1
|
Jelsig AM, Karstensen JG, Overeem Hansen TV. Progress report: Peutz-Jeghers syndrome. Fam Cancer 2024; 23:409-417. [PMID: 38493229 DOI: 10.1007/s10689-024-00362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/04/2024] [Indexed: 03/18/2024]
Abstract
Peutz-Jeghers syndrome is a rare, autosomal dominant polyposis syndrome. Presenting with a remarkable phenotype including development of characteristic gastrointestinal polyps, mucocutaneous pigmentations, and an increased risk of cancer, the syndrome has been subject to many studies concerning the natural course of disease. In most patients, pathogenic germline variants are detected in the STK11 gene including cases of mosaicism and structural variants. Yet, studies assessing the effect of surveillance, understanding of cancer development, as well as clinical studies evaluating chemoprevention are lacking. In addition, the impact of Peutz-Jeghers syndrome on mental health, education, and family planning are insufficiently addressed. In this progress report, we describe current knowledge, clinical phenotype, surveillance strategies, and future areas of research.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - John Gásdal Karstensen
- The Danish Polyposis Register, Gastro Unit and Department of Clinical Medicine, Amager and Hvidovre, Copenhagen University Hospital and University of Copenhagen-, Copenhagen, Denmark
| | - Thomas V Overeem Hansen
- Department of Clinical Genetics and Department of Clinical Medicine, University Hospital of Copenhagen, Rigshospitalet and Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
2
|
Yan Z, Zheng H, Feng J, Li Y, Hu Z, Wu Y, Liao G, Miao T, Qiu Z, Mo Q, Li J, Lai A, Lu Y, Chen B. Causal links between circulatory inflammatory cytokines and risk of digestive polyps: a Mendelian randomization analysis. Front Pharmacol 2024; 15:1405503. [PMID: 39439893 PMCID: PMC11493649 DOI: 10.3389/fphar.2024.1405503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background There is a high morbidity of polyps in the digestive tract, and certain subtypes of polyps are thought to induce cancer progression and often recur, which may be associated with chronic inflammation. Mendelian randomization (MR) can help identify potential causative relationships and inform early treatment action. Methods We performed a bidirectional two-sample MR analysis implementing the results from genome-wide association studies for 41 serum cytokines from 8,293 Finnish individuals, and three types of polyps from European ancestry, respectively, including gastric polyp (6,155 cases vs. 341,871 controls), colonic polyp (22,049 cases vs. 332,368 controls) and gallbladder polyp (458 cases vs. 340,083 controls). Inverse-variance weighted (IVW), weight median (WM), and MR-Egger methods were used for calculating causal estimates. Furthermore, Bayesian model averaging MR (MR-BMA) method was employed to detect the dominant causal circulatory cytokines with adjustment for pleiotropy effects. Results Our univariable MR using inverse-variance weight method identified causal associations of IL-2ra (OR: 0.892, 95%CI: 0.828-0.961, p = 0.003), MIG (OR: 1.124, 95%CI: 1.046-1.207, p = 0.001) and IL-18 (OR: 0.912, 95%CI: 0.852-0.977, p = 0.008) with gastric polyp, MIP1b (OR: 0.956, 95%CI: 0.927-0.987, p = 0.005) and IL-6 (OR: 0.931, 95%CI: 0.870-0.995, p = 0.035) with colonic polyp and IL-9 (OR: 0.523, 95%CI: 0.345-0.794, p = 0.0007) with gallbladder polyp. Finally, our MR-BMA analysis prioritized MIG (MIP = 0.332, MACE = 0.022; PP: 0.264, MSCE = 0.059), IL-18 (MIP = 0.302, MACE = -0.020; PP: 0.243, MSCE = -0.059) and IL-2ra (MIP: 0.129; MACE: -0.005; PP: 0.112, MSCE: -0.031) for gastric polyp, and MIP1b (MIP = 0.752, MACE = -0.033; PP: 0.665, MSCE = -0.044) and IL-6 (MIP: 0.196; MACE: -0.012; PP: 0.140, MSCE: -0.064) for colonic polyp, and IL-9 (MIP = 0.936, MACE = -0.446; PP: 0.781, MSCE = -0.478) for gallbladder polyp as the top-ranked protective factors. Conclusion Our research advances the current understanding of the function of certain inflammatory biomarker pathways in the genesis and malignant mutation of polyps in the digestive tract. Deeper substantiation is necessary to assess the potential of these cytokines as pharmacological or lifestyle targets for digestive polyps prevention.
Collapse
Affiliation(s)
- Ziqi Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongming Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guibin Liao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Taosheng Miao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexin Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiaolan Mo
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ailin Lai
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
4
|
Liu Z, Wu B, Shi X, Zhou J, Huang H, Li Z, Yang M. Immune profiling of premalignant lesions in patients with Peutz-Jeghers syndrome. United European Gastroenterol J 2024. [PMID: 39174496 DOI: 10.1002/ueg2.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS), is a rare autosomal dominant hereditary disease characterized by an elevated risk of various cancers. Serine/Threonine Kinase 11 (STK11) gene is a major tumor suppressor crucial for immune evasion with and beyond tumorigenic cells. It has garnered increasing attention in the realm of oncology treatment, particularly in the context of immunotherapy development. OBJECTIVE This study aimed to assess the suitability of polyps obtained from individuals with PJS, resulting from germline STK11 deficiency, for immunotherapy. Additionally, we seek to identify potential shared mechanisms related to immune evasion between PJS polyps and cancers. To achieve this, we examined PJS polyps alongside familial adenomatous polyposis (FAP) and sporadic polyps. METHODS Polyps were compared among themselves and with either the paracancerous tissues or colon cancers. Pathological and gene expression profiling approaches were employed to characterize infiltrating immune cells and assess the expression of immune checkpoint genes. RESULTS Our findings revealed that PJS polyps exhibited a closer resemblance to cancer tissues than other polyps in terms of their immune microenvironment. Notably, PJS polyps displayed heightened expression of the immune checkpoint gene CD80 and an accumulation of myeloid cells, particularly myeloid-derived suppressor cells (MDSCs). CONCLUSION The findings suggest an immunobiological foundation for the increased cancer susceptibility in PJS patients, paving the way for potential immune therapy applications in this population. Furthermore, utilizing PJS as a model may facilitate the exploration of immune evasion mechanisms, benefiting both PJS and cancer patients.
Collapse
Affiliation(s)
- Zhongyue Liu
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boda Wu
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junfeng Zhou
- Endoscopic Medical Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Huang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Yang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Xiao Z, Wang S, Luo L, Lv W, Feng P, Sun Y, Yang Q, He J, Cao G, Yin Z, Yang M. Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis. Cell Mol Immunol 2024; 21:546-560. [PMID: 38641698 PMCID: PMC11143210 DOI: 10.1038/s41423-024-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shanshan Wang
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liang Luo
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wenkai Lv
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Peiran Feng
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Yadong Sun
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Jun He
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Cai Z, Jiang Y, Tong H, Liang M, Huang Y, Fang L, Liang F, Hu Y, Shi X, Wang J, Wang Z, Ji Q, Huo H, Shen L, He B. Cellular and molecular characteristics of stromal Lkb1 deficiency-induced gastrointestinal polyposis based on single-cell RNA sequencing. J Pathol 2024; 263:47-60. [PMID: 38389501 DOI: 10.1002/path.6259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Liver kinase B1 (Lkb1), encoded by serine/threonine kinase (Stk11), is a serine/threonine kinase and tumor suppressor that is strongly implicated in Peutz-Jeghers syndrome (PJS). Numerous studies have shown that mesenchymal-specific Lkb1 is sufficient for the development of PJS-like polyps in mice. However, the cellular origin and components of these Lkb1-associated polyps and underlying mechanisms remain elusive. In this study, we generated tamoxifen-inducible Lkb1flox/flox;Myh11-Cre/ERT2 and Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, performed single-cell RNA sequencing (scRNA-seq) and imaging-based lineage tracing, and aimed to investigate the cellular complexity of gastrointestinal polyps associated with PJS. We found that Lkb1flox/+;Myh11-Cre/ERT2 mice developed gastrointestinal polyps starting at 9 months after tamoxifen treatment. scRNA-seq revealed aberrant stem cell-like characteristics of epithelial cells from polyp tissues of Lkb1flox/+;Myh11-Cre/ERT2 mice. The Lkb1-associated polyps were further characterized by a branching smooth muscle core, abundant extracellular matrix deposition, and high immune cell infiltration. In addition, the Spp1-Cd44 or Spp1-Itga8/Itgb1 axes were identified as important interactions among epithelial, mesenchymal, and immune compartments in Lkb1-associated polyps. These characteristics of gastrointestinal polyps were also demonstrated in another mouse model, tamoxifen-inducible Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, which developed obvious gastrointestinal polyps as early as 2-3 months after tamoxifen treatment. Our findings further confirm the critical role of mesenchymal Lkb1/Stk11 in gastrointestinal polyposis and provide novel insight into the cellular complexity of Lkb1-associated polyp biology. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huan Tong
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Min Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Liang Fang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jian Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zi Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
7
|
Deng Y, Li C, Huang L, Xiong P, Li Y, Liu Y, Li S, Chen W, Yin Q, Li Y, Yang Q, Peng H, Wu S, Wang X, Tong Q, Ouyang H, Hu D, Liu X, Li L, You J, Sun Z, Lu X, Xiao Z, Deng Y, Zhao H. Single-cell landscape of the cellular microenvironment in three different colonic polyp subtypes in children. Clin Transl Med 2024; 14:e1535. [PMID: 38264936 PMCID: PMC10807352 DOI: 10.1002/ctm2.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The understanding of the heterogeneous cellular microenvironment of colonic polyps in paediatric patients with solitary juvenile polyps (SJPs), polyposis syndrome (PJS) and Peutz-Jeghers syndrome (PJS) remains limited. METHODS We conducted single-cell RNA sequencing and multiplexed immunohistochemistry (mIHC) analyses on both normal colonic tissue and different types of colonic polyps obtained from paediatric patients. RESULTS We identified both shared and disease-specific cell subsets and expression patterns that played important roles in shaping the unique cellular microenvironments observed in each polyp subtype. As such, increased myeloid, endothelial and epithelial cells were the most prominent features of SJP, JPS and PJS polyps, respectively. Noticeably, memory B cells were increased, and a cluster of epithelial-mesenchymal transition (EMT)-like colonocytes existed across all polyp subtypes. Abundant neutrophil infiltration was observed in SJP polyps, while CX3CR1hi CD8+ T cells and regulatory T cells (Tregs) were predominant in SJP and JPS polyps, while GZMAhi natural killer T cells were predominant in PJS polyps. Compared with normal colonic tissues, myeloid cells exhibited specific induction of genes involved in chemotaxis and interferon-related pathways in SJP polyps, whereas fibroblasts in JPS polyps had upregulation of myofiber-associated genes and epithelial cells in PJS polyps exhibited induction of a series of nutrient absorption-related genes. In addition, the TNF-α response was uniformly upregulated in most cell subsets across all polyp subtypes, while endothelial cells and fibroblasts separately showed upregulated cell adhesion and EMT signalling in SJP and JPS polyps. Cell-cell interaction network analysis showed markedly enhanced intercellular communication, such as TNF, VEGF, CXCL and collagen signalling networks, among most cell subsets in polyps, especially SJP and JPS polyps. CONCLUSION These findings strengthen our understanding of the heterogeneous cellular microenvironment of polyp subtypes and identify potential therapeutic approaches to reduce the recurrence of polyps in children.
Collapse
Affiliation(s)
- Yafei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Canlin Li
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Lanlan Huang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Yana Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Yongjie Liu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Songyang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Weijian Chen
- Department of PathologyHunan Children's HospitalChangshaChina
| | - Qiang Yin
- Department of Pediatric SurgeryHunan Children's HospitalChangshaChina
| | - Yong Li
- Department of Pediatric SurgeryHunan Children's HospitalChangshaChina
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Shuting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Xiangyu Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Qin Tong
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Hongjuan Ouyang
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Die Hu
- Department of Clinical HematologyCollege of Pharmacy and Laboratory Medicine ScienceArmy Medical UniversityChongqingChina
| | - Xinjia Liu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Liping Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Jieyu You
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Zhiyi Sun
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Xiulan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Zhenghui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Youcai Deng
- Department of Clinical HematologyCollege of Pharmacy and Laboratory Medicine ScienceArmy Medical UniversityChongqingChina
| | - Hongmei Zhao
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| |
Collapse
|
8
|
Demouchy F, Nicolle O, Michaux G, Pacquelet A. PAR-4/LKB1 prevents intestinal hyperplasia by restricting endoderm specification in Caenorhabditis elegans embryos. Development 2024; 151:dev202205. [PMID: 38078543 DOI: 10.1242/dev.202205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The kinase PAR-4/LKB1 is a major regulator of intestinal homeostasis, which prevents polyposis in humans. Moreover, its ectopic activation is sufficient to induce polarization and formation of microvilli-like structures in intestinal cell lines. Here, we use Caenorhabditis elegans to examine the role of PAR-4 during intestinal development in vivo. We show that it is not required to establish enterocyte polarity and plays only a minor role in brush border formation. By contrast, par-4 mutants display severe deformations of the intestinal lumen as well as supernumerary intestinal cells, thereby revealing a previously unappreciated function of PAR-4 in preventing intestinal hyperplasia. The presence of supernumerary enterocytes in par-4 mutants is not due to excessive cell proliferation, but rather to the abnormal expression of the intestinal cell fate factors end-1 and elt-2 outside the E lineage. Notably, par-4 mutants also display reduced expression of end-1 and elt-2 inside the E lineage. Our work thereby unveils an essential and dual role of PAR-4, which both restricts intestinal specification to the E lineage and ensures its robust differentiation.
Collapse
Affiliation(s)
- Flora Demouchy
- University of Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Ophélie Nicolle
- University of Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Grégoire Michaux
- University of Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Anne Pacquelet
- University of Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
9
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
10
|
Hu G, Huang N, Zhang J, Zhang D, Wang S, Zhang Y, Wang L, Du Y, Kuang S, Ma K, Zhu H, Xu N, Liu M. LKB1 loss promotes colorectal cancer cell metastasis through regulating TNIK expression and actin cytoskeleton remodeling. Mol Carcinog 2023; 62:1659-1672. [PMID: 37449799 DOI: 10.1002/mc.23606] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Approximately 5%-6% of CRC cases are associated with hereditary CRC syndromes, including the Peutz-Jeghers syndrome (PJS). Liver kinase B1 (LKB1), also known as STK11, is the major gene responsible for PJS. LKB1 heterozygotic deficiency is involved in intestinal polyps in mice, while the mechanism of LKB1 in CRC remains elusive. In this study, we generated LKB1 knockout (KO) CRC cell lines by using CRISPR-Cas9. LKB1 KO promoted CRC cell motility in vitro and tumor metastases in vivo. LKB1 attenuated expression of TRAF2 and NCK-interacting protein kinase (TNIK) as accessed by RNA-seq and western blots, and similar suppression was also detected in the tumor tissues of azoxymethane/dextran sodium sulfate-induced intestinal-specific LKB1-KO mice. LKB1 repressed TNIK expression through its kinase activity. Moreover, attenuating TNIK by shRNA inhibited cell migration and invasion of CRC cells. LKB1 loss-induced high metastatic potential of CRC cells was depended on TNIK upregulation. Furthermore, TNIK interacted with ARHGAP29 and further affected actin cytoskeleton remodeling. Taken together, LKB1 deficiency promoted CRC cell metastasis via TNIK upregulation and subsequently mediated cytoskeleton remodeling. These results suggest that LKB1-TNIK axis may play a crucial role in CRC progression.
Collapse
Affiliation(s)
- Guanghui Hu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Die Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuren Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, Beijing, People's Republic of China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingxi Du
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuwen Kuang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
12
|
Xu Z, Gu G. Cancer Risk of Peutz-Jeghers Syndrome and Treatment Experience: A Chinese Medical Center. Clin Colon Rectal Surg 2023; 36:406-414. [PMID: 37795464 PMCID: PMC10547534 DOI: 10.1055/s-0043-1767704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Peutz-Jeghers syndrome (PJS), also known as hereditary mucocutaneous pigmented gastrointestinal polyposis, is a clinically rare autosomal dominant genetic disease, which falls into the category of hereditary colorectal cancer. There are ∼7,000 new cases of PJS in China every year, and 170,000 PJS patients may survive for a long time in society. PJS polyps are characterized by an early age of onset, difficult diagnosis and treatment, and easy recurrence. With repeated growth, polyps can lead to serious complications such as intestinal obstruction, intussusception, gastrointestinal bleeding, and cancerization, which cause serious clinical problems. Due to repeated hospitalization and endoscopic follow-up, PJS patients and their families suffer from great physical and mental pain and economic burden. With the in-depth understanding of PJS and the development and popularization of endoscopic techniques in the past decade, an integrated treatment modality based on endoscopy plus surgery has gradually become the preferred treatment in most hospitals, which greatly improves the quality of life of PJS patients. However, there is still a lack of effective drug prevention and cure means. In this paper, the current clinical treatment means for PJS polyps were summarized by literature review combined with the treatment experience of our medical center, with a focus on their clinical diagnosis, treatment, and cancer risk.
Collapse
Affiliation(s)
- Zuxin Xu
- Fifth Clinical College of Anhui Medical University, Air Force Clinical College of Anhui Medical University, Beijing, China
- Department of General Surgery, Air Force Medical Center, Beijing, China
| | - Guoli Gu
- Department of General Surgery, Air Force Medical Center, Beijing, China
| |
Collapse
|
13
|
Pencik J, Philippe C, Schlederer M, Atas E, Pecoraro M, Grund-Gröschke S, Li WJ, Tracz A, Heidegger I, Lagger S, Trachtová K, Oberhuber M, Heitzer E, Aksoy O, Neubauer HA, Wingelhofer B, Orlova A, Witzeneder N, Dillinger T, Redl E, Greiner G, D'Andrea D, Östman JR, Tangermann S, Hermanova I, Schäfer G, Sternberg F, Pohl EE, Sternberg C, Varady A, Horvath J, Stoiber D, Malcolm TI, Turner SD, Parkes EE, Hantusch B, Egger G, Rose-John S, Poli V, Jain S, Armstrong CWD, Hoermann G, Goffin V, Aberger F, Moriggl R, Carracedo A, McKinney C, Kennedy RD, Klocker H, Speicher MR, Tang DG, Moazzami AA, Heery DM, Hacker M, Kenner L. STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway. Mol Cancer 2023; 22:133. [PMID: 37573301 PMCID: PMC10422794 DOI: 10.1186/s12943-023-01825-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023] Open
Abstract
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.
Collapse
Affiliation(s)
- Jan Pencik
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Biomarker Research in Medicine, 8010, Graz, Austria.
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Michaela Schlederer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Emine Atas
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, 6500, Bellinzona, Switzerland
| | - Sandra Grund-Gröschke
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Wen Jess Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Amanda Tracz
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Sabine Lagger
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Karolína Trachtová
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Central European Institute of Technology, Masaryk University, 60177, Brno, Czech Republic
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, 1090, Vienna, Austria
| | | | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Osman Aksoy
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Department for Basic and Translational Oncology and Hematology, Division Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Bettina Wingelhofer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elisa Redl
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - David D'Andrea
- Department of Urology, Medical University of Vienna, 1090, Vienna, Austria
| | - Johnny R Östman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Simone Tangermann
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Ivana Hermanova
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), 20850, Derio, Spain
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Christina Sternberg
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Biochemical Institute, University of Kiel, 24098, Kiel, Germany
| | - Adam Varady
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Jaqueline Horvath
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Tim I Malcolm
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Eileen E Parkes
- Department of Oncology, University of Oxford, Oxford, OX37DQ, UK
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | | | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126, Turin, Italy
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
| | - Chris W D Armstrong
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
| | | | - Vincent Goffin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), 20850, Derio, Spain
| | - Cathal McKinney
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
- Almac Diagnostics, Craigavon, BT63 5QD, UK
| | - Richard D Kennedy
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
- Almac Diagnostics, Craigavon, BT63 5QD, UK
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Biomarker Research in Medicine, 8010, Graz, Austria.
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Qian Y, Galan-Cobo A, Guijarro I, Dang M, Molkentine D, Poteete A, Zhang F, Wang Q, Wang J, Parra E, Panda A, Fang J, Skoulidis F, Wistuba II, Verma S, Merghoub T, Wolchok JD, Wong KK, DeBerardinis RJ, Minna JD, Vokes NI, Meador CB, Gainor JF, Wang L, Reuben A, Heymach JV. MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma. Cancer Cell 2023; 41:1363-1380.e7. [PMID: 37327788 PMCID: PMC11161201 DOI: 10.1016/j.ccell.2023.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/18/2023]
Abstract
Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.
Collapse
Affiliation(s)
- Yu Qian
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Ana Galan-Cobo
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Irene Guijarro
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Minghao Dang
- Department of Genomic Medicine, Houston, TX, USA
| | - David Molkentine
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Fahao Zhang
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, Houston, TX, USA
| | - Edwin Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jacy Fang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svena Verma
- Ludwig Collaborative and Swim Across America Laboratory, MSK, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, MSK, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, MSK, New York, NY, USA
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Catherine B Meador
- Department of Medicine, Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Center for Thoracic Cancers, Massachusetts General Hospital, Boston, MA, USA
| | - Justin F Gainor
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Thoracic Cancers, Massachusetts General Hospital, Boston, MA, USA
| | - Linghua Wang
- Department of Genomic Medicine, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA.
| |
Collapse
|
15
|
Robinson P, Montoya K, Magness E, Rodriguez E, Villalobos V, Engineer N, Yang P, Bharadwaj U, Eckols TK, Tweardy DJ. Therapeutic Potential of a Small-Molecule STAT3 Inhibitor in a Mouse Model of Colitis. Cancers (Basel) 2023; 15:cancers15112977. [PMID: 37296943 DOI: 10.3390/cancers15112977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) predisposes to colorectal cancer (CRC). In the current studies, we used the dextran sodium sulfate (DSS) murine model of colitis, which is widely used in preclinical studies, to determine the contribution of STAT3 to IBD. STAT3 has two isoforms: (STAT3 α; which has pro-inflammatory and anti-apoptotic functions, and STAT3β; which attenuates the effects of STAT3α). In the current study, we determined the contribution of STAT3 to IBD across all tissues by examining DSS-induced colitis in mice that express only STAT3α and in mice treated with TTI-101, a direct small-molecule inhibitor of both isoforms of STAT3. METHODS We examined mortality, weight loss, rectal bleeding, diarrhea, colon shortening, apoptosis of colonic CD4+ T-cells, and colon infiltration with IL-17-producing cells following 7-day administration of DSS (5%) to transgenic STAT3α knock-in (STAT3β-deficient; ΔβΔβ) mice and wild-type (WT) littermate cage control mice. We also examined the effect of TTI-101 on these endpoints in DSS-induced colitis in WT mice. RESULTS Each of the clinical manifestations of DSS-induced colitis examined was exacerbated in ΔβΔβ transgenic versus cage-control WT mice. Importantly, TTI-101 treatment of DSS-administered WT mice led to complete attenuation of each of the clinical manifestations and also led to increased apoptosis of colonic CD4+ T cells, reduced colon infiltration with IL-17-producing cells, and down-modulation of colon mRNA levels of STAT3-upregulated genes involved in inflammation, apoptosis resistance, and colorectal cancer metastases. CONCLUSIONS Thus, small-molecule targeting of STAT3 may be of benefit in treating IBD and preventing IBD-associated colorectal cancer.
Collapse
Affiliation(s)
- Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Kelsey Montoya
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Emily Magness
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Emma Rodriguez
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Viviana Villalobos
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Nikita Engineer
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Peng Yang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Thomas Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - David John Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| |
Collapse
|
16
|
Compton SE, Kitchen-Goosen SM, DeCamp LM, Lau KH, Mabvakure B, Vos M, Williams KS, Wong KK, Shi X, Rothbart SB, Krawczyk CM, Jones RG. LKB1 controls inflammatory potential through CRTC2-dependent histone acetylation. Mol Cell 2023:S1097-2765(23)00288-5. [PMID: 37172591 DOI: 10.1016/j.molcel.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.
Collapse
Affiliation(s)
- Shelby E Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M Kitchen-Goosen
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Batsirai Mabvakure
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew Vos
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
17
|
Yehia L, Heald B, Eng C. Clinical Spectrum and Science Behind the Hamartomatous Polyposis Syndromes. Gastroenterology 2023; 164:800-811. [PMID: 36717037 DOI: 10.1053/j.gastro.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
The hamartomatous polyposis syndromes are a set of clinically distinct disorders characterized by the occurrence of hamartomatous polyps in the gastrointestinal tract. These syndromes include juvenile polyposis syndrome, Peutz-Jeghers syndrome, and PTEN hamartoma tumor syndrome. Although each of the syndromes has distinct phenotypes, the hamartomatous polyps can be challenging to differentiate histologically. Additionally, each of these syndromes is associated with increased lifetime risks of gene-specific and organ-specific cancers, including those outside of the gastrointestinal tract. Germline pathogenic variants can be identified in a subset of individuals with these syndromes, which facilitates molecular diagnosis and subsequent gene-enabled management in the setting of genetic counseling. Although the malignant potential of hamartomatous polyps remains elusive, timely recognition of these syndromes is important and enables presymptomatic cancer surveillance and management before symptom exacerbation. Presently, there are no standard agents to prevent the development of polyps and cancers in the hamartomatous polyposis syndromes.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Center for Personalized Genetic Healthcare, Community Care, Cleveland Clinic, Cleveland, Ohio; Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio; Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
18
|
Cotton JL, Dang K, Hu L, Sun Y, Singh A, Rajurkar MS, Li Q, Wu X, Mao J. PTEN and LKB1 are differentially required in Gli1-expressing mesenchymal cells to suppress gastrointestinal polyposis. Cell Rep 2022; 40:111125. [PMID: 35858546 DOI: 10.1016/j.celrep.2022.111125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
PTEN and LKB1 are intimately associated with gastrointestinal tumorigenesis. Mutations of PTEN or LKB1 lead to Cowden syndrome and Peutz-Jeghers syndrome characterized by development of gastrointestinal polyps. However, the cells of origin of these polyps and underlying mechanism remain unclear. Here, we reveal that PTEN or LKB1 deficiency in Gli1+ gut mesenchymal cells, but not intestinal epithelium, drives polyp formation histologically resembling polyposis in human patients. Mechanistically, although PTEN and LKB1 converge to regulate mTOR/AKT signaling in various tumor contexts, we find that mTOR is essential for PTEN-deletion-induced polyp formation but is largely dispensable for polyposis induced by mesenchymal LKB1 deficiency. Altogether, our studies identify Gli1-expressing mesenchymal cells as a common cell of origin for polyposis associated with PTEN and LKB1 and reveal their engagement of different downstream pathways in gut mesenchyme to suppress gastrointestinal tumorigenesis.
Collapse
Affiliation(s)
- Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lu Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alka Singh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mihir S Rajurkar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Wang S, Huang G, Wang JX, Tian L, Zuo XL, Li YQ, Yu YB. Altered Gut Microbiota in Patients With Peutz–Jeghers Syndrome. Front Microbiol 2022; 13:881508. [PMID: 35910641 PMCID: PMC9326469 DOI: 10.3389/fmicb.2022.881508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
Background Peutz–Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots and gastrointestinal polyps and increased susceptibility to cancers. It remains unknown whether gut microbiota dysbiosis is linked to PJS. Aim This study aimed to assess the structure and composition of the gut microbiota, including both bacteria and fungi, in patients with PJS and investigate the relationship between gut microbiota dysbiosis and PJS pathogenesis. Methods The bacterial and fungal composition of the fecal microbiota was analyzed in 23 patients with PJS (cases), 17 first-degree asymptomatic relatives (ARs), and 24 healthy controls (HCs) using 16S (MiSeq) and ITS2 (pyrosequencing) sequencing for bacteria and fungi, respectively. Differential analyses of the intestinal flora were performed from the phylum to species level. Results Alpha-diversity distributions of bacteria and fungi indicated that the abundance of both taxa differed between PJS cases and controls. However, while the diversity and composition of fecal bacteria in PJS cases were significantly different from those in ARs and HCs, fungal flora was more stable. High-throughput sequencing confirmed the special characteristics and biodiversity of the fecal bacterial and fungal microflora in patients with PJS. They had lower bacterial biodiversity than controls, with a higher frequency of the Proteobacteria phylum, Enterobacteriaceae family, and Escherichia-Shigella genus, and a lower frequency of the Firmicutes phylum and the Lachnospiraceae and Ruminococcaceae families. Of fungi, Candida was significantly higher in PJS cases than in controls. Conclusion The findings reported here confirm gut microbiota dysbiosis in patients with PJS. This is the first report on the bacterial and fungal microbiota profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.
Collapse
Affiliation(s)
- Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Jue-Xin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Tian
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Yan-Bo Yu
| |
Collapse
|
20
|
Puri P, Grimmett G, Faraj R, Gibson L, Gilbreath E, Yoder BK. Elevated Protein Kinase A Activity in Stomach Mesenchyme Disrupts Mesenchymal-epithelial Crosstalk and Induces Preneoplasia. Cell Mol Gastroenterol Hepatol 2022; 14:643-668.e1. [PMID: 35690337 PMCID: PMC9421585 DOI: 10.1016/j.jcmgh.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mesenchymal-epithelial crosstalk (MEC) in the stomach is executed by pathways such as bone morphogenetic protein (BMP) and extracellular signal-regulated kinase (ERK). Mis-regulation of MEC disrupts gastric homeostasis and causes tumorigenesis. Protein Kinase A (PKA) crosstalks with BMP and ERK signaling; however, PKA function(s) in stomach development and homeostasis remains undefined. METHODS We generated a novel Six2-Cre+/-PKAcαRfl/wt (CA-PKA) mouse in which expression of constitutive-active PKAcαR was induced in gastric mesenchyme progenitors. Lineage tracing determined spatiotemporal activity of Six2-Cre in the stomach. For phenotyping CA-PKA mice histological, co-immunofluorescence, immunoblotting, mRNA sequencing, and bioinformatics analyses were performed. RESULTS Lineage tracing showed that Six2-Cre activity in the stomach is restricted to the mesenchymal compartment. CA-PKA mice showed disruption of gastric homeostasis characterized by aberrant mucosal development and epithelial hyperproliferation; ultimately developing multiple features of gastric corpus preneoplasia including decreased parietal cells, mucous cell hyperplasia, spasmolytic peptide expressing metaplasia with intestinal characteristics, and dysplastic and invasive cystic glands. Furthermore, mutant corpus showed marked chronic inflammation characterized by infiltration of lymphocytes and myeloid-derived suppressor cells along with the upregulation of innate and adaptive immune system components. Striking upregulation of inflammatory mediators and STAT3 activation was observed. Mechanistically, we determined there is an activation of ERK1/2 and downregulation of BMP/SMAD signaling characterized by marked upregulation of BMP inhibitor gremlin 1. CONCLUSIONS We report a novel role of PKA signaling in gastric MEC execution and show that PKA activation in the gastric mesenchyme drives preneoplasia by creating a proinflammatory and proproliferative microenvironment associated with the downregulation of BMP/SMAD signaling and activation of ERK1/2.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama,Correspondence Address correspondence to: Pawan Puri, DVM, PhD, Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, A310 Patterson Hall, Tuskegee, AL 36088; tel. (334) 724-4486; fax: (334) 727-8177.
| | - Garfield Grimmett
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Rawah Faraj
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Laurielle Gibson
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Ebony Gilbreath
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| |
Collapse
|
21
|
Boland CR, Idos GE, Durno C, Giardiello FM, Anderson JC, Burke CA, Dominitz JA, Gross S, Gupta S, Jacobson BC, Patel SG, Shaukat A, Syngal S, Robertson DJ. Diagnosis and Management of Cancer Risk in the Gastrointestinal Hamartomatous Polyposis Syndromes: Recommendations From the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2022; 162:2063-2085. [PMID: 35487791 DOI: 10.1053/j.gastro.2022.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.
Collapse
Affiliation(s)
- C Richard Boland
- Division of Gastroenterology, University of California-San Diego School of Medicine, San Diego, California
| | - Gregory E Idos
- Divisions of Gastroenterology and Clinical Cancer Genomics, Center for Precision Medicine, City of Hope National Medical Center, Duarte, California
| | - Carol Durno
- The Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Francis M Giardiello
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph C Anderson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; University of Connecticut, Farmington, Connecticut
| | - Carol A Burke
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Jason A Dominitz
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington; University of Washington School of Medicine, Seattle, Washington
| | - Seth Gross
- Division of Gastroenterology and Hepatology, New York University Langone Health, New York, New York
| | - Samir Gupta
- Veterans Affairs Medical Center, San Diego, California; University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brian C Jacobson
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Swati G Patel
- University of Colorado School of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Aasma Shaukat
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota; University of Minnesota, Minneapolis, Minnesota
| | - Sapna Syngal
- Brigham and Women's Hospital, Boston Massachusetts; Dana-Farber Cancer Institute, Boston Massachusetts; Harvard Medical School, Boston Massachusetts
| | - Douglas J Robertson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
22
|
Boland CR, Idos GE, Durno C, Giardiello FM, Anderson JC, Burke CA, Dominitz JA, Gross S, Gupta S, Jacobson BC, Patel SG, Shaukat A, Syngal S, Robertson DJ. Diagnosis and management of cancer risk in the gastrointestinal hamartomatous polyposis syndromes: recommendations from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastrointest Endosc 2022; 95:1025-1047. [PMID: 35487765 DOI: 10.1016/j.gie.2022.02.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S. Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.
Collapse
Affiliation(s)
- C Richard Boland
- Division of Gastroenterology, University of California-San Diego School of Medicine, San Diego, California.
| | - Gregory E Idos
- Divisions of Gastroenterology and Clinical Cancer Genomics, Center for Precision Medicine, City of Hope National Medical Center, Duarte, California
| | - Carol Durno
- The Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Francis M Giardiello
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph C Anderson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; University of Connecticut, Farmington, Connecticut
| | - Carol A Burke
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Jason A Dominitz
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington; University of Washington School of Medicine, Seattle, Washington
| | - Seth Gross
- Division of Gastroenterology and Hepatology, New York University Langone Health, New York, New York
| | - Samir Gupta
- Veterans Affairs Medical Center, San Diego, California; University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brian C Jacobson
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Swati G Patel
- University of Colorado School of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Aasma Shaukat
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota; University of Minnesota, Minneapolis, Minnesota
| | - Sapna Syngal
- Brigham and Women's Hospital, Boston Massachusetts; Dana-Farber Cancer Institute, Boston Massachusetts; Harvard Medical School, Boston Massachusetts
| | - Douglas J Robertson
- Veterans Affairs Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
23
|
Diagnosis and Management of Cancer Risk in the Gastrointestinal Hamartomatous Polyposis Syndromes: Recommendations From the US Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol 2022; 117:846-864. [PMID: 35471415 DOI: 10.14309/ajg.0000000000001755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This US Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.
Collapse
|
24
|
Dzung A, Saltari A, Tiso N, Lyck R, Dummer R, Levesque MP. STK11 Prevents Invasion through Signal Transducer and Activator of Transcription 3/5 and FAK Repression in Cutaneous Melanoma. J Invest Dermatol 2022; 142:1171-1182.e10. [PMID: 34757069 DOI: 10.1016/j.jid.2021.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
The STK11/LKB1 is a tumor suppressor involved in metabolism and cell motility. In BRAFV600E melanoma, STK11 is inactivated by extracellular signal‒regulated kinase and RSK, preventing it from binding and activating adenosine monophosphate-activated protein kinase and promoting melanoma cell proliferation. Although STK11 mutations occur in 5‒10% of cutaneous melanoma, few functional studies have been performed. By knocking out STK11 with CRISPR/Cas9 in two human BRAF-mutant melanoma cell lines, we found that STK11 loss reduced the sensitivity to a BRAF inhibitor. More strikingly, STK11 loss led to an increased invasive phenotype in both three-dimensional spheroids and in vivo zebrafish xenograft models. STK11 overexpression consistently reversed the invasive phenotype. Interestingly, STK11 knockout increased invasion also in an NRAS-mutant melanoma cell line. Furthermore, although STK11 was expressed in primary human melanoma tumors, its expression significantly decreased in melanoma metastases, especially in brain metastases. In the STK11-knockout cells, we observed increased activating phosphorylation of signal transducer and activator of transcription 3/5 and FAK. Using inhibitors of signal transducer and activator of transcription 3/5 and FAK, we reversed the invasive phenotype in both BRAF- and NRAS-mutated cells. Our findings confirm an increased invasive phenotype on STK11 inactivation in BRAF- and NRAS-mutant cutaneous melanoma that can be targeted by signal transducer and activator of transcription 3/5 and FAK inhibition.
Collapse
Affiliation(s)
- Andreas Dzung
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annalisa Saltari
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padova, Padova, Italy
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Samborska B, Roy DG, Rahbani JF, Hussain MF, Ma EH, Jones RG, Kazak L. Creatine transport and creatine kinase activity is required for CD8 + T cell immunity. Cell Rep 2022; 38:110446. [PMID: 35235777 DOI: 10.1016/j.celrep.2022.110446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The factors that promote T cell expansion are not fully known. Creatine is an abundant circulating metabolite that has recently been implicated in T cell function; however, its cell-autonomous role in immune-cell function is unknown. Here, we show that creatine supports cell-intrinsic CD8+ T cell homeostasis. We further identify creatine kinase B (CKB) as the creatine kinase isoenzyme that supports these T cell properties. Loss of the creatine transporter (Slc6a8) or Ckb results in compromised CD8+ T cell expansion in response to infection without influencing adenylate energy charge. Rather, loss of Slc6a8 or Ckb disrupts naive T cell homeostasis and weakens TCR-mediated activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling required for CD8+ T cell expansion. These data demonstrate a cell-intrinsic role for creatine transport and creatine transphosphorylation, independent of their effects on global cellular energy charge, in supporting CD8+ T cell homeostasis and effector function.
Collapse
Affiliation(s)
- Bozena Samborska
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Dominic G Roy
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Janane F Rahbani
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Mohammed F Hussain
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
26
|
Azin M, Demehri S. STK11 Loss: A Novel Mechanism for Melanoma Metastasis with Therapeutic Implications. J Invest Dermatol 2022; 142:1007-1009. [DOI: 10.1016/j.jid.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/27/2022]
|
27
|
Tong T, Zhang J, Zhu X, Hui P, Wang Z, Wu Q, Tang J, Chen H, Tian X. Prognostic Autophagy-Related Model Revealed by Integrating Single-Cell RNA Sequencing Data and Bulk Gene Profiles in Gastric Cancer. Front Cell Dev Biol 2022; 9:729485. [PMID: 35083210 PMCID: PMC8785981 DOI: 10.3389/fcell.2021.729485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy has been associated with tumor progression, prognosis, and treatment response. However, an autophagy-related model and their clinical significance have not yet been fully elucidated. In the present study, through the integrative analysis of bulk RNA sequencing and single-cell RNA sequencing, an autophagy-related risk model was identified. The model was capable of distinguishing the worse prognosis of patients with gastric cancer (GC), which was validated in TCGA and two independent Gene Expression Omnibus cohorts utilizing the survival analysis, and was also independent of other clinical covariates evaluated by multivariable Cox regression. The clinical value of this model was further assessed using a receiver operating characteristic (ROC) and nomogram analysis. Investigation of single-cell RNA sequencing uncovered that this model might act as an indicator of the dysfunctional characteristics of T cells in the high-risk group. Moreover, the high-risk group exhibited the lower expression of immune checkpoint markers (PDCD1 and CTLA4) than the low-risk group, which indicated the potential predictive power to the current immunotherapy response in patients with GC. In conclusion, this autophagy-associated risk model may be a useful tool for prognostic evaluation and will facilitate the potential application of this model as an indicator of the predictive immune checkpoint biomarkers.
Collapse
Affiliation(s)
- Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jie Zhang
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pingping Hui
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Wang
- Department of Emergency, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xianglong Tian
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 2022; 55:14-30. [PMID: 35021054 PMCID: PMC8842882 DOI: 10.1016/j.immuni.2021.12.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Adaptive immune responses mediated by T cells and B cells are crucial for protective immunity against pathogens and tumors. Differentiation and function of immune cells require dynamic reprogramming of cellular metabolism. Metabolic inputs, pathways, and enzymes display remarkable flexibility and heterogeneity, especially in vivo. How metabolic plasticity and adaptation dictate functional specialization of immune cells is fundamental to our understanding and therapeutic modulation of the immune system. Extensive progress has been made in characterizing the effects of metabolic networks on immune cell fate and function in discrete microenvironments or immunological contexts. In this review, we summarize how rewiring of cellular metabolism determines the outcome of adaptive immunity in vivo, with a focus on how metabolites, nutrients, and driver genes in immunometabolism instruct cellular programming and immune responses during infection, inflammation, and cancer in mice and humans. Understanding context-dependent metabolic remodeling will manifest legitimate opportunities for therapeutic intervention of human disease.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
29
|
Liu S, Ma Y, You W, Li J, Li JN, Qian JM. Hamartomatous polyposis syndrome associated malignancies: Risk, pathogenesis and endoscopic surveillance. J Dig Dis 2021; 22:444-451. [PMID: 34145757 DOI: 10.1111/1751-2980.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Hamartomatous polyposis syndromes (HPS) are a heterogeneous spectrum of diseases that are characterized by diffuse hamartomatous polyps lining the gastrointestinal (GI) tract together with extra-GI manifestations. Classical HPS includes juvenile polyposis syndrome, Peutz-Jeghers syndrome, PTEN hamartoma tumor syndrome and hereditary mixed polyposis syndrome. Patients with HPS have a higher risk of GI and extra-GI malignancies than the general population, although the underlying mechanisms remain unclear and are obviously different from the carcinogenesis of classical adenocarcinoma and colitis-associated malignancy. In this review we aimed to clarify the risks, possible mechanism and endoscopic surveillance of HPS-associated GI malignancies.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Ma
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen You
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Nan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Ming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Pandit M, Timilshina M, Chang JH. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. J Mol Med (Berl) 2021; 99:1139-1150. [PMID: 34003330 DOI: 10.1007/s00109-021-02090-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
Immuno-environmental change triggers CD4+ T cell differentiation. T cell specialization activates metabolic signal pathways to meet energy requirements. Defective T cell-intrinsic metabolism can aggravate immunopathology in chronic diseases. Liver kinase B1 (LKB1) deletion in T cell or Treg cell results in systemic inflammatory symptoms, indicating a crucial role of LKB1 in T cells. However, the mechanism underlying the development of inflammation is unclear. In our study, LKB1-deficient T cells were differentiated preferentially into Th1 and Th17 cells in the absence of inflammation. Mechanistically, LKB1 directly binds and phosphorylates phosphatase and tensin homolog (PTEN), an upstream regulator of mammalian target of rapamycin complex 1 (mTORC1), which is independent of AMP-activated protein kinase (AMPK). As a result, LKB1 deficiency was associated with increased mTORC1 activity and hypoxia-inducible factor (HIF)1α-mediated glycolysis. Inhibition of glycolysis or biallelic disruption of LKB1 and HIF1α abrogated this phenotype, suggesting Th1- and Th17-biased differentiation in LKB1-deficient T cells was mediated by glycolysis. Our study indicates that LKB1 controls mTORC1 signaling through PTEN activation, not AMPK, which controls effector T cell differentiation in a T cell-intrinsic manner. KEY MESSAGES: • LKB1 maintains T cell homeostasis in a cell intrinsic manner. • Glycolysis is involved in the LKB1-mediated T cell differentiation. • LKB1 phosphorylates PTEN, not AMPK, to regulate mTORC1.
Collapse
Affiliation(s)
- Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Peutz-Jeghers syndrome is a rare, autosomal dominant, hereditary polyposis syndrome defined by gastrointestinal hamartomas and mucocutaneous pigmentations, caused by a germline mutation in the serine/ threonine kinase 11 or liver kinase B1 (STK11/LKB1) genes. Hamartomatous polyps located throughout the gastrointestinal tract can be complicated by bleeding and small bowel intussusception, potentially leading to the need for emergency surgery. Individuals suffering from Peutz-Jeghers syndrome have an increased lifetime risk of various forms of cancer (gastrointestinal, pancreatic, lung, breast, uterine, ovarian and testicular). Surveillance should lead to the prevention of complications and thus a reduction in mortality and morbidity of patients. RECENT FINDINGS A combined approach based on wireless capsule endoscopy, magnetic resonance enterography and device-assisted enteroscopy is effective in reduction of the polyp burden and thus decreasing the risk of bleeding and intussusception. Current guidelines for screening and surveillance are mostly based on expert opinion rather than evidence. SUMMARY Peutz-Jeghers syndrome is an emerging disease that significantly affects the quality of life enjoyed by patients. Despite of all the progress in improved early diagnostics, options for advanced endoscopic therapy and elaborate surveillance, acute and chronic complications decrease the life expectancy of patients suffering from Peutz-Jeghers syndrome.
Collapse
Affiliation(s)
- Ilja Tacheci
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
32
|
Turano M, Cammarota F, Duraturo F, Izzo P, De Rosa M. A Potential Role of IL-6/IL-6R in the Development and Management of Colon Cancer. MEMBRANES 2021; 11:membranes11050312. [PMID: 33923292 PMCID: PMC8145725 DOI: 10.3390/membranes11050312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second greatest cause of cancer deaths. About 75% of all CRCs are sporadic cancers and arise following somatic mutations, while about 10% are hereditary cancers caused by germline mutations in specific genes. Several factors, such as growth factors, cytokines, and genetic or epigenetic alterations in specific oncogenes or tumor-suppressor genes, play a role during the adenoma-carcinoma sequence. Recent studies have reported an increase in interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) levels in the sera of patients affected by colon cancer that correlate with the tumor size, suggesting a potential role for IL-6 in colon cancer progression. IL-6 is a pleiotropic cytokine showing both pro- and anti-inflammatory roles. Two different types of IL-6 signaling are known. Classic IL-6 signaling involves the binding of IL-6 to its membrane receptor on the surfaces of target cells; alternatively, IL-6 binds to sIL-6R in a process called IL-6 trans-signaling. The activation of IL-6 trans-signaling by metalloproteinases has been described during colon cancer progression and metastasis, involving a shift from membrane-bound interleukin-6 receptor (IL-6R) expression on the tumor cell surface toward the release of soluble IL-6R. In this review, we aim to shed light on the role of IL-6 signaling pathway alterations in sporadic colorectal cancer and the development of familial polyposis syndrome. Furthermore, we evaluate the possible roles of IL-6 and IL-6R as biomarkers useful in disease follow-up and as potential targets for therapy, such as monoclonal antibodies against IL-6 or IL-6R, or a food-based approach against IL-6.
Collapse
Affiliation(s)
- Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
33
|
Tsogas FK, Majerczyk D, Hart PC. Possible Role of Metformin as an Immune Modulator in the Tumor Microenvironment of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22020867. [PMID: 33467127 PMCID: PMC7830067 DOI: 10.3390/ijms22020867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that the immune component of the tumor microenvironment (TME) may be highly involved in the progression of high-grade serous ovarian cancer (HGSOC), as an immunosuppressive TME is associated with worse patient outcomes. Due to the poor prognosis of HGSOC, new therapeutic strategies targeting the TME may provide a potential path forward for preventing disease progression to improve patient survival. One such postulated approach is the repurposing of the type 2 diabetes medication, metformin, which has shown promise in reducing HGSOC tumor progression in retrospective epidemiological analyses and through numerous preclinical studies. Despite its potential utility in treating HGSOC, and that the immune TME is considered as a key factor in the disease’s progression, little data has definitively shown the ability of metformin to target this component of the TME. In this brief review, we provide a summary of the current understanding of the effects of metformin on leukocyte function in ovarian cancer and, coupled with data from other related disease states, posit the potential mechanisms by which the drug may enhance the anti-tumorigenic effects of immune cells to improve HGSOC patient survival.
Collapse
Affiliation(s)
- Faye K. Tsogas
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
| | - Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
- Loyola Medicine, Berwyn, IL 60402, USA
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
- Correspondence:
| |
Collapse
|
34
|
LKB1 inhibits intrahepatic cholangiocarcinoma by repressing the transcriptional activity of the immune checkpoint PD-L1. Life Sci 2020; 257:118068. [PMID: 32653521 DOI: 10.1016/j.lfs.2020.118068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022]
Abstract
AIMS Intrahepatic cholangiocarcinoma (ICC) is a highly malignant tumour with increasing incidence and high mortality. Liver kinase B1 (LKB1) regulates cellular energy metabolism and cell division and affects immune microenvironment. This study aimed to uncover the underlying function and mechanism of LKB1 in ICC. MAIN METHODS To determine the correlation between LKB1 levels and clinicopathological features, the expression profile of LKB1 in ICC tissue specimens was examined by qRT-PCR and western blotting. In vitro experiments were conducted to examine the anticancer effect of LKB1 in ICC. Changes in the expression of epithelial-mesenchymal transition (EMT)-associated markers and immune checkpoints were analysed by qRT-PCR, western blotting, immunofluorescence and flow cytometry. The influence of LKB1 on the transcriptional activity of PD-L1 was determined by dual-luciferase reporter assays and IFNγ induction. KEY FINDINGS LKB1 was expressed at low levels in ICC and tightly associated with poor prognosis. LKB1 knockdown promoted the proliferation, migration, matrix adhesion and EMT of ICC cells. Notably, LKB1 silencing upregulated the surface expression of PD-L1 in ICC cells. Suppressed and mutated LKB1 enhanced the transcriptional activity of PD-L1 in ICC cells, leading to high expression of the immune checkpoint PD-L1. Furthermore, inhibiting LKB1 suppressed ICC cell apoptosis induced by IFNγ. SIGNIFICANCE By suppressing malignant transformation and the immune checkpoint PD-L1 of cancer cells, LKB1 plays an important role in inhibiting ICC and is a potential target for clinical diagnosis and treatment. This study may provide new strategies for improving the efficiency of cancer immunotherapy.
Collapse
|
35
|
Saravia J, Raynor JL, Chapman NM, Lim SA, Chi H. Signaling networks in immunometabolism. Cell Res 2020; 30:328-342. [PMID: 32203134 PMCID: PMC7118125 DOI: 10.1038/s41422-020-0301-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K–AGC kinases, mTOR and LKB1–AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
36
|
Roy DG, Chen J, Mamane V, Ma EH, Muhire BM, Sheldon RD, Shorstova T, Koning R, Johnson RM, Esaulova E, Williams KS, Hayes S, Steadman M, Samborska B, Swain A, Daigneault A, Chubukov V, Roddy TP, Foulkes W, Pospisilik JA, Bourgeois-Daigneault MC, Artyomov MN, Witcher M, Krawczyk CM, Larochelle C, Jones RG. Methionine Metabolism Shapes T Helper Cell Responses through Regulation of Epigenetic Reprogramming. Cell Metab 2020; 31:250-266.e9. [PMID: 32023446 DOI: 10.1016/j.cmet.2020.01.006] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/26/2019] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.
Collapse
Affiliation(s)
- Dominic G Roy
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jocelyn Chen
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Victoria Mamane
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Eric H Ma
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Brejnev M Muhire
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ryan D Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Tatiana Shorstova
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Rutger Koning
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Radia M Johnson
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ekaterina Esaulova
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Kelsey S Williams
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | - Bozena Samborska
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Amanda Swain
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | | | - William Foulkes
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - J Andrew Pospisilik
- Metabolic and Nutritional Programming, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie-Claude Bourgeois-Daigneault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Maxim N Artyomov
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Connie M Krawczyk
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Catherine Larochelle
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Russell G Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
37
|
Miyahara K, Tobe S, Shizuku T, Inamoto R, Katayama I. Colon cancer of Peutz-Jeghers syndrome with gallolyticus endocarditis. Clin J Gastroenterol 2019; 13:517-521. [PMID: 31845182 PMCID: PMC7395007 DOI: 10.1007/s12328-019-01080-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/03/2019] [Indexed: 11/26/2022]
Abstract
We report a case of Peutz-Jeghers syndrome with gallolyticus endocarditis which has not yet been reported. Colon cancer was observed and implicated in Peutz-Jeghers syndrome. A 44-year-old female with fever and heart murmur was diagnosed as infective endocarditis caused by streptococcus gallolyticus. After treatment with antibiotics and mitral valbuloplasty, we performed gastrointestinal endoscopic studies and found polyps in stomach and colon. Histological findings of a large pedunculated colon polyp revealed hamartomatous polyp with a lesion of adenocarcinoma with adenoma. She had pigmentation of digits. Her father had also digits pigmentation and died of pancreas cancer. Peutz-Jeghers syndrome with colon cancer was incidentally diagnosed by infective endocarditis and subsequent colonoscopy.
Collapse
Affiliation(s)
- Kiyoshi Miyahara
- Department of General Internal Medicine, Shonan Fujisawa Tokushukai Hospital, Tujido-Kandai 1-5-1, Fujisawa, Kanagawa, Japan.
| | - Shunichi Tobe
- Department of General Internal Medicine, Shonan Fujisawa Tokushukai Hospital, Tujido-Kandai 1-5-1, Fujisawa, Kanagawa, Japan
| | - Tatsunori Shizuku
- Department of General Internal Medicine, Shonan Fujisawa Tokushukai Hospital, Tujido-Kandai 1-5-1, Fujisawa, Kanagawa, Japan
| | - Rin Inamoto
- Center of Hepato-Gastroenterology, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Ikuo Katayama
- Department of Cardiovascular Surgery, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| |
Collapse
|
38
|
Xu H, Xu X, Wang H, Qimuge A, Liu S, Chen Y, Zhang C, Hu M, Song L. LKB1/p53/TIGAR/autophagy-dependent VEGF expression contributes to PM2.5-induced pulmonary inflammatory responses. Sci Rep 2019; 9:16600. [PMID: 31719630 PMCID: PMC6851103 DOI: 10.1038/s41598-019-53247-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
One of the health hazards of PM2.5 exposure is to induce pulmonary inflammatory responses. In our previous study, we demonstrated that exposing both the immortalized and primary human bronchial epithelial cells to PM2.5 results in a significant upregulation of VEGF production, a typical signaling event to trigger chronic airway inflammation. Further investigations showed that PM2.5 exposure strongly induces ATR/CHK1/p53 cascade activation, leading to the induction of DRAM1-dependent autophagy to mediate VEGF expression by activating Src/STAT3 pathway. In the current study, we further revealed that TIGAR was another transcriptional target of p53 to trigger autophagy and VEGF upregulation in Beas-2B cells after PM2.5 exposure. Furthermore, LKB1, but not ATR and CHK1, played a critical role in mediating p53/TIGAR/autophagy/VEGF pathway activation also by linking to Src/STAT3 signaling cascade. Therefore, on combination of the previous report, we have identified both ATR/CHK1/p53/DRAM1- and LKB1/p53/TIGAR- dependent autophagy in mediating VEGF production in the bronchial epithelial cells under PM2.5 exposure. Moreover, the in vivo study further confirmed VEGF induction in the airway potentially contributed to the inflammatory responses in the pulmonary vascular endothelium of PM2.5-treated rats. Therefore, blocking VEGF expression or autophagy induction might be the valuable strategies to alleviating PM2.5-induced respiratory injuries.
Collapse
Affiliation(s)
- Huan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Xiuduan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongli Wang
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, 357 Ximen Road, Kaifeng, 475004, People's Republic of China
| | - Aodeng Qimuge
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Department of New Drug Screening Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Shasha Liu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Tianshui South Road, Lanzhou, 730000, People's Republic of China
| | - Yuanlian Chen
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Guiin Medical University, 1 Zhiyuan Road, Guilin, 541100, P.R. China
| | - Chongchong Zhang
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, 357 Ximen Road, Kaifeng, 475004, People's Republic of China
| | - Meiru Hu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Lun Song
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China.
| |
Collapse
|
39
|
Brosseau JP, Le LQ. Heterozygous Tumor Suppressor Microenvironment in Cancer Development. Trends Cancer 2019; 5:541-546. [PMID: 31474359 DOI: 10.1016/j.trecan.2019.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/25/2023]
Abstract
Hereditary cancer syndromes are typically caused by mutations of a tumor suppressor gene that lead to the early development of multifocal benign neoplasms followed by their malignant progression. However, the term 'hereditary cancer syndrome' may be misleading, as a large subgroup of syndromes are characterized by highly penetrant benign tumors. The reason why these cardinal tumors rarely progress to malignancy has been an elusive question in cancer biology. In this opinion article, we propose a framework where a heterozygous tumor suppressor gene microenvironment has antagonistic roles in tumorigenesis, by accelerating development of benign tumors while restraining further progression to malignant cancers.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9069, USA.
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9069, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9069, USA; UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9069, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9069, USA.
| |
Collapse
|
40
|
Hollstein PE, Eichner LJ, Brun SN, Kamireddy A, Svensson RU, Vera LI, Ross DS, Rymoff TJ, Hutchins A, Galvez HM, Williams AE, Shokhirev MN, Screaton RA, Berdeaux R, Shaw RJ. The AMPK-Related Kinases SIK1 and SIK3 Mediate Key Tumor-Suppressive Effects of LKB1 in NSCLC. Cancer Discov 2019; 9:1606-1627. [PMID: 31350328 DOI: 10.1158/2159-8290.cd-18-1261] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Mutations in the LKB1 (also known as STK11) tumor suppressor are the third most frequent genetic alteration in non-small cell lung cancer (NSCLC). LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates 14 AMPK family kinases ("AMPKRs"). The function of many of the AMPKRs remains obscure, and which are most critical to the tumor-suppressive function of LKB1 remains unknown. Here, we combine CRISPR and genetic analysis of the AMPKR family in NSCLC cell lines and mouse models, revealing a surprising critical role for the SIK subfamily. Conditional genetic loss of Sik1 revealed increased tumor growth in mouse models of Kras-dependent lung cancer, which was further enhanced by loss of the related kinase Sik3. As most known substrates of the SIKs control transcription, gene-expression analysis was performed, revealing upregulation of AP1 and IL6 signaling in common between LKB1- and SIK1/3-deficient tumors. The SIK substrate CRTC2 was required for this effect, as well as for proliferation benefits from SIK loss. SIGNIFICANCE: The tumor suppressor LKB1/STK11 encodes a serine/threonine kinase frequently inactivated in NSCLC. LKB1 activates 14 downstream kinases in the AMPK family controlling growth and metabolism, although which kinases are critical for LKB1 tumor-suppressor function has remained an enigma. Here we unexpectedly found that two understudied kinases, SIK1 and SIK3, are critical targets in lung cancer.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Pablo E Hollstein
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Lillian J Eichner
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Sonja N Brun
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Anwesh Kamireddy
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Robert U Svensson
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Liliana I Vera
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Debbie S Ross
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - T J Rymoff
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Amanda Hutchins
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Hector M Galvez
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - April E Williams
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California
| | - Robert A Screaton
- Sunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
| |
Collapse
|
41
|
Wang Y, Du X, Wei J, Long L, Tan H, Guy C, Dhungana Y, Qian C, Neale G, Fu YX, Yu J, Peng J, Chi H. LKB1 orchestrates dendritic cell metabolic quiescence and anti-tumor immunity. Cell Res 2019; 29:391-405. [PMID: 30911060 DOI: 10.1038/s41422-019-0157-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role in priming adaptive immunity. However, the involvement of DCs in controlling excessive and deleterious T cell responses remains poorly defined. Moreover, the metabolic dependence and regulation of DC function are unclear. Here we show that LKB1 signaling in DCs functions as a brake to restrain excessive tumor-promoting regulatory T cell (Treg) and Th17 cell responses, thereby promoting protective anti-tumor immunity and maintaining proper immune homeostasis. LKB1 deficiency results in dysregulated metabolism and mTOR activation of DCs. Loss of LKB1 also leads to aberrant DC maturation and production of cytokines and immunoregulatory molecules. Blocking mTOR signaling in LKB1-deficient DCs partially rectifies the abnormal phenotypes of DC activation and Treg expansion, whereas uncontrolled Th17 responses depend upon IL-6-STAT3 signaling. By coordinating metabolic and immune quiescence of DCs, LKB1 acts as a crucial signaling hub in DCs to enforce protective anti-tumor immunity and normal immune homeostasis.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xingrong Du
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Wei
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chenxi Qian
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
42
|
Roy S, Rizvi ZA, Awasthi A. Metabolic Checkpoints in Differentiation of Helper T Cells in Tissue Inflammation. Front Immunol 2019; 9:3036. [PMID: 30692989 PMCID: PMC6340303 DOI: 10.3389/fimmu.2018.03036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Naïve CD4+ T cell differentiate into effector and regulatory subsets of helper T (Th) cells in various pathophysiological conditions and modulate tissue inflammation in autoimmune diseases. While cytokines play a key role in determining the fate of Th cells differentiation, metabolites, and metabolic pathways profoundly influence Th cells fate and their functions. Emerging literature suggests that interplay between metabolic pathways and cytokines potentiates T cell differentiation and functions in tissue inflammation in autoimmune diseases. Metabolic pathways, which are essential for the differentiation and functions of Th cell subsets, are regulated by cytokines, nutrients, growth factors, local oxygen levels, co-activation receptors, and metabolites. Dysregulation of metabolic pathways not only alters metabolic regulators in Th cells but also affect the outcome of tissue inflammation in autoimmune and allergic diseases. Understanding the modulation of metabolic pathways during T cells differentiation may potentially lead to a therapeutic strategy for immune-modulation of autoimmune and allergic diseases. In this review, we summarize the role of metabolic checkpoints and their crosstalk with different master transcription factors and signaling molecules in differentiation and function of Th subsets, which may potentially unravel novel therapeutic interventions for tissue inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Zaigham Abbas Rizvi
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Awasthi
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
43
|
Affiliation(s)
- Pablo E Hollstein
- Laboratory of Molecular and Cell Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Reuben J Shaw
- Laboratory of Molecular and Cell Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|