1
|
Li J, Yu Z, Zheng Q, Chen W, Lin X. How antibiotic exposure affect predator-prey interactions by population dynamics in ciliates? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106814. [PMID: 38160499 DOI: 10.1016/j.aquatox.2023.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Biodiversity loss resulting from environmental pollution is a global concern. While interspecific interactions are central to ecology, the impact of environmental pollution on predator-prey interactions and its ecological consequences, such as extinction and biodiversity loss, remain unclear. To investigate the effects of antibiotic exposure on predation strength and the resulting ecological consequence, the Didinium-Paramecium was utilized as a predator-prey model and exposed to nitrofurazone or erythromycin, two common pollutants, respectively. Initially, we determined prey population growth dynamics, body size, and predator numerical-functional responses. Subsequently, these above parameters were integrated into a mathematical model of predator-prey predation. Then both the long time-series data and phase portraits obtained through model simulation were used to estimate interaction strength and to predict the outcome of predator-prey coexistence. Our results revealed that exposure to either antibiotic significantly reduced prey population growth parameters (e.g., μmax and K) while increasing individual body size. The combined effects of antibiotic exposure and predation pressure on population growth inhibition or body size promotion were variable, mostly additive, with a few cases of synergy and extremely rare antagonism, depending on antibiotic exposure concentration. As antibiotic exposure concentration increased, the predator rmax generally declined, while functional responses varied depending on specific parameters, implying a decrease in predator-prey interaction strength. Analyses of phase portrait features showed that the population oscillation amplitude decreased with increasing antibiotic exposure concentrations, the cycle length of adjacent peaks increased, and prey extinction occurred earlier. In conclusion, antibiotic exposure reduced both predator and prey fitness, underlying the reason antibiotics reduces the strength of predator-prey interaction. Despite the indirect benefits of prey gain from this, the presence of predators can expedite the process of prey extinction caused by antibiotic exposure.
Collapse
Affiliation(s)
- Jiqiu Li
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Ziyue Yu
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qinyun Zheng
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Weihuang Chen
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Xiaofeng Lin
- College of the Environment and Ecology, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Gold DA, Vermeij GJ. Deep resilience: An evolutionary perspective on calcification in an age of ocean acidification. Front Physiol 2023; 14:1092321. [PMID: 36818444 PMCID: PMC9935589 DOI: 10.3389/fphys.2023.1092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The success of today's calcifying organisms in tomorrow's oceans depends, in part, on the resilience of their skeletons to ocean acidification. To the extent this statement is true there is reason to have hope. Many marine calcifiers demonstrate resilience when exposed to environments that mimic near-term ocean acidification. The fossil record similarly suggests that resilience in skeletons has increased dramatically over geologic time. This "deep resilience" is seen in the long-term stability of skeletal chemistry, as well as a decreasing correlation between skeletal mineralogy and extinction risk over time. Such resilience over geologic timescales is often attributed to genetic canalization-the hardening of genetic pathways due to the evolution of increasingly complex regulatory systems. But paradoxically, our current knowledge on biomineralization genetics suggests an opposing trend, where genes are co-opted and shuffled at an evolutionarily rapid pace. In this paper we consider two possible mechanisms driving deep resilience in skeletons that fall outside of genetic canalization: microbial co-regulation and macroevolutionary trends in skeleton structure. The mechanisms driving deep resilience should be considered when creating risk assessments for marine organisms facing ocean acidification and provide a wealth of research avenues to explore.
Collapse
|
3
|
Zimmer RK, Ferrier GA, Zimmer CA. Chemosensory Exploitation and Predator-Prey Arms Races. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.752327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thousands of armed predatory species, distributed widely across the metazoan tree-of-life, consume only hard-shell or exoskeleton-bearing organisms (called “durophagy”). Prey armor clearly has evolved in response to selection by predators, but there is little evidence of the contrary, counter-adaptation by predators. Evolved consumer responses to prey, in general, might be more readily expressed in ways other than morphological traits, including via sensory cues. Here, we explored the chemosensory basis for durophagy in a model predator-prey system, and identified intimate associations between durophagous predators and their shelled prey. Barnacles (Balanus glandula and Semibalanus cariosus) bear hard shells and secrete, respectively, a 199 or 201 kDa glycoprotein ortholog (named “MULTIFUNCin”), with expression limited to the body armor (epidermis, cuticle, and live shell). To test for effects of MULTIFUNCin on predators, we constructed faux prey to mimic meaningful physical and chemical characteristics of live barnacles. In separate experiments, each consumer species was presented MULTIFUNCin, purified from either B. glandula or S. cariosus, at a typical armor concentration. All six predatory species (sea star, Pisaster ochraceus; whelks, Acanthinucella spirata, Nucella emarginata, N. ostrina, N. canaliculata, and N. lamellosa) attacked and ate MULTIFUNCin-infused faux prey significantly more than controls. Akin to barnacles, secretion of glycoprotein-rich extracellular matrices is common among armored prey species—from marine sponges to terrestrial vertebrates. Our results, therefore, suggest that chemosensory exploitation of glycoproteins could be widespread, with notable consequences for life on land and in the sea.
Collapse
|
4
|
De Baets K, Huntley JW, Scarponi D, Klompmaker AA, Skawina A. Phanerozoic parasitism and marine metazoan diversity: dilution versus amplification. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200366. [PMID: 34538136 PMCID: PMC8450635 DOI: 10.1098/rstb.2020.0366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
Collapse
Affiliation(s)
- Kenneth De Baets
- GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-University Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany
| | - John Warren Huntley
- Department of Geological Sciences, University of Missouri, 101 Geological Sciences Building, Columbia, MO 65211, USA
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Piazza di Porta San Donato 1, 40131 Bologna, Italy
| | - Adiël A Klompmaker
- Department of Museum Research and Collections and Alabama Museum of Natural History, University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA
| | - Aleksandra Skawina
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
5
|
Antell GT, Saupe EE. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Curr Biol 2021; 31:R1237-R1251. [PMID: 34637737 DOI: 10.1016/j.cub.2021.08.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals originated in the oceans and evolved there for hundreds of millions of years before adapting to terrestrial environments. Today, oceans cover more than two-thirds of Earth and generate as much primary production as land. The path from the first macrobiota to modern marine biodiversity involved parallel increases in terrestrial nutrient input, marine primary production, species' abundance, metabolic rates, ecotypic diversity and taxonomic diversity. Bottom-up theories of ecosystem cascades arrange these changes in a causal sequence. At the base of marine food webs, nutrient fluxes and atmosphere-ocean chemistry interact with phytoplankton to regulate production. First-order consumers (e.g., zooplankton) might propagate changes in quantity and quality of phytoplankton to changes in abundance and diversity of larger predators (e.g., nekton). However, many uncertainties remain about the mechanisms and effect size of bottom-up control, particularly in oceans across the entire history of animal life. Here, we review modern and fossil evidence for hypothesized bottom-up pathways, and we assess the ramifications of these processes for four key intervals in marine ecosystems: the Ediacaran-Cambrian (635-485 million years ago), the Ordovician (485-444 million years ago), the Devonian (419-359 million years ago) and the Mesozoic (252-66 million years ago). We advocate for a clear articulation of bottom-up hypotheses to better understand causal relationships and proposed effects, combined with additional ecological experiments, paleontological documentation, isotope geochemistry and geophysical reconstructions. How small-scale ecological change transitions into large-scale evolutionary change remains an outstanding question for empirical and theoretical research.
Collapse
Affiliation(s)
- Gawain T Antell
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
6
|
Mondal S, Chakraborty H, Saha S, Dey S, Sarkar D. High biogeographic and latitudinal variability in gastropod drilling predation on molluscs along the eastern Indian coast: Implications on the history of fossil record of drillholes. PLoS One 2021; 16:e0256685. [PMID: 34437602 PMCID: PMC8389373 DOI: 10.1371/journal.pone.0256685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Studies on the large-scale latitudinal patterns of gastropod drilling predation reveal that predation pressure may decrease or increase with increasing latitude, or even show no trend, questioning the generality of any large-scale latitudinal or biogeographic pattern. Here, we analyze the nature of spatio-environmental and latitudinal variation in gastropod drilling along the Indian eastern coast by using 76 samples collected from 39 locations, covering ~2500 km, incorporating several ecoregions, and ~15° latitudinal extents. We find no environmental or latitudinal gradient. In fact, drilling intensity varies highly within the same latitudinal bin, or oceanic sub-basins, or even the same ecoregions. Moreover, different ecoregions with their distinctive biotic and abiotic environmental variables show similar predation intensities. However, one pattern is prevalent: some small infaunal prey taxa, living in the sandy-muddy substrate-which are preferred by the naticid gastropods-are always attacked more frequently over others, indicating taxon and size selectivity by the predators. The result suggests that the biotic and abiotic factors, known to influence drilling predation, determine only the local predation pattern. In the present case, the nature of substrate and prey composition determines the local predation intensity: soft substrate habitats host dominantly small, infaunal prey. Since the degree of spatial variability in drilling intensity within any time bin can be extremely high, sometimes greater than the variability across consecutive time bins, temporal patterns in drilling predation can never be interpreted without having detailed knowledge of the nature of this spatial variability within a time bin.
Collapse
Affiliation(s)
- Subhronil Mondal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India
- Department of Geology, University of Calcutta, Kolkata, India
| | | | - Sandip Saha
- Geological Studies Unit, Indian Statistical Institute, Kolkata, India
| | - Sahana Dey
- Department of Geology, University of Calcutta, Kolkata, India
| | - Deepjay Sarkar
- Department of Geology, Triveni Devi Bhalotia College Raniganj, West Bengal, India
| |
Collapse
|
7
|
Bicknell RD, Paterson JR, Hopkins MJ. A Trilobite Cluster from the Silurian Rochester Shale of New York: Predation Patterns and Possible Defensive Behavior. AMERICAN MUSEUM NOVITATES 2019. [DOI: 10.1206/3937.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Russell D.C. Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - John R. Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Melanie J. Hopkins
- Division of Paleontology, American Museum of Natural History, New York, NY
| |
Collapse
|
8
|
Comay O, Dayan T. What determines prey selection in owls? Roles of prey traits, prey class, environmental variables, and taxonomic specialization. Ecol Evol 2018; 8:3382-3392. [PMID: 29607033 PMCID: PMC5869362 DOI: 10.1002/ece3.3899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/12/2017] [Accepted: 01/14/2018] [Indexed: 12/01/2022] Open
Abstract
Ecological theory suggests that prey size should increase with predator size, but this trend may be masked by other factors affecting prey selection, such as environmental constraints or specific prey preferences of predator species. Owls are an ideal case study for exploring how predator body size affects prey selection in the presence of other factors due to the ease of analyzing their diets from owl pellets and their widespread distributions, allowing interspecific comparisons between variable habitats. Here, we analyze various dimensions of prey resource selection among owls, including prey size, taxonomy (i.e., whether or not particular taxa are favored regardless of their size), and prey traits (movement type, social structure, activity pattern, and diet). We collected pellets of five sympatric owl species (Athene noctua, Tyto alba, Asio otus, Strix aluco, and Bubo bubo) from 78 sites across the Mediterranean Levant. Prey intake was compared between sites, with various environmental variables and owl species as predictors of abundance. Despite significant environmental impacts on prey intake, some key patterns emerge among owl species studied. Owls select prey by predator body size: Larger owls tend to feed on wider ranges of prey sizes, leading to higher means. In addition, guild members show both specialization and generalism in terms of prey taxa, sometimes in contrast with the expectations of the predator–prey body size hypothesis. Our results suggest that while predator body size is an important factor in prey selection, taxon specialization by predator species also has considerable impact.
Collapse
Affiliation(s)
- Orr Comay
- Department of Zoology and the Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel
| | - Tamar Dayan
- Department of Zoology and the Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel
| |
Collapse
|
9
|
Bicknell RDC, Paterson JR. Reappraising the early evidence of durophagy and drilling predation in the fossil record: implications for escalation and the Cambrian Explosion. Biol Rev Camb Philos Soc 2017; 93:754-784. [DOI: 10.1111/brv.12365] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Russell D. C. Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science; University of New England; Armidale New South Wales 2351 Australia
| | - John R. Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science; University of New England; Armidale New South Wales 2351 Australia
| |
Collapse
|
10
|
Ochi Agostini V, Ritter MDN, José Macedo A, Muxagata E, Erthal F. What determines sclerobiont colonization on marine mollusk shells? PLoS One 2017; 12:e0184745. [PMID: 28902894 PMCID: PMC5597280 DOI: 10.1371/journal.pone.0184745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Empty mollusk shells may act as colonization surfaces for sclerobionts depending on the physical, chemical, and biological attributes of the shells. However, the main factors that can affect the establishment of an organism on hard substrates and the colonization patterns on modern and time-averaged shells remain unclear. Using experimental and field approaches, we compared sclerobiont (i.e., bacteria and invertebrate) colonization patterns on the exposed shells (internal and external sides) of three bivalve species (Anadara brasiliana, Mactra isabelleana, and Amarilladesma mactroides) with different external shell textures. In addition, we evaluated the influence of the host characteristics (mode of life, body size, color alteration, external and internal ornamentation and mineralogy) of sclerobionts on dead mollusk shells (bivalve and gastropod) collected from the Southern Brazilian coast. Finally, we compared field observations with experiments to evaluate how the biological signs of the present-day invertebrate settlements are preserved in molluscan death assemblages (incipient fossil record) in a subtropical shallow coastal setting. The results enhance our understanding of sclerobiont colonization over modern and paleoecology perspectives. The data suggest that sclerobiont settlement is enhanced by (i) high(er) biofilm bacteria density, which is more attracted to surfaces with high ornamentation; (ii) heterogeneous internal and external shell surface; (iii) shallow infaunal or attached epifaunal life modes; (iv) colorful or post-mortem oxidized shell surfaces; (v) shell size (<50 mm2 or >1,351 mm2); and (vi) calcitic mineralogy. Although the biofilm bacteria density, shell size, and texture are considered the most important factors, the effects of other covarying attributes should also be considered. We observed a similar pattern of sclerobiont colonization frequency over modern and paleoecology perspectives, with an increase of invertebrates occurring on textured bivalve shells. This study demonstrates how bacterial biofilms may influence sclerobiont colonization on biological hosts (mollusks), and shows how ecological relationships in marine organisms may be relevant for interpreting the fossil record of sclerobionts.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Matias do Nascimento Ritter
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Fernando Erthal
- Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|