1
|
Jang SY, Cho M, Kim H, Choi M, Mun S, Youn JH, Park J, Hwang G, Hwang I, Yun S, Kyung KU. Dynamically reconfigurable shape-morphing and tactile display via hydraulically coupled mergeable and splittable PVC gel actuator. SCIENCE ADVANCES 2024; 10:eadq2024. [PMID: 39321295 PMCID: PMC11423880 DOI: 10.1126/sciadv.adq2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Shape-morphing displays alter their surface geometry to convey information through three-dimensional shapes. However, rapid transformation into seamless shapes with multimodal tactile sensations poses challenges. Here, we introduce a versatile soft shape-morphing and tactile display, using a novel actuator that combines a PVC gel composite, dielectric liquid, and an electrode array. Proposed device facilitates on-demand liquid flow control through electrohydraulic actuation. Liquid channels within the device can be dynamically reconfigured using localized electrostatic zipping, enabling swift shape morphing and reconfiguration into diverse seamless 3D shapes. Our device achieves a large deformation and high output force, in a slim and lightweight framework. It also offers various haptic feedback, including dynamic tactile patterns and vibrations for localizable surface textures on the morphed shape. Additionally, its potential in robotics was demonstrated through high-speed object manipulation, leveraging liquid flow-induced inertia. In summary, our innovative soft shape-morphing tactile display could open new ways that we interact with technology, offering a more immersive and intuitive experience.
Collapse
Affiliation(s)
- Seung-Yeon Jang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Minjae Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyunwoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Meejeong Choi
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Seongcheol Mun
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Jung-Hwan Youn
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jihwan Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Geonwoo Hwang
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Inwook Hwang
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Sungryul Yun
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Ki-Uk Kyung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Zhang J, Wang P, Xie W, Wang H, Zhang Y, Zhou H. Cephalopod-Inspired Nanomaterials for Optical and Thermal Regulation: Mechanisms, Applications and Perspectives. ACS NANO 2024; 18:24741-24769. [PMID: 39177374 DOI: 10.1021/acsnano.4c08338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The manipulation of interactions between light and matter plays a crucial role in the evolution of organisms and a better life for humans. As a result of natural selection, precise light-regulatory systems of biology have been engineered that provide many powerful and promising bioinspired strategies. As the "king of disguise", cephalopods, which can perfectly control the propagation of light and thus achieve excellent surrounding-matching via their delicate skin structure, have made themselves an exciting source of inspiration for developing optical and thermal regulation nanomaterials. This review presents cutting-edge advancements in cephalopod-inspired optical and thermal regulation nanomaterials, highlighting the key milestones and breakthroughs achieved thus far. We begin with the underlying mechanisms of the adaptive color-changing ability of cephalopods, as well as their special hierarchical skin structure. Then, different types of bioinspired nanomaterials and devices are comprehensively summarized. Furthermore, some advanced and emerging applications of these nanomaterials and devices, including camouflage, thermal management, pixelation, medical health, sensing and wireless communication, are addressed. Finally, some remaining but significant challenges and potential directions for future work are discussed. We anticipate that this comprehensive review will promote the further development of cephalopod-inspired nanomaterials for optical and thermal regulation and trigger ideas for bioinspired design of nanomaterials in multidisciplinary applications.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Pan Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Weirong Xie
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Haoyu Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Yifan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| |
Collapse
|
3
|
Li J, Bao J, Ho C, Li S, Xu J. Origami Morphing Surfaces with Arrayed Quasi-Rigid-Foldable Polyhedrons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402128. [PMID: 39083289 PMCID: PMC11422804 DOI: 10.1002/advs.202402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Indexed: 09/26/2024]
Abstract
Artificial morphing surfaces, inspired by the high adaptability of biological tissues, have emerged as a significant area of research in recent years. However, the practical applications of these surfaces, constructed from soft materials, are considerably limited due to their low shear stiffness. Rigid-foldable cylinders are anisotropic structures that exhibit high adaptability and shear stiffness. Thus, they have the potential to address this issue. However, changes in shape and area at both ends during folding can lead to collisions or gaps on the morphing surface. Here, a quasi-rigid-foldable (QRF) rate is first introduced to quantify the rigid-foldability of a foldable structure and validate it through experiments. More importantly, a QRF polyhedron is then proposed, which is not only notably anisotropic, similar to a rigid-foldable cylinder, but also exhibits a zero-Poisson's ratio property, making it suitable for arraying as morphing surfaces without any collisions or gaps. Such surfaces have a myriad of applications, including modulating electromagnetic waves, gripping fragile objects, and serving as soles for climbing robots.
Collapse
Affiliation(s)
- Jiacong Li
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Jiali Bao
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Chengyeh Ho
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Shuguang Li
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Jing Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
An S, Li X, Guo Z, Huang Y, Zhang Y, Jiang H. Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces. Nat Commun 2024; 15:7340. [PMID: 39187536 PMCID: PMC11347642 DOI: 10.1038/s41467-024-51865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
Inspired by the natural shape-morphing abilities of biological organisms, we introduce a strategy for creating energy-efficient dynamic 3D metasurfaces through spatiotemporal jamming of interleaved assemblies. Our approach, diverging from traditional shape-morphing techniques reliant on continuous energy inputs, utilizes strategically jammed, paper-based interleaved assemblies. By rapidly altering their stiffness at various spatial points and temporal phases during the relaxation of the soft substrate through jamming, we enable the formation of refreshable, intricate 3D shapes with a desirable load-bearing capability. This process, which does not require ongoing energy consumption, ensures energy-efficient and lasting shape displays. Our theoretical model, linking buckling deformation to residual pre-strain, underpins the inverse design process for an array of interleaved assemblies, facilitating the creation of diverse 3D configurations. This metasurface holds notable potential for tactile displays, particularly for the visually impaired, heralding possibilities in visual impaired education, haptic feedback, and virtual/augmented reality applications.
Collapse
Affiliation(s)
- Siqi An
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiaowen Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zengrong Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yi Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
5
|
Tanaka M, Song Y, Nomura T. Fabric soft pneumatic actuators with programmable turing pattern textures. Sci Rep 2024; 14:19175. [PMID: 39160199 PMCID: PMC11333703 DOI: 10.1038/s41598-024-69450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
This paper presents a novel computational design and fabrication method for fabric-based soft pneumatic actuators (FSPAs) that use Turing patterns, inspired by Alan Turing's morphogenesis theory. These inflatable structures can adapt their shapes with simple pressure changes and are applicable in areas like soft robotics, airbags, and temporary shelters. Traditionally, the design of such structures relies on isotropic materials and the designer's expertise, often requiring a trial-and-error approach. The present study introduces a method to automate this process using advanced numerical optimization to design and manufacture fabric-based inflatable structures with programmable shape-morphing capabilities. Initially, an optimized distribution of the material orientation field on the surface membrane is achieved through gradient-based orientation optimization. This involves a comprehensive physical deployment simulation using the nonlinear shell finite element method, which is integrated into the inner loop of the optimization algorithm. This continuous adjustment of material orientations enhances the design objectives. These material orientation fields are transformed into discretized texture patterns that replicate the same anisotropic deformations. Anisotropic reaction-diffusion equations, using diffusion coefficients determined by local orientations from the optimization step, are then utilized to create space-filling Turing pattern textures. Furthermore, the fabrication methods of these optimized Turing pattern textures are explored using fabrics through heat bonding and embroidery. The performance of the fabricated FSPAs is evaluated through three different deformation shapes: C-shaped bending, S-shaped bending, and twisting.
Collapse
Affiliation(s)
- Masato Tanaka
- Toyota Central R&D Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA.
| | - Yuyang Song
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA.
| | - Tsuyoshi Nomura
- Toyota Central R&D Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
6
|
Muhaxheri G, Santangelo CD. Bifurcations of inflating balloons and interacting hysterons. Phys Rev E 2024; 110:024209. [PMID: 39295065 DOI: 10.1103/physreve.110.024209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 09/21/2024]
Abstract
While many materials exhibit a complex, hysteretic response to external driving, there has been a surge of interest in how the complex dynamics of internal materials states can be understood and designed to process and store information. We consider a system of connected rubber balloons that can be described by a Preisach model of noninteracting hysterons under pressure control but for which the hysterons become coupled under volume control. We study this system by exploring the possible transition graphs, as well as by introducing a configuration space approach which tracks the volumes of each balloon. Changes in the transition graphs turn out to be related to changes in the topology of the configuration space of the balloons, providing a particularly geometric view of how transition graphs can be designed, as well as additional information on the existence of hidden metastable states. This class of systems is more general than just balloons.
Collapse
|
7
|
Li S, Xiao P, Wang Q, He J, Liu X, Wei J, Wang Y, Chen T. Jellyfish-Inspired Visual and Sensory Bubbling Robots with Automatic 3D Morphable Films for Underwater Environmental Interactions. ACS NANO 2024. [PMID: 39051442 DOI: 10.1021/acsnano.4c06714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Coelenterates, such as Atolla jellyfish, are capable of integrating color, communication, and motion in a sophisticated manner, thereby enabling them to function as intelligent biological systems that can adapt to the challenges of the underwater environment. Extensive efforts have been dedicated to exploiting underwater visual, sensory, actuating, or combined systems. However, current biomimetic soft systems are still limited by the lack of comprehensive, integrated functional skins that can automatically deform, dynamically sense, and further send color signals when diving into underwater conditions. Here, we propose the synthetic soft skins composed of assembled entangled carbon nanotube networks and fluorescent unit-embedded elastomers which can be applied in a suspended form to allow autonomic 3D deformation, real-time perception, and dynamic fluorescence color transformation. The capabilities of the sensory and color display thresholds were controlled through the entanglement density of carbon nanotubes and the suspended area. As a demonstration, the soft thin skin was integrated into an artificial jellyfish robot, enabling the realization of a closed-loop feedback system for dynamic sensory processing, signal processing, and further 3D morphing-induced fluorescent color change, demonstrating significant potentials in underwater visual display, danger warning, and environmental exploration.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiling Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jiang He
- CAS Center for Excellence in Nano Science, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Xinrui Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Junjie Wei
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yaowen Wang
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Sun X, Yue L, Yu L, Forte CT, Armstrong CD, Zhou K, Demoly F, Zhao RR, Qi HJ. Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat Commun 2024; 15:5509. [PMID: 38951533 PMCID: PMC11217466 DOI: 10.1038/s41467-024-49775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material distribution to achieve desired 3D shape changes is significantly challenging yet greatly needed. Here, we present an approach that combines machine learning (ML) with both gradient-descent (GD) and evolutionary algorithm (EA) to design AC plates with 3D shape changes. A residual network ML model is developed for the forward shape prediction. A global-subdomain design strategy with ML-GD and ML-EA is then used for the inverse material-distribution design. For a variety of numerically generated target shapes, both ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA with a normal distance-based loss function, optimized designs are achieved for multiple irregular target shapes. Our approach thus provides a highly efficient tool for the design of 4D-printed active composites.
Collapse
Affiliation(s)
- Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor T Forte
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor D Armstrong
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Frédéric Demoly
- ICB UMR 6303 CNRS, Belfort-Montbeliard University of Technology, UTBM, Belfort, France
- Institut universitaire de France (IUF), Paris, France
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
9
|
Cao Y, Xu B, Li B, Fu H. Advanced Design of Soft Robots with Artificial Intelligence. NANO-MICRO LETTERS 2024; 16:214. [PMID: 38869734 PMCID: PMC11176285 DOI: 10.1007/s40820-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
A comprehensive review focused on the whole systems of the soft robotics with artificial intelligence, which can feel, think, react and interact with humans, is presented. The design strategies concerning about various aspects of the soft robotics, like component materials, device structures, prepared technologies, integrated method, and potential applications, are summarized. A broad outlook on the future considerations for the soft robots is proposed. In recent years, breakthrough has been made in the field of artificial intelligence (AI), which has also revolutionized the industry of robotics. Soft robots featured with high-level safety, less weight, lower power consumption have always been one of the research hotspots. Recently, multifunctional sensors for perception of soft robotics have been rapidly developed, while more algorithms and models of machine learning with high accuracy have been optimized and proposed. Designs of soft robots with AI have also been advanced ranging from multimodal sensing, human–machine interaction to effective actuation in robotic systems. Nonetheless, comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare. Here, the new development is systematically reviewed in the field of soft robots with AI. First, background and mechanisms of soft robotic systems are briefed, after which development focused on how to endow the soft robots with AI, including the aspects of feeling, thought and reaction, is illustrated. Next, applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement. Design thoughts for future intelligent soft robotics are pointed out. Finally, some perspectives are put forward.
Collapse
Affiliation(s)
- Ying Cao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China.
| | - Bin Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
10
|
Liang L, Yang X, Li C, Yu R, Zhang B, Yang Y, Ji G. MXene-Enabled Pneumatic Multiscale Shape Morphing for Adaptive, Programmable and Multimodal Radar-infrared Compatible Camouflage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313939. [PMID: 38578586 DOI: 10.1002/adma.202313939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Achieving radar-infrared compatible camouflage with dynamic adaptability has been a long-sought goal, but faces significant challenges owing to the limited dispersion relations of conventional material systems operating in different wavelength ranges. Here, this work proposes the concept of pneumatic multiscale shape morphing and design a periodically arranged pneumatic unit consisting of MXene-based morphable conductors and intake platforms. During gas actuation, the morphable conductor transforms centimeter-scale 2D flat sheets into 3D balloon shapes to enhance microwave absorption behavior, and also reconfigures micrometer-scale MXene wrinkles into smooth planes in combination with cavity-induced low heat transfer to minimize infrared (IR) signatures. Through theory-guided reverse engineering, the final pneumatic matrix shows remarkable frequency tunability (2.64-18.0 GHz), moderate IR emissivity regulation (0.14 at 7-16.5 µm), rapid responsiveness (≈30 ms), wide-angle operation (>45°), and excellent environmental tolerance. Additionally, the multiplexed pneumatic matrix enables over 14 programmable coding sequences that independently alter thermal radiation without compromising radar stealth, and allows multimodal camouflage switching between three distinct compatible states. The approach may facilitate the evolution of camouflage techniques and electromagnetic functional materials toward multispectral, adaptability and intelligence.
Collapse
Affiliation(s)
- Leilei Liang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiuyue Yang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Chen Li
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Ruoling Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Baoshan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
11
|
Jin L, Yang S. Engineering Kirigami Frameworks Toward Real-World Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308560. [PMID: 37983878 DOI: 10.1002/adma.202308560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Guo X, Li W, Fang F, Chen H, Zhao L, Fang X, Yi Z, Shao L, Meng G, Zhang W. Encoded sewing soft textile robots. SCIENCE ADVANCES 2024; 10:eadk3855. [PMID: 38181076 PMCID: PMC10776007 DOI: 10.1126/sciadv.adk3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Incorporating soft actuation with soft yet durable textiles could effectively endow the latter with active and flexible shape morphing and motion like mollusks and plants. However, creating highly programmable and customizable soft robots based on textiles faces a longstanding design and manufacturing challenge. Here, we report a methodology of encoded sewing constraints for efficiently constructing three-dimensional (3D) soft textile robots through a simple 2D sewing process. By encoding heterogeneous stretching properties into three spatial seams of the sewed 3D textile shells, nonlinear inflation of the inner bladder can be guided to follow the predefined spatial shape and actuation sequence, for example, tendril-like shape morphing, tentacle-like sequential manipulation, and bioinspired locomotion only controlled by single pressure source. Such flexible, efficient, scalable, and low-cost design and formation methodology will accelerate the development and iteration of soft robots and also open up more opportunities for safe human-robot interactions, tailored wearable devices, and health care.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Fuyi Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huyue Chen
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linchuan Zhao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Yi
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Shao
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Sun J, Lerner E, Tighe B, Middlemist C, Zhao J. Embedded shape morphing for morphologically adaptive robots. Nat Commun 2023; 14:6023. [PMID: 37758737 PMCID: PMC10533550 DOI: 10.1038/s41467-023-41708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Shape-morphing robots can change their morphology to fulfill different tasks in varying environments, but existing shape-morphing capability is not embedded in a robot's body, requiring bulky supporting equipment. Here, we report an embedded shape-morphing scheme with the shape actuation, sensing, and locking, all embedded in a robot's body. We showcase this embedded scheme using three morphing robotic systems: 1) self-sensing shape-morphing grippers that can adapt to objects for adaptive grasping; 2) a quadrupedal robot that can morph its body shape for different terrestrial locomotion modes (walk, crawl, or horizontal climb); 3) an untethered robot that can morph its limbs' shape for amphibious locomotion. We also create a library of embedded morphing modules to demonstrate the versatile programmable shapes (e.g., torsion, 3D bending, surface morphing, etc.). Our embedded morphing scheme offers a promising avenue for robots to reconfigure their morphology in an embedded manner that can adapt to different environments on demand.
Collapse
Affiliation(s)
- Jiefeng Sun
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA.
| | - Elisha Lerner
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Brandon Tighe
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Clint Middlemist
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jianguo Zhao
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
14
|
Yang Z, Bao G, Huo R, Jiang S, Yang X, Ni X, Mongeau L, Long R, Li J. Programming hydrogel adhesion with engineered polymer network topology. Proc Natl Acad Sci U S A 2023; 120:e2307816120. [PMID: 37725650 PMCID: PMC10523657 DOI: 10.1073/pnas.2307816120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Hydrogel adhesion that can be easily modulated in magnitude, space, and time is desirable in many emerging applications ranging from tissue engineering and soft robotics to wearable devices. In synthetic materials, these complex adhesion behaviors are often achieved individually with mechanisms and apparatus that are difficult to integrate. Here, we report a universal strategy to embody multifaceted adhesion programmability in synthetic hydrogels. By designing the surface network topology of a hydrogel, supramolecular linkages that result in contrasting adhesion behaviors are formed on the hydrogel interface. The incorporation of different topological linkages leads to dynamically tunable adhesion with high-resolution spatial programmability without alteration of bulk mechanics and chemistry. Further, the association of linkages enables stable and tunable adhesion kinetics that can be tailored to suit different applications. We rationalize the physics of polymer chain slippage, rupture, and diffusion at play in the emergence of the programmable behaviors. With the understanding, we design and fabricate various soft devices such as smart wound patches, fluidic channels, drug-eluting devices, and reconfigurable soft robotics. Our study presents a simple and robust platform in which adhesion controllability in multiple aspects can be easily integrated into a single design of a hydrogel network.
Collapse
Affiliation(s)
- Zhen Yang
- Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
| | - Guangyu Bao
- Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
| | - Ran Huo
- Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
| | - Shuaibing Jiang
- Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
| | - Xingwei Yang
- Mechanical Engineering, Colorado University Boulder, Boulder, CO80309
| | - Xiang Ni
- Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
| | - Luc Mongeau
- Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
- Biomedical Engineering, McGill University, Montreal, QCH3A 2B4, Canada
| | - Rong Long
- Mechanical Engineering, Colorado University Boulder, Boulder, CO80309
| | - Jianyu Li
- Mechanical Engineering, McGill University, Montreal, QCH3A 0C3, Canada
- Biomedical Engineering, McGill University, Montreal, QCH3A 2B4, Canada
| |
Collapse
|
15
|
Tang R, Gao W, Jia Y, Wang K, Datta BK, Zheng W, Zhang H, Xu Y, Lin Y, Weng W. Mechanochemically assisted morphing of shape shifting polymers. Chem Sci 2023; 14:9207-9212. [PMID: 37655017 PMCID: PMC10466301 DOI: 10.1039/d3sc02404k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Morphing in creatures has inspired various synthetic polymer materials that are capable of shape shifting. The morphing of polymers generally relies on stimuli-active (typically heat and light active) units that fix the shape after a mechanical load-based shape programming. Herein, we report a strategy that uses a mechanochemically active 2,2'-bis(2-phenylindan-1,3-dione) (BPID) mechanophore as a switching unit for mechanochemical morphing. The mechanical load on the polymer triggers the dissociation of the BPID moiety into stable 2-phenylindan-1,3-dione (PID) radicals, whose subsequent spontaneous dimerization regenerates BPID and fixes the temporary shapes that can be effectively recovered to the permanent shapes by heating. A greater extent of BPID activation, through a higher BPID content or mechanical load, leads to higher mechanochemical shape fixity. By contrast, a relatively mechanochemically less active hexaarylbiimidazole (HABI) mechanophore shows a lower fixing efficiency when subjected to the same programing conditions. Another control system without a mechanophore shows a low fixing efficiency comparable to the HABI system. Additionally, the introduction of the BPID moiety also manifests remarkable mechanochromic behavior during the shape programing process, offering a visualizable indicator for the pre-evaluation of morphing efficiency. Unlike conventional mechanical mechanisms that simultaneously induce morphing, such as strain-induced plastic deformation or crystallization, our mechanochemical method allows for shape programming after the mechanical treatment. Our concept has potential for the design of mechanochemically programmable and mechanoresponsive shape shifting polymers.
Collapse
Affiliation(s)
- Rui Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Wenli Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yulin Jia
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Kai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Barun Kumar Datta
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Wei Zheng
- College of Materials Science, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Huan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yuanze Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University 443 Via Ortega, Stanford California 94305 USA
| | - Wengui Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| |
Collapse
|
16
|
Gao T, Bico J, Roman B. Pneumatic cells toward absolute Gaussian morphing. Science 2023; 381:862-867. [PMID: 37616347 DOI: 10.1126/science.adi2997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
On a flat map of the Earth, continents are inevitably distorted. Reciprocally, curving a plate simultaneously in two directions requires a modification of in-plane distances, as Gauss stated in his seminal theorem. Although emerging architectured materials with programmed in-plane distortions are capable of such shape morphing, an additional control of local bending is required to precisely set the final shape of the resulting three-dimensional surface. Inspired by bulliform cells in leaves of monocotyledon plants, we show how the internal structure of flat panels can be designed to program bending and in-plane distortions simultaneously when pressurized, leading to a targeted shell shape. These surfaces with controlled stiffness and fast actuation are manufactured using consumer-grade materials and open a route to large-scale shape-morphing robotics applications.
Collapse
Affiliation(s)
- Tian Gao
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - José Bico
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Benoît Roman
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
17
|
Johnson BK, Naris M, Sundaram V, Volchko A, Ly K, Mitchell SK, Acome E, Kellaris N, Keplinger C, Correll N, Humbert JS, Rentschler ME. A multifunctional soft robotic shape display with high-speed actuation, sensing, and control. Nat Commun 2023; 14:4516. [PMID: 37524731 PMCID: PMC10390478 DOI: 10.1038/s41467-023-39842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Shape displays which actively manipulate surface geometry are an expanding robotics domain with applications to haptics, manufacturing, aerodynamics, and more. However, existing displays often lack high-fidelity shape morphing, high-speed deformation, and embedded state sensing, limiting their potential uses. Here, we demonstrate a multifunctional soft shape display driven by a 10 × 10 array of scalable cellular units which combine high-speed electrohydraulic soft actuation, magnetic-based sensing, and control circuitry. We report high-performance reversible shape morphing up to 50 Hz, sensing of surface deformations with 0.1 mm sensitivity and external forces with 50 mN sensitivity in each cell, which we demonstrate across a multitude of applications including user interaction, image display, sensing of object mass, and dynamic manipulation of solids and liquids. This work showcases the rich multifunctionality and high-performance capabilities that arise from tightly-integrating large numbers of electrohydraulic actuators, soft sensors, and controllers at a previously undemonstrated scale in soft robotics.
Collapse
Affiliation(s)
- B K Johnson
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - M Naris
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - V Sundaram
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - A Volchko
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - K Ly
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - S K Mitchell
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Artimus Robotics, Boulder, CO, USA
| | - E Acome
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Artimus Robotics, Boulder, CO, USA
| | - N Kellaris
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Artimus Robotics, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - C Keplinger
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA.
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
| | - N Correll
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA.
| | - J S Humbert
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - M E Rentschler
- Paul M. Rady Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
18
|
Wang J, Sotzing M, Lee M, Chortos A. Passively addressed robotic morphing surface (PARMS) based on machine learning. SCIENCE ADVANCES 2023; 9:eadg8019. [PMID: 37478174 PMCID: PMC10361599 DOI: 10.1126/sciadv.adg8019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy. Developing compact, efficient control interfaces and algorithms is vital for broader adoption. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of N2 independent actuators using only 2N control inputs, which is substantially lower than traditional direct addressing (N2 control inputs). Using machine learning with finite element simulations for training, our control algorithm enables real-time, high-precision forward and inverse control, allowing PARMS to dynamically morph into arbitrary achievable predefined surfaces on demand. These innovations may enable the future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality.
Collapse
Affiliation(s)
- Jue Wang
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Michael Sotzing
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Mina Lee
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Alex Chortos
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| |
Collapse
|
19
|
He Q, Yin R, Hua Y, Jiao W, Mo C, Shu H, Raney JR. A modular strategy for distributed, embodied control of electronics-free soft robots. SCIENCE ADVANCES 2023; 9:eade9247. [PMID: 37418520 DOI: 10.1126/sciadv.ade9247] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Robots typically interact with their environments via feedback loops consisting of electronic sensors, microcontrollers, and actuators, which can be bulky and complex. Researchers have sought new strategies for achieving autonomous sensing and control in next-generation soft robots. We describe here an electronics-free approach for autonomous control of soft robots, whose compositional and structural features embody the sensing, control, and actuation feedback loop of their soft bodies. Specifically, we design multiple modular control units that are regulated by responsive materials such as liquid crystal elastomers. These modules enable the robot to sense and respond to different external stimuli (light, heat, and solvents), causing autonomous changes to the robot's trajectory. By combining multiple types of control modules, complex responses can be achieved, such as logical evaluations that require multiple events to occur in the environment before an action is performed. This framework for embodied control offers a new strategy toward autonomous soft robots that operate in uncertain or dynamic environments.
Collapse
Affiliation(s)
- Qiguang He
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rui Yin
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yucong Hua
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weijian Jiao
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyang Mo
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Shu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Ha J, Kim YS, Li C, Hwang J, Leung SC, Siu R, Tawfick S. Polymorphic display and texture integrated systems controlled by capillarity. SCIENCE ADVANCES 2023; 9:eadh1321. [PMID: 37390215 PMCID: PMC10313163 DOI: 10.1126/sciadv.adh1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Soft robotics offer unusual bioinspired solutions to challenging engineering problems. Colorful display and morphing appendages are vital signaling modalities used by natural creatures to camouflage, attract mates, or deter predators. Engineering these display capabilities using traditional light emitting devices is energy expensive and bulky and requires rigid substrates. Here, we use capillary-controlled robotic flapping fins to create switchable visual contrast and produce state-persistent, multipixel displays that are 1000- and 10-fold more energy efficient than light emitting devices and electronic paper, respectively. We reveal the bimorphic ability of these fins, whereby they switch between straight or bent stable equilibria. By controlling the droplets temperature across the fins, the multifunctional cells simultaneously exhibit infrared signals decoupled from the optical signals for multispectral display. The ultralow power, scalability, and mechanical compliance make them suitable for curvilinear and soft machines.
Collapse
Affiliation(s)
- Jonghyun Ha
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Yun Seong Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengzhang Li
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonghyun Hwang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sze Chai Leung
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Siu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sameh Tawfick
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Cheng X, Fan Z, Yao S, Jin T, Lv Z, Lan Y, Bo R, Chen Y, Zhang F, Shen Z, Wan H, Huang Y, Zhang Y. Programming 3D curved mesosurfaces using microlattice designs. Science 2023; 379:1225-1232. [PMID: 36952411 DOI: 10.1126/science.adf3824] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Cellular microstructures form naturally in many living organisms (e.g., flowers and leaves) to provide vital functions in synthesis, transport of nutrients, and regulation of growth. Although heterogeneous cellular microstructures are believed to play pivotal roles in their three-dimensional (3D) shape formation, programming 3D curved mesosurfaces with cellular designs remains elusive in man-made systems. We report a rational microlattice design that allows transformation of 2D films into programmable 3D curved mesosurfaces through mechanically guided assembly. Analytical modeling and a machine learning-based computational approach serve as the basis for shape programming and determine the heterogeneous 2D microlattice patterns required for target 3D curved surfaces. About 30 geometries are presented, including both regular and biological mesosurfaces. Demonstrations include a conformable cardiac electronic device, a stingray-like dual mode actuator, and a 3D electronic cell scaffold.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhichao Fan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Tianqi Jin
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zengyao Lv
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Renheng Bo
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yitong Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Huanhuan Wan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Civil & Environmental Engineering, Mechanical Engineering, and Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
22
|
Tanaka M, Montgomery SM, Yue L, Wei Y, Song Y, Nomura T, Qi HJ. Turing pattern-based design and fabrication of inflatable shape-morphing structures. SCIENCE ADVANCES 2023; 9:eade4381. [PMID: 36763653 PMCID: PMC9916983 DOI: 10.1126/sciadv.ade4381] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Turing patterns are self-organizing stripes or spots widely found in biological systems and nature. Although inspiring, their applications are limited. Inflatable shape-morphing structures have attracted substantial research attention. Traditional inflatable structures use isotropic materials with geometrical features to achieve shape morphing. Recently, gradient-based optimization methods have been used to design these structures. These methods assume anisotropic materials whose orientation can vary freely. However, this assumption makes fabrication a considerable challenge by methods such as additive manufacturing, which print isotropic materials. Here, we present a methodology of using Turing patterns to bridge this gap. Specifically, we use Turing patterns to convert a design with distributed anisotropic materials to a distribution with two materials, which can be fabricated by grayscale digital light processing 3D printing. This work suggests that it is possible to apply patterns in biological systems and nature to engineering composites and offers new concepts for future material design.
Collapse
Affiliation(s)
- Masato Tanaka
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI 48105, USA
| | - S. Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yaochi Wei
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuyang Song
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI 48105, USA
| | - Tsuyoshi Nomura
- Toyota Central R&D Laboratories Inc. , Bunkyo-ku, Tokyo 112-0004, Japan
| | - H. Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
23
|
Shan F, Le X, Shang H, Xie W, Sun W, Chen T. Regulating Aggregated Structures in Organohydrogels for On-Demand Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7405-7413. [PMID: 36706270 DOI: 10.1021/acsami.2c21020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As one of the most promising candidates for dynamic information storage, intelligent gels with tunable optical properties under external stimuli have received great attention. The implementation of transparency variation for information display is a favorable and versatile strategy but still faces the challenge of on-demand encryption-decryption. Herein, an optical tunable organohydrogel is prepared, which has interpenetrating heterogeneous networks consisting of hydrophilic poly(N,N-dimethylacrylamide) (PDMA) and hydrophobic polyoctadecyl methacrylate (PSMA). The long alkane side chains of PSMA endow the organohydrogel with the capacity of crystallization-melting transitions under the stimulus of heat, accompanied by transparent-opaque switching. In addition, the variations of transparency can also be achieved by water-induced hydrophobic association and microphase separation, resulting from the unique heterogeneous networks of the organohydrogel. Based on the abovementioned two aggregated structures, various pieces of information can be loaded on the organohydrogel by light writing or water printing with the assistance of masks. The coded information can be encrypted and decrypted by solvent replacement and temperature switching. This elaborately designed organohydrogel can act as an effective communication platform with an improved security level and ignite the sparks of developing novel information storage materials.
Collapse
Affiliation(s)
- Fuqing Shan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Weiping Xie
- Public Technology Center, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
24
|
Abstract
Jellyfish are among the widely distributed nature creatures that can effectively control the fluidic flow around their transparent soft body, thus achieving movements in the water and camouflage in the surrounding environments. Till now, it remains a challenge to replicate both transparent appearance and functionalities of nature jellyfish in synthetic systems due to the lack of transparent actuators. In this work, a fully transparent soft jellyfish robot is developed to possess both transparency and bio-inspired omni motions in water. This robot is driven by transparent dielectric elastomer actuators (DEAs) using hybrid silver nanowire networks and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/waterborne polyurethane as compliant electrodes. The electrode exhibits large stretchability, low stiffness, high transmittance, and excellent conductivity at large strains. Consequently, the highly transparent DEA based on this hybrid electrode, with Very-High-Bond membranes as dielectric layers and polydimethylsiloxane as top coating, can achieve a maximum area strain of 146% with only 3% hysteresis loss. Driven by this transparent DEA, the soft jellyfish robot can achieve vertical and horizontal movements in water, by mimicking the actual pulsating rhythm of an Aurelia aurita. The bio-inspired robot can serve multiple functions as an underwater soft robot. The hybrid electrodes and bio-inspired design approach are potentially useful in a variety of soft robots and flexible devices.
Collapse
Affiliation(s)
- Yuzhe Wang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Pengpeng Zhang
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Hui Huang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jian Zhu
- School of Science and Engineering, Chinese University of Hong Kong at Shenzhen, Shenzhen, China.,Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| |
Collapse
|
25
|
Chellattoan R, Lubineau G. A Stretchable Fiber with Tunable Stiffness for Programmable Shape Change of Soft Robots. Soft Robot 2022; 9:1052-1061. [PMID: 35049362 DOI: 10.1089/soro.2021.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
All soft robots require the same functionality, that is, controlling the shape of a structure made from soft materials. However, existing approaches for shape control of soft robots are primarily dominated by modular pneumatic actuators, which require multichambers and complex flow control components. Nature shows exciting examples of manipulation (shape change) in animals, such as worms, using a single-chambered soft body and programmable stiffness changes in the skin; controlling the spatial distribution of changes in stiffness enables achieving complex shape evolutions. However, such stiffness control requires a drastic membrane stiffness contrast between stiffened and nonstiffened states. Generally, this is extremely challenging to accomplish in stretchable materials. Inspired by longitudinal muscle fibers in the skin of worms, we developed a new concept for fabricating a hybrid fiber with tunable stiffness, that is, a fiber comprising both stiff and soft parts connected in a series. A substantial change in membrane stiffness was then observed by the locking/unlocking of the soft part. Our proposed hybrid fiber cyclically produced a membrane stiffness contrast of more than 100 × in less than 6 s using an input power of 3 W. A network of these hybrid fibers with tunable stiffness could manipulate a single-chambered soft body in multiple directions and transform it into a complex shape by selectively varying the stiffness at different locations.
Collapse
Affiliation(s)
- Ragesh Chellattoan
- Mechanics of Composites for Energy and Mobility Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gilles Lubineau
- Mechanics of Composites for Energy and Mobility Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Levine DJ, Iyer GM, Daelan Roosa R, Turner KT, Pikul JH. A mechanics-based approach to realize high–force capacity electroadhesives for robots. Sci Robot 2022; 7:eabo2179. [DOI: 10.1126/scirobotics.abo2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Materials with electroprogrammable stiffness and adhesion can enhance the performance of robotic systems, but achieving large changes in stiffness and adhesive forces in real time is an ongoing challenge. Electroadhesive clutches can rapidly adhere high stiffness elements, although their low force capacities and high activation voltages have limited their applications. A major challenge in realizing stronger electroadhesive clutches is that current parallel plate models poorly predict clutch force capacity and cannot be used to design better devices. Here, we use a fracture mechanics framework to understand the relationship between clutch design and force capacity. We demonstrate and verify a mechanics-based model that predicts clutch performance across multiple geometries and applied voltages. On the basis of this approach, we build a clutch with 63 times the force capacity per unit electrostatic force of state-of-the-art electroadhesive clutches. Last, we demonstrate the ability of our electroadhesives to increase the load capacity of a soft, pneumatic finger by a factor of 27 times compared with a finger without an electroadhesive.
Collapse
Affiliation(s)
- David J. Levine
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gokulanand M. Iyer
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R. Daelan Roosa
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin T. Turner
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James H. Pikul
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Jin L, Yeager M, Lee YJ, O’Brien DJ, Yang S. Shape-morphing into 3D curved surfaces with nacre-like composite architectures. SCIENCE ADVANCES 2022; 8:eabq3248. [PMID: 36223460 PMCID: PMC9555776 DOI: 10.1126/sciadv.abq3248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Inhomogeneous in-plane deformation of soft materials or cutting and folding of inextensible flat sheets enables shape-morphing from two dimensional (2D) to three-dimensional (3D), while the resulting structures often have weakened mechanical strength. Shells like nacre are known for the superior fracture toughness due to the "brick and mortar" composite layers, enabling stress redistribution and crack stopping. Here, we report an optimal and universal cutting and stacking strategy that transforms composite plies into 3D doubly curved shapes with nacre-like architectures. The multilayered laminate exhibits staggered cut distributions, while the interlaminar shear mitigates the cut-induced mechanical weakness. The experimentally consolidated hemispherical shells exhibit, on average, 37 and 69% increases of compression peak forces, versus those with random cut distributions, when compressed in different directions. Our approach opens a previously unidentified paradigm for shape-conforming arbitrarily curved surfaces while achieving high mechanical performance.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Michael Yeager
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Daniel J. O’Brien
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Xu F, Huang Y, Zhao S, Feng XQ. Chiral topographic instability in shrinking spheres. NATURE COMPUTATIONAL SCIENCE 2022; 2:632-640. [PMID: 38177274 PMCID: PMC10766550 DOI: 10.1038/s43588-022-00332-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/09/2022] [Indexed: 01/06/2024]
Abstract
Many biological structures exhibit intriguing morphological patterns adapted to environmental cues, which contribute to their important biological functions and also inspire material designs. Here, we report a chiral wrinkling topography in shrinking core-shell spheres, as observed in excessively dehydrated passion fruit and experimentally demonstrated in silicon core-shells under air extraction. Upon shrinkage deformation, the surface initially buckles into a buckyball pattern (periodic hexagons and pentagons) and then transforms into a chiral mode. The neighbouring chiral cellular patterns can further interact with each other, resulting in secondary symmetry breaking and the formation of two types of topological network. We develop a core-shell model and derive a universal scaling law to understand the underlying morphoelastic mechanism and to effectively describe and predict such chiral symmetry breaking far beyond the critical instability threshold. Moreover, we show experimentally that the chiral characteristic adapted to local perturbation can be harnessed to effectively and stably grasp small-sized objects of various shapes and made of different stiff and soft materials. Our results not only reveal chiral instability topographies, providing fundamental insights into the surface morphogenesis of the deformed core-shell spheres that are ubiquitous in the real world, but also demonstrate potential applications of adaptive grasping based on delicate chiral localization.
Collapse
Affiliation(s)
- Fan Xu
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai, P. R. China.
| | - Yangchao Huang
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai, P. R. China
| | - Shichen Zhao
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai, P. R. China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
29
|
Ni X, Luan H, Kim JT, Rogge SI, Bai Y, Kwak JW, Liu S, Yang DS, Li S, Li S, Li Z, Zhang Y, Wu C, Ni X, Huang Y, Wang H, Rogers JA. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat Commun 2022; 13:5576. [PMID: 36151092 PMCID: PMC9508113 DOI: 10.1038/s41467-022-31092-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Low modulus materials that can shape-morph into different three-dimensional (3D) configurations in response to external stimuli have wide-ranging applications in flexible/stretchable electronics, surgical instruments, soft machines and soft robotics. This paper reports a shape-programmable system that exploits liquid metal microfluidic networks embedded in an elastomer matrix, with electromagnetic forms of actuation, to achieve a unique set of properties. Specifically, this materials structure is capable of fast, continuous morphing into a diverse set of continuous, complex 3D surfaces starting from a two-dimensional (2D) planar configuration, with fully reversible operation. Computational, multi-physics modeling methods and advanced 3D imaging techniques enable rapid, real-time transformations between target shapes. The liquid-solid phase transition of the liquid metal allows for shape fixation and reprogramming on demand. An unusual vibration insensitive, dynamic 3D display screen serves as an application example of this type of morphable surface.
Collapse
Affiliation(s)
- Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Sam I Rogge
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yun Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Shangliangzi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhengwei Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xiaoyue Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Heling Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
30
|
Bai Y, Wang H, Xue Y, Pan Y, Kim JT, Ni X, Liu TL, Yang Y, Han M, Huang Y, Rogers JA, Ni X. A dynamically reprogrammable surface with self-evolving shape morphing. Nature 2022; 609:701-708. [PMID: 36131035 DOI: 10.1038/s41586-022-05061-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; they are also of rapidly increasing relevance to emerging technologies in soft machines1-3, flexible electronics4,5 and smart medicines6. Soft matter equipped with responsive components can switch between designed shapes or structures, but cannot support the types of dynamic morphing capabilities needed to reproduce natural, continuous processes of interest for many applications7-24. Challenges lie in the development of schemes to reprogram target shapes after fabrication, especially when complexities associated with the operating physics and disturbances from the environment can stop the use of deterministic theoretical models to guide inverse design and control strategies25-30. Here we present a mechanical metasurface constructed from a matrix of filamentary metal traces, driven by reprogrammable, distributed Lorentz forces that follow from the passage of electrical currents in the presence of a static magnetic field. The resulting system demonstrates complex, dynamic morphing capabilities with response times within 0.1 second. Implementing an in situ stereo-imaging feedback strategy with a digitally controlled actuation scheme guided by an optimization algorithm yields surfaces that can follow a self-evolving inverse design to morph into a wide range of three-dimensional target shapes with high precision, including an ability to morph against extrinsic or intrinsic perturbations. These concepts support a data-driven approach to the design of dynamic soft matter, with many unique characteristics.
Collapse
Affiliation(s)
- Yun Bai
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Heling Wang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China. .,Institute of Flexible Electronics Technology of THU Jiaxing, Zhejiang, China.
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yuxin Pan
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| | - Xiaoyue Ni
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Ambrose JW, Chiang NZR, Cheah DSY, Yeow CH. Compact Multilayer Extension Actuators for Reconfigurable Soft Robots. Soft Robot 2022; 10:301-313. [PMID: 36037007 DOI: 10.1089/soro.2022.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soft robotic pneumatic actuators generally excel in the specific application they were designed for but lack the versatility to be redeployed to other applications. This study presents a novel and versatile soft compact multilayer extension actuator (MEA) to overcome this limitation. We use the MEA linear output in different hybrid configurations to achieve this versatility. The unique design and fabrication of the MEA allow for a compact elastomeric actuator with innate tension, capable of reverting to its initial state without the need for external stimulus. The MEA is made from alternating elastomers with different Young's modulus, bestowing the MEA with high durability, force, and extension capabilities. In addition, the MEA is lightweight at 4 g, capable of a high force-to-weight ratio of 1000 and an extension ratio of 525%. We also explored varying the MEA parameters, such as its material and dimension, which further enhance its properties. Subsequently, we showed four different design configurations encompassing the MEA to produce four basic motions, that is, push, pull, bend, and twist. Finally, we demonstrated three possible hybrid configurations for manipulation, locomotion, and assistive applications that highlight the versatility, manipulability, and modularity of the MEA.
Collapse
Affiliation(s)
- Jonathan William Ambrose
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Dylan Sin You Cheah
- Department of Biomedical Engineering, Nanyang Polytechnic, Singapore, Singapore
| | - Chen-Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Yang E, Zhang M, Zeng J, Tian F. Wrinkling and restabilization of a hyperelastic PDMS membrane at finite strain. SOFT MATTER 2022; 18:5465-5473. [PMID: 35822864 DOI: 10.1039/d2sm00406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wrinkles are commonly observed in uniaxially stretched hyperelastic membranes and eventually disappear with the increase of stretching. The widely used scheme at present assumes the material parameters to be empirical values and straightforwardly considers some constitutive models to explore the wrinkling and restabilization behavior. However, this simple treatment may cause deviation from experiment by ignoring the applicability of the models and the authenticity of the input parameters, prompting us to report based on realistic material parameters. This paper presents an experimental, theoretical and numerical investigation on the wrinkling and restabilization behavior of hyperelastic materials. By fitting experimental stress-strain curves of PDMS films, we confirm that the 3-term Ogden model bears a closer resemblance to the experimental data than the widely used neo-Hookean, Mooney-Rivlin, and Arruda-Boyce models under certain circumstances. The simulation results indicate that different constitutive models quantitatively affect the critical buckling strain, wrinkling amplitudes, and restabilization points. Furthermore, the isolated central bifurcation point solved by Koiter stability theory agrees well with the simulation and experimental results. A 3D phase diagram of stability boundaries was established to gain a comprehensive insight into the effects of geometric parameters (length, width, and thickness) on wrinkling.
Collapse
Affiliation(s)
- Erjie Yang
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Mengnan Zhang
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Jun Zeng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Fucheng Tian
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
33
|
Badaoui M, Kresge G, Ushay C, Marthelot J, Brun PT. Formation of Pixelated Elastic Films via Capillary Suction of Curable Elastomers in Templated Hele-Shaw Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109682. [PMID: 35435278 DOI: 10.1002/adma.202109682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Natural materials are highly organized, frequently possessing intricate and sophisticated hierarchical structures from which superior properties emerge. In the wake of biomimicry, there is a growing interest in designing architected materials in the laboratory as such structures could enable myriad functionalities in engineering. Yet, their fabrication remains challenging despite recent progress in additive manufacturing. In particular, soft materials are typically poorly suited to form the requisite structures consisting of regular geometries. Here, a new frugal methodology is reported to fabricate pixelated soft materials. This approach is conceptually analogous to the watershed transform used in image analysis and allows the passive assembly of complex geometries through the capillary-mediated flow of curable elastomers in confined geometries. Emerging from sources distributed across a Hele-Shaw cell consisting of two parallel flat plates separated by an infinitesimally small gap, these flows eventually meet at the "dividing lines" thereby forming Voronoi tesselations. After curing is complete, these structures turn into composite elastic sheets. Rationalizing the fluid mechanics at play allows the structural geometry of the newly formed sheets to be tailored and thereby their local material properties to be tuned.
Collapse
Affiliation(s)
- Mohamed Badaoui
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Grace Kresge
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Christopher Ushay
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Joel Marthelot
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08540, USA
- Aix-Marseille University, CNRS, IUSTI, Marseille, 13013, France
| | - P-T Brun
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
34
|
Wang T, Yang Y, Xu F. Mechanics of tension-induced film wrinkling and restabilization: a review. Proc Math Phys Eng Sci 2022; 478:20220149. [PMID: 35818518 PMCID: PMC9257598 DOI: 10.1098/rspa.2022.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 09/01/2024] Open
Abstract
Wrinkling of thin films under tension is omnipresent in nature and modern industry, a phenomenon which has aroused considerable attention during the past two decades because of its intricate nonlinear behaviours and intriguing morphology changes. Here, we review recent advancements in the mechanics of tension-induced film wrinkling and restabilization, by identifying three major stages of its progress: small-strain (less than 5 % ) wrinkling of stiff sheets, finite-strain (up to 30 % ) wrinkling and restabilization (isola-centre bifurcation) of soft films, and the effects of curved configurations and material properties on pattern formation. Growing demand for fundamental understanding, quantitative prediction and precise tracking of secondary bifurcation transitions in morphological evolution of thin films helps to advance finite-strain plate/shell theories and sophisticated modelling methods. This progress not only promotes our insightful understanding of complex instability behaviour but also reveals novel phenomena and sheds light on developing wrinkle-tunable membrane structures and functional surfaces.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
| | - Yifan Yang
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
| | - Fan Xu
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
35
|
Aksoy B, Shea H. Multistable shape programming of variable-stiffness electromagnetic devices. SCIENCE ADVANCES 2022; 8:eabk0543. [PMID: 35622912 PMCID: PMC9140967 DOI: 10.1126/sciadv.abk0543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Programmable shape morphing enables soft machines to safely and effectively interact with the environment. Stimuli-responsive materials can transform 2D sheets into 3D geometries. However, most solutions cannot hold their shape at zero power, are limited to predetermined configurations, or lack sufficient mechanical stiffness to manipulate common objects. We demonstrate here segmented soft electromagnetic actuators integrated with shape memory polymer (SMP) films, capable of deforming and latching into a broad range of configurations. The device consists of liquid metal (LM) coils in an elastomer shell, laminated between two SMP films. The coils are linked by narrow joints, on which stretchable heaters are patterned. Heating the SMP greatly reduces its stiffness. Driving current through an LM coil in the presence of a magnetic field then leads to large bending or twisting. Cooling the SMP locks in the shape, leading to load-bearing capacity. Complex shapes are obtained from an initially flat device.
Collapse
|
36
|
Zhao T, Fan Y, Lv JA. Photomorphogenesis of Diverse Autonomous Traveling Waves in a Monolithic Soft Artificial Muscle. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23839-23849. [PMID: 35536103 DOI: 10.1021/acsami.2c02000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological organisms (e.g., batoid fish, etc.) possess the remarkable ability to morph their soft, sheet-like tissues into wavy morphologies and self-oscillate to make traveling waves, enabling myriad functionalities in propulsion, locomotion, and transportation. In contrast, current manmade soft robotic systems cannot adaptively make wavy morphologies and concurrently achieve wave propagation because the controllable actuation of desired 3D morphologies in entirely soft materials is a formidable challenge due to their continuously deformable bodies that own a large number of actuable degrees of freedom. Here, we report a bioinspired robotic system that not only allows photomorphogenesis of on-demand 3D wavy morphologies but also enables autonomous wave propagation in a monolithic soft artificial muscle (MSAM). This system employs a conceptually different design strategy based on a combination of two principles derived from plant morphogenesis and the undulatory motion of ray fish. The former offers a shaping principle based on differential growth that enables morphing MSAM into target wavy configurations, while the latter inspires a driving principle that induces autonomous propagation of shaped waves by rhythmic motor patterns. This waving system can be used as adaptive "soft engines/motors" that enable directional locomotion, intelligent transportation of cargo, and autonomous propulsion. It even produces programmable, complex artificial peristaltic waves. Our design allows controllable formation of 3D wavy morphologies and autonomous wave behaviors in the soft robotic system that would be useful for broad applications in adaptive, self-regulated mechanical systems for advanced robotics, soft machines, and energy harvest.
Collapse
Affiliation(s)
- Tonghui Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yangyang Fan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
37
|
Zhan S, Guo AXY, Cao SC, Liu N. 3D Printing Soft Matters and Applications: A Review. Int J Mol Sci 2022; 23:3790. [PMID: 35409150 PMCID: PMC8998766 DOI: 10.3390/ijms23073790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
The evolution of nature created delicate structures and organisms. With the advancement of technology, especially the rise of additive manufacturing, bionics has gradually become a popular research field. Recently, researchers have concentrated on soft robotics, which can mimic the complex movements of animals by allowing continuous and often responsive local deformations. These properties give soft robots advantages in terms of integration and control with human tissue. The rise of additive manufacturing technologies and soft matters makes the fabrication of soft robots with complex functions such as bending, twisting, intricate 3D motion, grasping, and stretching possible. In this paper, the advantages and disadvantages of the additive manufacturing process, including fused deposition modeling, direct ink writing, inkjet printing, stereolithography, and selective laser sintering, are discussed. The applications of 3D printed soft matter in bionics, soft robotics, flexible electronics, and biomedical engineering are reviewed.
Collapse
Affiliation(s)
- Shuai Zhan
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Amy X Y Guo
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Shan Cecilia Cao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Na Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
38
|
Fu S, Zhang W, Wu Y, Tian J, Liu Q, Gu J, Song F, Osotsi MI, Zhang D. Bioinspired Porous Anodic Alumina/Aluminum Flake Powder for Multiband Compatible Low Detectability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8464-8472. [PMID: 35119282 DOI: 10.1021/acsami.1c23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Continuous development and advancement in modern detection technologies have increased the demand for multiband (e.g., visual and infrared) compatible camouflage. However, challenges exist in the requirements of incompatible structure resulting from the adaptation to different camouflage effects. This study is inspired by the light absorption structure of butterfly wing scales and demonstrates a porous anodic alumina/aluminum flake powder material prepared by a microscopic powder anodic oxidation technique for visual and infrared camouflage. The fabricated structures manipulate a compromise condition for visual camouflage by low reflectance (R̅400-800nm = 0.32) and dual-band infrared camouflage by low emission (ε̅3-5μm = 0.081 and ε̅8-14μm = 0.085). Further, the characteristic of short-range disorder in these bioinspired structures allows maintenance of the camouflage performance under omnidirectional detection (0-60°). This study provides new insight and a feasible method for coordinated manipulation of electromagnetic waves via bioinspired structural design and improved fabrication.
Collapse
Affiliation(s)
- Siqi Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yu Wu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, P. R. China
| | - Junlong Tian
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiajun Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Maurice I Osotsi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
39
|
Hwang D, Barron EJ, Haque ABMT, Bartlett MD. Shape morphing mechanical metamaterials through reversible plasticity. Sci Robot 2022; 7:eabg2171. [PMID: 35138882 DOI: 10.1126/scirobotics.abg2171] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biological organisms such as the octopus can reconfigure their shape and properties to perform diverse tasks. However, soft machines struggle to achieve complex configurations, morph into shape to support loads, and go between multiple states reversibly. Here, we introduce a multifunctional shape-morphing material with reversible and rapid polymorphic reconfigurability. We couple elastomeric kirigami with an unconventional reversible plasticity mechanism in metal alloys to rapidly (<0.1 seconds) morph flat sheets into complex, load-bearing shapes, with reversibility and self-healing through phase change. This kirigami composite overcomes trade-offs in deformability and load-bearing capacity and eliminates power requirements to sustain reconfigured shapes. We demonstrate this material through integration with onboard control, motors, and power to create a soft robotic morphing drone, which autonomously transforms from a ground to air vehicle and an underwater morphing machine, which can be reversibly deployed to collect cargo.
Collapse
Affiliation(s)
- Dohgyu Hwang
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.,Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA
| | - Edward J Barron
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.,Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA
| | - A B M Tahidul Haque
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael D Bartlett
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.,Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
40
|
Lei M, Qu X, Wan H, Jin D, Wang S, Zhao Z, Yin M, Payne GF, Liu C. Electro-assembly of a dynamically adaptive molten fibril state for collagen. SCIENCE ADVANCES 2022; 8:eabl7506. [PMID: 35108048 PMCID: PMC8809537 DOI: 10.1126/sciadv.abl7506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/08/2021] [Indexed: 05/25/2023]
Abstract
Collagen is a biological building block that is hierarchically assembled into diverse morphological structures that, in some cases, is dynamically adaptive in response to external cues and in other cases forms static terminal structures. Technically, there is limited capabilities to guide the emergence of collagen's hierarchical organization to recapitulate the richness of biological structure and function. Here, we report an electro-assembly pathway to create a dynamically adaptive intermediate molten fibril state for collagen. Structurally, this intermediate state is composed of partially aligned and reversibly associating fibrils with limited hierarchical structure. These molten fibrils can be reversibly reconfigured to offer dynamic properties such as stimuli-stiffening, stimuli-contracting, self-healing, and self-shaping. Also, molten fibrils can be guided to further assemble to recapitulate the characteristic hierarchical structural features of native collagen (e.g., aligned fibers with D-banding). We envision that the electro-assembly of collagen fibrils will provide previously unidentified opportunities for tailored collagen-based biomedical materials.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiling Zhao
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD 20742, USA
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD 20742, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
41
|
Poloni E, Rafsanjani A, Place V, Ferretti D, Studart AR. Stretchable Soft Composites with Strain-Induced Architectured Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104874. [PMID: 34632656 DOI: 10.1002/adma.202104874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Colors enable interaction and communication between living species in a myriad of biological and artificial environments. While living organisms feature low-power mechanisms to dynamically control color in soft tissues, man-made color-changing devices remain predominantly rigid and energy intensive. Here, architectured composites that display striking color changes when stretched in selective directions under ambient light with minimum power input are reported. The orientation-dependent color change results from the rotation of reflective coated platelets that are embedded in a soft polymer matrix and pre-aligned in a well-defined architecture. The light reflected by the platelets generates structural color defined by the oxide coating on the platelet surface. By magnetically programming the initial orientation and spatial distribution of selected platelets within the soft matrix, composites with strain-modulated color-changing effects that cannot be achieved using state-of-the-art technologies are created. The proposed concept of strain-induced architectured color can be harnessed to develop low-power smart stretchable displays, tactile synthetic skins, and autonomous soft robotic devices that undergo fast and reversible color changes through the mechano-optic coupling programmed within their soft composite architecture.
Collapse
Affiliation(s)
- Erik Poloni
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Ahmad Rafsanjani
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Vadim Place
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - David Ferretti
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
42
|
Zhao Z, He Y, Meng X, Ye C. 3D-to-3D Microscale Shape-Morphing from Configurable Helices with Controlled Chirality. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61723-61732. [PMID: 34913686 DOI: 10.1021/acsami.1c15711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tunable and reconfigurable materials with autonomic shape transformation in response to the environment have emerged as one of the most promising approaches for a variety of biomedical applications, such as tissue engineering, biosensing, and in vivo biomedical devices. Currently, it is still quite challenging to fabricate soft, microscaled 3D shape-reconfigurable structures due to either complicated microfabrication or limited microscale photopolymerization-based printing approaches to enable adaptive shape transformation. Here, a one-step photo-cross-linking approach has been demonstrated to obtain a 3D-to-3D morphological transformable microhelix from a self-rolled hydrogel microsheet, resulting in chirality conversion. It was enabled by a custom-designed "hard" stripe/"soft" groove topography on the microsheets for introducing, which introduced both in-planar and out-of-planar anisotropies. Both experiment and simulation confirmed that a stripe/groove geometry can effectively control the 3D transformation by activating in-planar or/and out-of-planar mismatch stress within the microsheets, resulting in switching of the rolling direction between perpendicular/parallel to the length of the stripe. Furthermore, versatile 3D microconstructs with the ability to transform between two distinct 3D configurations have been achieved based on controlled rolling of microhelices, demonstrated as "windmill"-to-"T-cross" and "cylinder"-to-"scroll" transformations and dynamic blossoming of biomimetic orchids. In contrast to conventional 2D-to-3D micro-origami, we have successfully demonstrated an approach for fabricating microscale, all-soft-material-based constructs with autonomic 3D-to-3D structural transformation, which presents an opportunity for designing more complex hydrogel-based microrobotics.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yisheng He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xiao Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
43
|
Li S, Xiao P, Zhou W, Liang Y, Kuo SW, Chen T. Bioinspired Nanostructured Superwetting Thin-Films in a Self-supported form Enabled "Miniature Umbrella" for Weather Monitoring and Water Rescue. NANO-MICRO LETTERS 2021; 14:32. [PMID: 34902086 PMCID: PMC8669048 DOI: 10.1007/s40820-021-00775-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED An elastic, superhydrophobic and conductive thin film inspired by the natural self-supported superhydrophobic butterfly wings enabled by a controllable composite of assembled carbon nanotube and elastomer is fabricated. Through the adjustment of hydrophobic elastomeric coating, the surface wettability can be effectively controlled and still maintain superhydrophobic characteristics under the applied strain of 60%. The achieved film can function as a self-supported smart umbrella to sensitively monitor the day weather and perform water rescue. ABSTRACT Two-dimensional (2D) soft materials, especially in their self-supported forms, demonstrate attractive properties to realize biomimetic morphing and ultrasensitive sensing. Although extensive efforts on design of self-supported functional membranes and integrated systems have been devoted, there still remains an unexplored regime of the combination of mechanical, electrical and surface wetting properties for specific functions. Here, we report a self-supported film featured with elastic, thin, conductive and superhydrophobic characteristics. Through a well-defined surface modification strategy, the surface wettability and mechanical sensing can be effectively balanced. The resulted film can function as a smart umbrella to achieve real-time simulated raining with diverse frequencies and intensity. In addition, the integrated umbrella can even response sensitively to the sunlight and demonstrate a positively correlation of current signals with the intensity of sun illumination. Moreover, the superhydrophobic umbrella can be further employed to realize water rescue, which can take the underwater object onto water surface, load and rapidly transport the considerable weight. More importantly, the whole process of loaded objects and water flow velocity can be precisely detected. The self-supported smart umbrella can effectively monitor the weather and realize a smart water rescue, demonstrating significant potentials in multifunctional sensing and directional actuation in the presence of water. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-021-00775-4.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Wei Zhou
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Yun Liang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Shiao-Wei Kuo
- Department of Material and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan, People's Republic of China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
44
|
Fang Y, Yang X, Lin Y, Shi J, Prominski A, Clayton C, Ostroff E, Tian B. Dissecting Biological and Synthetic Soft-Hard Interfaces for Tissue-Like Systems. Chem Rev 2021; 122:5233-5276. [PMID: 34677943 DOI: 10.1021/acs.chemrev.1c00365] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soft and hard materials at interfaces exhibit mismatched behaviors, such as mismatched chemical or biochemical reactivity, mechanical response, and environmental adaptability. Leveraging or mitigating these differences can yield interfacial processes difficult to achieve, or inapplicable, in pure soft or pure hard phases. Exploration of interfacial mismatches and their associated (bio)chemical, mechanical, or other physical processes may yield numerous opportunities in both fundamental studies and applications, in a manner similar to that of semiconductor heterojunctions and their contribution to solid-state physics and the semiconductor industry over the past few decades. In this review, we explore the fundamental chemical roles and principles involved in designing these interfaces, such as the (bio)chemical evolution of adaptive or buffer zones. We discuss the spectroscopic, microscopic, (bio)chemical, and computational tools required to uncover the chemical processes in these confined or hidden soft-hard interfaces. We propose a soft-hard interaction framework and use it to discuss soft-hard interfacial processes in multiple systems and across several spatiotemporal scales, focusing on tissue-like materials and devices. We end this review by proposing several new scientific and engineering approaches to leveraging the soft-hard interfacial processes involved in biointerfacing composites and exploring new applications for these composites.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiuyun Shi
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander Prominski
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Clementene Clayton
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ellie Ostroff
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
45
|
Wang C, Lv Z, Mohan MP, Cui Z, Liu Z, Jiang Y, Li J, Wang C, Pan S, Karim MF, Liu AQ, Chen X. Pangolin-Inspired Stretchable, Microwave-Invisible Metascale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102131. [PMID: 34431137 DOI: 10.1002/adma.202102131] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Microwave-invisible devices are emerging as a valuable technology in various applications, including soft robotics, shape-morphing structures, and textural camouflages, especially in electronic countermeasures. Unfortunately, conventional microwave-absorbing metastructures and bulk absorbers are stretching confined, limiting their application in deformable or special-shaped targets. To overcome such limitations, a conceptually novel soft-rigid-connection strategy, inspired by the pangolin, is proposed. Pangolin-inspired metascale (PIMS), which is a kind of stretchable metamaterial consisting of an electromagnetic dissipative scale (EMD-scale) and elastomer, is rationally designed. Such a device exhibits robust microwave-absorbing capacity under the interference of 50% stretching. Besides, profiting from the covering effect and size-confined effect of EMD-scale, the out-of-plane indentation failure force of PIMS is at least 5 times larger than conventional device. As a proof of concept, the proposed device is conformally pasted on nondevelopable surfaces. For a spherical dome surface, the maximum radar cross-section (RCS) reduction of PIMS is 6.3 dB larger than that of a conventional device, while for a saddle surface, the bandwidth of 10 dB RCS reduction exhibits an increase of 83%. In short, this work provides a conceptually novel platform to develop stretchable, nondevelopable surface conformable functional devices.
Collapse
Affiliation(s)
- Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhisheng Lv
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Manoj Prabhakar Mohan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zequn Cui
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhihua Liu
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiaofu Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Cong Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaowu Pan
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Muhammad Faeyz Karim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
46
|
Perricone V, Santulli C, Rendina F, Langella C. Organismal Design and Biomimetics: A Problem of Scale. Biomimetics (Basel) 2021; 6:biomimetics6040056. [PMID: 34698083 PMCID: PMC8544225 DOI: 10.3390/biomimetics6040056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Organisms and their features represent a complex system of solutions that can efficiently inspire the development of original and cutting-edge design applications: the related discipline is known as biomimetics. From the smallest to the largest, every species has developed and adapted different working principles based on their relative dimensional realm. In nature, size changes determine remarkable effects in organismal structures, functions, and evolutionary innovations. Similarly, size and scaling rules need to be considered in the biomimetic transfer of solutions to different dimensions, from nature to artefacts. The observation of principles that occur at very small scales, such as for nano- and microstructures, can often be seen and transferred to a macroscopic scale. However, this transfer is not always possible; numerous biological structures lose their functionality when applied to different scale dimensions. Hence, the evaluation of the effects and changes in scaling biological working principles to the final design dimension is crucial for the success of any biomimetic transfer process. This review intends to provide biologists and designers with an overview regarding scale-related principles in organismal design and their application to technical projects regarding mechanics, optics, electricity, and acoustics.
Collapse
Affiliation(s)
- Valentina Perricone
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Correspondence: (V.P.); (F.R.)
| | - Carlo Santulli
- School of Science and Technology, Università di Camerino, Via Gentile III da Varano 7, 62032 Camerino, Italy;
| | - Francesco Rendina
- Department of Science and Technology, University of Naples “Parthenope”, URL CoNISMa, Centro Direzionale, Is. C4, 80143 Naples, Italy
- Correspondence: (V.P.); (F.R.)
| | - Carla Langella
- Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo, 81031 Aversa, Italy;
| |
Collapse
|
47
|
Griniasty I, Mostajeran C, Cohen I. Multivalued Inverse Design: Multiple Surface Geometries from One Flat Sheet. PHYSICAL REVIEW LETTERS 2021; 127:128001. [PMID: 34597088 DOI: 10.1103/physrevlett.127.128001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/19/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Designing flat sheets that can be made to deform into three-dimensional shapes is an area of intense research with applications in micromachines, soft robotics, and medical implants. Thus far, such sheets were designed to adopt a single target shape. Here, we show that through anisotropic deformation applied inhomogeneously throughout a sheet, it is possible to design a single sheet that can deform into multiple surface geometries upon different actuations. The key to our approach is development of an analytical method for solving this multivalued inverse problem. Such sheets open the door to fabricating machines that can perform complex tasks through cyclic transitions between multiple shapes. As a proof of concept, we design a simple swimmer capable of moving through a fluid at low Reynolds numbers.
Collapse
Affiliation(s)
- Itay Griniasty
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
| | - Cyrus Mostajeran
- Department of Engineering, University of Cambridge, Cambridge, England CB2 1PZ, United Kingdom
| | - Itai Cohen
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
| |
Collapse
|
48
|
Levine DJ, Turner KT, Pikul JH. Materials with Electroprogrammable Stiffness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007952. [PMID: 34245062 DOI: 10.1002/adma.202007952] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Indexed: 05/18/2023]
Abstract
Stiffness is a mechanical property of vital importance to any material system and is typically considered a static quantity. Recent work, however, has shown that novel materials with programmable stiffness can enhance the performance and simplify the design of engineered systems, such as morphing wings, robotic grippers, and wearable exoskeletons. For many of these applications, the ability to program stiffness with electrical activation is advantageous because of the natural compatibility with electrical sensing, control, and power networks ubiquitous in autonomous machines and robots. The numerous applications for materials with electrically driven stiffness modulation has driven a rapid increase in the number of publications in this field. Here, a comprehensive review of the available materials that realize electroprogrammable stiffness is provided, showing that all current approaches can be categorized as using electrostatics or electrically activated phase changes, and summarizing the advantages, limitations, and applications of these materials. Finally, a perspective identifies state-of-the-art trends and an outlook of future opportunities for the development and use of materials with electroprogrammable stiffness.
Collapse
Affiliation(s)
- David J Levine
- Department of Mechanical Engineering & Applied Mechanics, 220 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Kevin T Turner
- Department of Mechanical Engineering & Applied Mechanics, 220 S. 33rd St., Philadelphia, PA, 19104, USA
| | - James H Pikul
- Department of Mechanical Engineering & Applied Mechanics, 220 S. 33rd St., Philadelphia, PA, 19104, USA
| |
Collapse
|
49
|
Son K, Sun JY, Kim HY. Agile reversible shape-morphing of particle rafts. SOFT MATTER 2021; 17:7554-7564. [PMID: 34337636 DOI: 10.1039/d1sm00564b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Materials that transform shapes responding to external stimuli can bring unprecedented innovations to soft matter physics, soft robotics, wearable electronics, and architecture. As most conventional soft actuation technologies induce large deformations only in a preprogrammed manner at designated locations, the material systems capable of agile reversible deformations without prescribed patterns are strongly desired for versatile mechanical morphing systems. Here we report a morphable liquid interface coated with dielectric particles, or a particle raft, which can reversibly change its topography under an external electric field. The rafts change from flat floors to towers within seconds, and the morphed structures are even capable of horizontal translation. Our experiments and theory show that the raft deformation is driven by electrostatic attraction between particles and electrodes, while being modulated by electric discharge. A broad range of materials serving as electrodes, e.g., human fingers and transparent polymers, suggests this system's diverse applications, including the human-machine interface and the three-dimensional physical display.
Collapse
Affiliation(s)
- Kyungmin Son
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.
| | | | | |
Collapse
|
50
|
Zeng H, Wang Y, Jiang T, Xia H, Gu X, Chen H. Recent progress of biomimetic motions-from microscopic micro/nanomotors to macroscopic actuators and soft robotics. RSC Adv 2021; 11:27406-27419. [PMID: 35480677 PMCID: PMC9037800 DOI: 10.1039/d1ra05021d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Motion is a basic behavioral attribute of organisms, and it is a behavioral response of organisms to the external environment and internal state changes. Materials with switchable mechanical properties are widespread in living organisms and play crucial roles in the motion of organisms. Therefore, significant efforts have been made toward mimicking such architectures and motion behaviors by making full use of the properties of stimulus-responsive materials to design smart materials/machines with specific functions. In recent years, the biomimetic motions based on micro/nanomotors, actuators and soft robots constructed from smart response materials have been developed gradually. However, a comprehensive discussion on various categories of biomimetic motions in this field is still missing. This review aims to provide such a panoramic overview. From nano-to macroscales, we summarize various biomimetic motions based on micro/nanomotors, actuators and soft robotics. For each biomimetic motion, we discuss the driving modes and the key functions. The challenges and opportunities of biomimetic motions are also discussed. With rapidly increasing innovation, advanced, intelligent and multifunctional biomimetic motions based on micro/nanomotors, actuators and soft robotics will certainly bring profound impacts and changes for human life in the near future.
Collapse
Affiliation(s)
- Hongbo Zeng
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University Jiaxing 314001 China
| | - Yu Wang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University Jiaxing 314001 China
| | - Tao Jiang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University Jiaxing 314001 China
| | - Hongqin Xia
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University Jiaxing 314001 China
| | - Xue Gu
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University Jiaxing 314001 China
| | - Hongxu Chen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University Jiaxing 314001 China
- Nanotechnology Research Institute (NRI), Jiaxing University Jiaxing 314001 China
| |
Collapse
|