissues and can induce metastatic tolerance, a process by which tumor-specific immune tolerance in LNs promotes further disease progression. Nonetheless, phylogenetic studies have revealed that distant metastases are not necessarily derived from nodal metastases. Furthermore, immunotherapy efficacy is increasingly being attributed to initiation of systemic immune responses within LNs. We argue that lymphadenectomy and nodal irradiation should be approached with caution, particularly in patients receiving immunotherapy.
Collapse
Affiliation(s)
- Nathan E Reticker-Flynn
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Beckstead J, Mehrotra K, Wilson K, Fingleton B. Asthma is associated with a lower incidence of metastatic colorectal cancer in a US patient cohort. Front Oncol 2023; 13:1253660. [PMID: 37860183 PMCID: PMC10584144 DOI: 10.3389/fonc.2023.1253660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
In previous pre-clinical studies, we examined the contribution of interleukin 4 receptor (IL4R) signaling in the progression and metastasis of colorectal cancer (CRC). Aberrant activation of this receptor can result in atopic diseases such as asthma. We hypothesized that further evidence for the contribution of excessive IL4R being associated with CRC progression could be seen in medical records, and specifically that chronic asthma patients were more likely to be diagnosed with metastatic CRC. To test this hypothesis, we took advantage of the Synthetic Derivative, a resource developed at Vanderbilt University Medical Center that hosts de-identified data taken from the electronic medical record. We developed search protocols that produced retrospective cohorts of invasive CRC patients and cancer-free equivalents. In comparing 787 metastatic CRC patients to 238 non-metastatic patients, we actually found significantly fewer asthmatics went on to develop metastatic CRC (P=0.0381). By comparing these groups together against 1197 cancer-free patients, even fewer asthmatic patients would develop invasive CRC (P<0.0001). While these results are clearly in opposition to our original hypothesis, they still support a link between chronic asthma and metastatic CRC development. One intriguing possibility, that will be examined in the future, is whether treatment for chronic asthma may be responsible for the reduction in metastatic cancer.
Collapse
Affiliation(s)
| | | | | | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
43
|
Wątor G, Seweryn M, Kapusta P, Świrta J, Wałęga P, Barczyński M, Wołkow PP. Intratumor heterogeneity in colorectal cancer: Distribution of tumor suppressor gene variants with regard to patient lymph node status. Clin Genet 2023; 104:406-417. [PMID: 37339860 DOI: 10.1111/cge.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/22/2023]
Abstract
Intratumor heterogeneity (ITH) results from accumulation of somatic mutations in the fractions of successive cancer cell generations. We aimed to use deep sequencing to investigate ITH in colorectal tumors with particular emphasis on variants in oncogenes (ONC) and tumor suppressor genes (TSG). Samples were collected from 16 patients with colorectal cancer and negative or positive lymph node status (n = 8 each). We deep-sequenced a panel of 56 cancer-related genes in the central and peripheral locations of T3 size primary tumors and healthy mucosa. The central region of T3 tumors has a different frequency profile and composition of genetic variants. This mutation profile is capable of independently discriminating patients with different lymph node status (p = 0.028) in the central region. We noted an increasing number of mutations outside of the central region of the tumor and a higher number of mutations in tumors from node-positive patients. Unexpectedly, in the healthy mucosa, we identified somatic mutations with variant allele frequencies, characteristic not only of heterozygotes and homozygotes but also of other discrete peaks (e.g., around 10%, 20%), suggestive of clonal expansion of certain mutant alleles. We found differences in the distribution of variant allele frequencies in TSGs when comparing node-negative and node-positive tumors (p = 0.029), as well as central and peripheral regions (p = 0.00399). TSGs may play an important role in the escape of the tumor toward metastatic colonization.
Collapse
Affiliation(s)
- Gracjan Wątor
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Jarosław Świrta
- Department of Endocrine Surgery, Third Chair of General Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Wałęga
- Department of Endocrine Surgery, Third Chair of General Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Barczyński
- Department of Endocrine Surgery, Third Chair of General Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
44
|
Burr R, Leshchiner I, Costantino CL, Blohmer M, Sundaresan T, Cha J, Seeger K, Guay S, Danysh BP, Gore I, Jacobs RA, Slowik K, Utro F, Rhrissorrakrai K, Levovitz C, Barth JL, Dubash T, Chirn B, Parida L, Sequist LV, Lennerz JK, Mino-Kenudson M, Maheswaran S, Naxerova K, Getz G, Haber DA. Germline mutations and developmental mosaicism underlying EGFR-mutant lung cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.28.23296274. [PMID: 37808694 PMCID: PMC10557804 DOI: 10.1101/2023.09.28.23296274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
While the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple primary tumors in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. We identified ten patients with early-stage, resectable non-small cell lung cancer who presented with multiple anatomically distinct EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole exome sequencing (WES) and hypermutable poly-guanine (poly-G) repeat genotyping, as orthogonal methods for lineage tracing. In two patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. In four other patients, developmental mosaicism is supported by the poly-G lineage tracing and WES, indicating a common non-germline cell-of-origin. Thus, developmental mosaicism and germline variants define two distinct mechanisms of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for understanding their etiology and clinical management.
Collapse
Affiliation(s)
- Risa Burr
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ignaty Leshchiner
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina L Costantino
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karsen Seeger
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Sara Guay
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Brian P Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ira Gore
- St Vincent’s Hospital, Birmingham, AL, USA
| | - Raquel A Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taronish Dubash
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Brian Chirn
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| |
Collapse
|
45
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
46
|
Yang H, Liu J, Jiang P, Li P, Zhou Y, Zhang Z, Zeng Q, Wang M, Xiao LX, Zhang X, Sun Y, Zhu S. An Analysis of the Gene Expression Associated with Lymph Node Metastasis in Colorectal Cancer. Int J Genomics 2023; 2023:9942663. [PMID: 37719786 PMCID: PMC10501847 DOI: 10.1155/2023/9942663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Objective This study aimed to explore the genes regulating lymph node metastasis in colorectal cancer (CRC) and to clarify their relationship with tumor immune cell infiltration and patient prognoses. Methods The data sets of CRC patients were collected through the Cancer Gene Atlas database; the differentially expressed genes (DEGs) associated with CRC lymph node metastasis were screened; a protein-protein interaction (PPI) network was constructed; the top 20 hub genes were selected; the Gene Ontology functions and the Kyoto Encyclopedia of Genes and Genomes pathways were enriched and analyzed. The Least Absolute Shrinkage and Selection Operator (LASSO) regression method was employed to further screen the characteristic genes associated with CRC lymph node metastasis in 20 hub genes, exploring the correlation between the characteristic genes and immune cell infiltration, conducting a univariate COX analysis on the characteristic genes, obtaining survival-related genes, constructing a risk score formula, conducting a Kaplan-Meier analysis based on the risk score formula, and performing a multivariate COX regression analysis on the clinical factors and risk scores. Results A total of 62 DEGs associated with CRC lymph node metastasis were obtained. Among the 20 hub genes identified via PPI, only calcium-activated chloride channel regulator 1 (CLCA1) expression was down-regulated in lymph node metastasis, and the rest were up-regulated. A total of nine characteristic genes associated with CRC lymph node metastasis (KIF1A, TMEM59L, CLCA1, COL9A3, GDF5, TUBB2B, STMN2, FOXN1, and SCN5A) were screened using the LASSO regression method. The nine characteristic genes were significantly related to different kinds of immune cell infiltration, from which three survival-related genes (TMEM59L, CLCA1, and TUBB2B) were screened. A multi-factor COX regression showed that the risk scores obtained from TMEM59L, CLCA1, and TUBB2B were independent prognostic factors. Immunohistochemical validation was performed in tissue samples from patients with rectal and colon cancer. Conclusion TMEM59L, CLCA1, and TUBB2B were independent prognostic factors associated with lymphatic metastasis of CRC.
Collapse
Affiliation(s)
- Hongjie Yang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jiafei Liu
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Peishi Jiang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Peng Li
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yuanda Zhou
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Zhichun Zhang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qingsheng Zeng
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Luciena Xiao Xiao
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Xipeng Zhang
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yi Sun
- Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Siwei Zhu
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
47
|
Abstract
Lymph node metastasis in breast cancer depends in part on the acquisition of an IFN-dependent, MHC-II+ state that induces regulatory T cell expansion and local immune suppression (Lei et al. 2023. J. Exp. Med.https://doi.org/10.1084/jem.20221847).
Collapse
Affiliation(s)
- Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, Department of Pathology, NYU Grossman School of Medicine, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
48
|
Wang X, Li N, Yin X, Xing L, Zheng Y. Classification of metastatic hepatic carcinoma and hepatocellular carcinoma lesions using contrast-enhanced CT based on EI-CNNet. Med Phys 2023; 50:5630-5642. [PMID: 36869656 DOI: 10.1002/mp.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND For hepatocellular carcinoma and metastatic hepatic carcinoma, imaging is one of the main diagnostic methods. In clinical practice, diagnosis mainly relied on experienced imaging physicians, which was inefficient and cannot met the demand for rapid and accurate diagnosis. Therefore, how to efficiently and accurately classify the two types of liver cancer based on imaging is an urgent problem to be solved at present. PURPOSE The purpose of this study was to use the deep learning classification model to help radiologists classify the single metastatic hepatic carcinoma and hepatocellular carcinoma based on the enhanced features of enhanced CT (Computer Tomography) portal phase images of the liver site. METHODS In this retrospective study, 52 patients with metastatic hepatic carcinoma and 50 patients with hepatocellular carcinoma were among the patients who underwent preoperative enhanced CT examinations from 2017-2020. A total of 565 CT slices from these patients were used to train and validate the classification network (EI-CNNet, training/validation: 452/113). First, the EI block was used to extract edge information from CT slices to enrich fine-grained information and classify them. Then, ROC (Receiver Operating Characteristic) curve was used to evaluate the performance, accuracy, and recall of the EI-CNNet. Finally, the classification results of EI-CNNet were compared with popular classification models. RESULTS By utilizing 80% data for model training and 20% data for model validation, the average accuracy of this experiment was 98.2% ± 0.62 (mean ± standard deviation (SD)), the recall rate was 97.23% ± 2.77, the precision rate was 98.02% ± 2.07, the network parameters were 11.83 MB, and the validation time was 9.83 s/sample. The classification accuracy was improved by 20.98% compared to the base CNN network and the validation time was 10.38 s/sample. Compared with other classification networks, the InceptionV3 network showed improved classification results, but the number of parameters was increased and the validation time was 33 s/sample, and the classification accuracy was improved by 6.51% using this method. CONCLUSION EI-CNNet demonstrated promised diagnostic performance and has potential to reduce the workload of radiologists and may help distinguish whether the tumor is primary or metastatic in time; otherwise, it may be missed or misjudged.
Collapse
Affiliation(s)
- Xuehu Wang
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding, China
- Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding, China
| | - Nie Li
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding, China
- Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding, China
| | - Xiaoping Yin
- Affiliated Hospital of Hebei University, Bao ding, China
| | - Lihong Xing
- CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
49
|
Zhang Y, Liu F, Tan L, Li X, Dai Z, Cheng Q, Liu J, Wang Y, Huang L, Wang L, Wang Z. LncRNA-edited biomimetic nanovaccines combined with anti-TIM-3 for augmented immune checkpoint blockade immunotherapy. J Control Release 2023; 361:671-680. [PMID: 37591462 DOI: 10.1016/j.jconrel.2023.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
T-cell immunoglobulin mucin (TIM)-3 blockade ameliorates T cell exhaustion and triggers dendritic cell (DC) inflammasome activation, showing great potential in immune checkpoint blockade (ICB) immunotherapy. However, pharmacokinetic profile and T cell/DC infiltration in tumor microenvironment is still undesired. Here, we develop a long noncoding RNA (lncRNA)-edited biomimetic nanovaccine combined with anti-TIM-3 to mediate dual-effect antigen cross-presentation and dampen T cell immunosuppression for reinforced ICB immunotherapy. LncRNA inducing major histocompatibility complex I and immunogenicity of tumor (LIMIT)-edited tumor cell membrane is used to encapsulate anti-TIM-3, formulating LCCT. Afterward, LCCT nanoparticles are embedded into an alginate-based hydrogel for suppressing post-surgical tumor relapse. LCCT retains TIM-3 blockade efficacy of anti-TIM-3 in both DCs and CD8+ T cells (beyond 75%). Moreover, the integrated anti-TIM-3 augments endocytosis of LCCT in DCs (1.5-fold), amplifying inflammasome activation and antigen cross-presentation. Furthermore, such DC activation synergistic with LCCT-induced CD8+ T-cell dampened immunosuppression and direct cross-presentation stimulates effector and memory-precursor CD8+ T cells against tumors. This lncRNA-edited biomimetic nanovaccine strategy brings a new sight to improve current ICB immunotherapy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lulu Tan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Dai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Huang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
50
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|