1
|
Kim J, Dev H, Kumar R, Ilin A, Haug A, Bhardwaj V, Hong C, Watanabe K, Taniguchi T, Stern A, Ronen Y. Aharonov-Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. NATURE NANOTECHNOLOGY 2024; 19:1619-1626. [PMID: 39164413 DOI: 10.1038/s41565-024-01751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
In the fractional quantum Hall effect, quasiparticles are collective excitations that have a fractional charge and show fractional statistics as they interchange positions. While the fractional charge affects semi-classical characteristics such as shot noise and charging energies, fractional statistics is most notable through quantum interference. Here we study fractional statistics in a bilayer graphene Fabry-Pérot interferometer. We tune the interferometer from the Coulomb-dominated regime to the Aharonov-Bohm regime, both for integer and fractional quantum Hall states. Focusing on the fractional quantum Hall state with a filling factor ν = 1/3, we follow the evolution of the Aharonov-Bohm interference of quasiparticles while varying the magnetic flux through an interference loop and the charge density within the loop independently. When their combined variation is such that the Landau filling remains 1/3, the charge density in the loop varies continuously. We then observe pristine Aharonov-Bohm oscillations with a period of three flux quanta, as expected for quasiparticles of one-third of the electron charge. Yet, when the combined variation leads to discrete events of quasiparticle addition or removal, phase jumps emerge and alter the phase evolution. Notably, across all cases with discrete and continuous charge variation, the average phase consistently increases by 2π with each addition of one electron to the loop, as expected for quasiparticles, obeying fractional statistics.
Collapse
Affiliation(s)
- Jehyun Kim
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Himanshu Dev
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ravi Kumar
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Alexey Ilin
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - André Haug
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Vishal Bhardwaj
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Changki Hong
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Ady Stern
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Ronen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Hao T. The empty world - a view from the free volume concept and Eyring's rate process theory. Phys Chem Chem Phys 2024; 26:26156-26191. [PMID: 39253852 DOI: 10.1039/d3cp04611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The many-body problem is a common issue, irrespective of the scale of entities under consideration. From electrons to atoms, small molecules like simple inorganic or organic structures, large molecules like proteins or polymers, nanometer- or micrometer-sized particles, granular matter, and even galaxies, the precise determination or estimation of geometrical locations and momentum energy of individual entities, and interaction forces between these millions of entities, is impossible but unfortunately important for understanding the collective physical properties like mechanical and electrical characteristics of the whole system. Despite foreseeable difficulties and complexities, attempts to estimate "interparticle" forces have never stopped using traditional Newtonian models, quantum mechanical approaches, and density functional theory. In this review, a simple approach integrating the free volume and Eyring's rate process theory is summarized and its application across a wide range of scales from electrons to the universe is presented in a unified manner. The focus is on comparisons between theoretical predictions and experimental results.
Collapse
Affiliation(s)
- Tian Hao
- 15905 Tanberry Dr, Chino Hills, CA 91709, USA.
| |
Collapse
|
3
|
Werkmeister T, Ehrets JR, Ronen Y, Wesson ME, Najafabadi D, Wei Z, Watanabe K, Taniguchi T, Feldman DE, Halperin BI, Yacoby A, Kim P. Strongly coupled edge states in a graphene quantum Hall interferometer. Nat Commun 2024; 15:6533. [PMID: 39095353 PMCID: PMC11297296 DOI: 10.1038/s41467-024-50695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Electronic interferometers using the chiral, one-dimensional (1D) edge channels of the quantum Hall effect (QHE) can demonstrate a wealth of fundamental phenomena. The recent observation of phase jumps in a Fabry-Pérot (FP) interferometer revealed anyonic quasiparticle exchange statistics in the fractional QHE. When multiple integer edge channels are involved, FP interferometers have exhibited anomalous Aharonov-Bohm (AB) interference frequency doubling, suggesting putative pairing of electrons into 2 e quasiparticles. Here, we use a highly tunable graphene-based QHE FP interferometer to observe the connection between interference phase jumps and AB frequency doubling, unveiling how strong repulsive interaction between edge channels leads to the apparent pairing phenomena. By tuning electron density in-situ from filling factor ν < 2 to ν > 7 , we tune the interaction strength and observe periodic interference phase jumps leading to AB frequency doubling. Our observations demonstrate that the combination of repulsive interaction between the spin-split ν = 2 edge channels and charge quantization is sufficient to explain the frequency doubling, through a near-perfect charge screening between the localized and extended edge channels. Our results show that interferometers are sensitive probes of microscopic interactions and enable future experiments studying correlated electrons in 1D channels using density-tunable graphene.
Collapse
Affiliation(s)
- Thomas Werkmeister
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - James R Ehrets
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Yuval Ronen
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Marie E Wesson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Danial Najafabadi
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA
| | - Zezhu Wei
- Department of Physics, Brown University, Providence, RI, 02912, USA
- Brown Theoretical Physics Center, Brown University, Providence, RI, 02912, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - D E Feldman
- Department of Physics, Brown University, Providence, RI, 02912, USA
- Brown Theoretical Physics Center, Brown University, Providence, RI, 02912, USA
| | | | - Amir Yacoby
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Philip Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Jeong Y, Park H, Kim T, Watanabe K, Taniguchi T, Jung J, Jang J. Interplay of valley, layer and band topology towards interacting quantum phases in moiré bilayer graphene. Nat Commun 2024; 15:6351. [PMID: 39069539 PMCID: PMC11284233 DOI: 10.1038/s41467-024-50475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
In Bernal-stacked bilayer graphene (BBG), the Landau levels give rise to an intimate connection between valley and layer degrees of freedom. Adding a moiré superlattice potential enriches the BBG physics with the formation of topological minibands - potentially leading to tunable exotic quantum transport. Here, we present magnetotransport measurements of a high-quality bilayer graphene-hexagonal boron nitride (hBN) heterostructure. The zero-degree alignment generates a strong moiré superlattice potential for the electrons in BBG and the resulting Landau fan diagram of longitudinal and Hall resistance displays a Hofstadter butterfly pattern with a high level of detail. We demonstrate that the intricate relationship between valley and layer degrees of freedom controls the topology of moiré-induced bands, significantly influencing the energetics of interacting quantum phases in the BBG superlattice. We further observe signatures of field-induced correlated insulators, helical edge states and clear quantizations of interaction-driven topological quantum phases, such as symmetry broken Chern insulators.
Collapse
Affiliation(s)
- Yungi Jeong
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Hangyeol Park
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Taeho Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jeil Jung
- Department of Physics, University of Seoul, Seoul, Korea
- Department of Smart Cities, University of Seoul, Seoul, Korea
| | - Joonho Jang
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea.
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
5
|
Chen Y, Huang Y, Li Q, Tong B, Kuang G, Xi C, Watanabe K, Taniguchi T, Liu G, Zhu Z, Lu L, Zhang FC, Wu YH, Wang L. Tunable even- and odd-denominator fractional quantum Hall states in trilayer graphene. Nat Commun 2024; 15:6236. [PMID: 39043699 PMCID: PMC11266615 DOI: 10.1038/s41467-024-50589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Fractional quantum Hall (FQH) states are exotic quantum many-body phases whose elementary charged excitations are anyons obeying fractional braiding statistics. While most FQH states are believed to have Abelian anyons, the Moore-Read type states with even denominators - appearing at half filling of a Landau level (LL) - are predicted to possess non-Abelian excitations with appealing potential in topological quantum computation. These states, however, depend sensitively on the orbital contents of the single-particle LL wavefunctions and the LL mixing. Here we report magnetotransport measurements on Bernal-stacked trilayer graphene, whose multiband structure facilitates interlaced LL mixing, which can be controlled by external magnetic and displacement fields. We observe robust FQH states including even-denominator ones at filling factors ν = - 9/2, - 3/2, 3/2 and 9/2. In addition, we fine-tune the LL mixing and crossings to drive quantum phase transitions of these half-filling states and neighbouring odd-denominator ones, exhibiting related emerging and waning behaviour.
Collapse
Affiliation(s)
- Yiwei Chen
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Yan Huang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Qingxin Li
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Bingbing Tong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Guangli Kuang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Science, Hefei, 230031, China
| | - Chuanying Xi
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Science, Hefei, 230031, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Guangtong Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Hefei National Laboratory, Hefei, 230088, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.
| | - Zheng Zhu
- Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Lu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Hefei National Laboratory, Hefei, 230088, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Fu-Chun Zhang
- Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ying-Hai Wu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Chakraborti H, Gorini C, Knothe A, Liu MH, Makk P, Parmentier FD, Perconte D, Richter K, Roulleau P, Sacépé B, Schönenberger C, Yang W. Electron wave and quantum optics in graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:393001. [PMID: 38697131 DOI: 10.1088/1361-648x/ad46bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,e.g., snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.
Collapse
Affiliation(s)
| | - Cosimo Gorini
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Angelika Knothe
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Ming-Hao Liu
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Péter Makk
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- MTA-BME Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | | | - David Perconte
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Klaus Richter
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Preden Roulleau
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Benjamin Sacépé
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | | | - Wenmin Yang
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
7
|
Park J, Spånslätt C, Mirlin AD. Fingerprints of Anti-Pfaffian Topological Order in Quantum Point Contact Transport. PHYSICAL REVIEW LETTERS 2024; 132:256601. [PMID: 38996254 DOI: 10.1103/physrevlett.132.256601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
Despite recent experimental developments, the topological order of the fractional quantum Hall state at filling ν=5/2 remains an outstanding question. We study conductance and shot noise in a quantum point contact device in the charge-equilibrated regime and show that, among Pfaffian, particle-hole Praffian, and anti-Pfaffian (aPf) candidate states, the hole-conjugate aPf state is unique in that it can produce a conductance plateau at G=(7/3)e^{2}/h by two fundamentally distinct mechanisms. We demonstrate that these mechanisms can be distinguished by shot noise measurements on the plateaus. We also determine distinct features of the conductance of the aPf state in the coherent regime. Our results can be used to experimentally single out the aPf order.
Collapse
|
8
|
Li Q, Chen Y, Wei L, Chen H, Huang Y, Zhu Y, Zhu W, An D, Song J, Gan Q, Zhang Q, Watanabe K, Taniguchi T, Shi X, Novoselov KS, Wang R, Yu G, Wang L. Strongly coupled magneto-exciton condensates in large-angle twisted double bilayer graphene. Nat Commun 2024; 15:5065. [PMID: 38871728 DOI: 10.1038/s41467-024-49406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Excitons, pairs of electrons and holes, undergo a Bose-Einstein condensation at low temperatures. An important platform to study excitons is double-layer two-dimensional electron gases, with two parallel planes of electrons and holes separated by a thin insulating layer. Lowering this separation (d) strengthens the exciton binding energy, however, leads to the undesired interlayer tunneling, resulting in annihilation of excitons. Here, we report the observation of a sequences of robust exciton condensates (ECs) in double bilayer graphene twisted to ~ 10° with no insulating mid-layer. The large momentum mismatch between two graphene layers suppresses interlayer tunneling, reaching a d ~ 0.334 nm. Measuring the bulk and edge transport, we find incompressible states corresponding to ECs when both layers are in half-filled N = 0, 1 Landau levels (LLs). Theoretical calculations suggest that the low-energy charged excitation of ECs can be meron-antimeron or particle-hole pair, which relies on both LL index and carrier type. Our results establish a novel platform with extreme coupling strength for studying quantum bosonic phase.
Collapse
Affiliation(s)
- Qingxin Li
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Yiwei Chen
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - LingNan Wei
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Hong Chen
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Yan Huang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Yujian Zhu
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Wang Zhu
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Dongdong An
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Junwei Song
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Qikang Gan
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Qi Zhang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Xiaoyang Shi
- Environmental and Sustainable Engineering, College of Engineering and Applied Science, University at Albany, Albany, NY, 12222, USA.
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Building S9, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Rui Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| | - Geliang Yu
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
9
|
Manna S, Das A, Goldstein M, Gefen Y. Full Classification of Transport on an Equilibrated 5/2 Edge via Shot Noise. PHYSICAL REVIEW LETTERS 2024; 132:136502. [PMID: 38613281 DOI: 10.1103/physrevlett.132.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 04/14/2024]
Abstract
The nature of the bulk topological order of the 5/2 non-Abelian fractional quantum Hall state and the steady state of its edge are long-studied questions. The most promising non-Abelian model bulk states are the Pfaffian (Pf), anti-Pffafian (APf), and particle-hole symmetric Pfaffian (PHPf). Here, we propose to employ a set of dc current-current correlations (electrical shot noise) in order to distinguish among the Pf, APf, and PHPf candidate states, as well as to determine their edge thermal equilibration regimes: full vs partial. Using other tools, measurements of GaAs platforms have already indicated consistency with the PHPf state. Our protocol, realizable with available experimental tools, is based on fully electrical measurements.
Collapse
Affiliation(s)
- Sourav Manna
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Ankur Das
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moshe Goldstein
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Gefen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Assouline A, Wang T, Zhou H, Cohen LA, Yang F, Zhang R, Taniguchi T, Watanabe K, Mong RSK, Zaletel MP, Young AF. Energy Gap of the Even-Denominator Fractional Quantum Hall State in Bilayer Graphene. PHYSICAL REVIEW LETTERS 2024; 132:046603. [PMID: 38335366 DOI: 10.1103/physrevlett.132.046603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/10/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Bernal bilayer graphene hosts even-denominator fractional quantum Hall states thought to be described by a Pfaffian wave function with non-Abelian quasiparticle excitations. Here, we report the quantitative determination of fractional quantum Hall energy gaps in bilayer graphene using both thermally activated transport and by direct measurement of the chemical potential. We find a transport activation gap of 5.1 K at B=12 T for a half filled N=1 Landau level, consistent with density matrix renormalization group calculations for the Pfaffian state. However, the measured thermodynamic gap of 11.6 K is smaller than theoretical expectations for the clean limit by approximately a factor of 2. We analyze the chemical potential data near fractional filling within a simplified model of a Wigner crystal of fractional quasiparticles with long-wavelength disorder, explaining this discrepancy. Our results quantitatively establish bilayer graphene as a robust platform for probing the non-Abelian anyons expected to arise as the elementary excitations of the even-denominator state.
Collapse
Affiliation(s)
- Alexandre Assouline
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Taige Wang
- Department of Physics, University of California, Berkeley, California 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Haoxin Zhou
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Liam A Cohen
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Fangyuan Yang
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Ruining Zhang
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Roger S K Mong
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, California 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrea F Young
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
11
|
Xiang F, Gupta A, Chaves A, Krix ZE, Watanabe K, Taniguchi T, Fuhrer MS, Peeters FM, Neilson D, Milošević MV, Hamilton AR. Intra-Zero-Energy Landau Level Crossings in Bilayer Graphene at High Electric Fields. NANO LETTERS 2023; 23:9683-9689. [PMID: 37883804 DOI: 10.1021/acs.nanolett.3c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors ν = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at ν = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between ν = 0 → 1 and ν = 2 → 3 show anomalous behavior.
Collapse
Affiliation(s)
- Feixiang Xiang
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Abhay Gupta
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrey Chaves
- Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, 60455-760 Fortaleza, Ceará Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Zeb E Krix
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kenji Watanabe
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Michael S Fuhrer
- School of Physics and Astronomy and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - François M Peeters
- Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, 60455-760 Fortaleza, Ceará Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - David Neilson
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Milorad V Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Alexander R Hamilton
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Fu H, Huang K, Watanabe K, Taniguchi T, Zhu J. Charge Oscillations in Bilayer Graphene Quantum Confinement Devices. NANO LETTERS 2023; 23:9726-9732. [PMID: 37862439 DOI: 10.1021/acs.nanolett.3c02253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Quantum confinement structures are building blocks of quantum devices in fundamental physics exploration and technological applications. In this work, we fabricate dual-gated bilayer graphene Fabry-Pérot quantum Hall interferometers employing two different gating strategies and conduct finite element simulations to understand the electrostatics of the confinement structures and to guide device design and fabrication. We observe two types of resistance oscillations arising from the charging of quantum dots formed inside the interferometers. We obtain the size, location, and charging energy of the dots by measuring the dependence of the oscillations on the magnetic field, gate voltages, and dc bias. We analyze and discuss the origin of the quantum dots and their impact on quantum Hall edge state backscattering and interference. Insights gained in these studies shed light on the construction of van der Waals quantum confinement devices.
Collapse
Affiliation(s)
- Hailong Fu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Ke Huang
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jun Zhu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Cohen LA, Samuelson NL, Wang T, Taniguchi T, Watanabe K, Zaletel MP, Young AF. Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact. Science 2023; 382:542-547. [PMID: 37917688 DOI: 10.1126/science.adf9728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
One-dimensional conductors are described by Luttinger liquid theory, which predicts a power-law suppression of the single-electron tunneling density of states at low voltages. The scaling exponent is predicted to be quantized when tunneling into a single isolated chiral edge state of the fractional quantum Hall effect. We report conductance measurements across a point contact linking integer and fractional quantum Hall edge states (at fillings 1 and [Formula: see text], respectively). At weak coupling, we observe the predicted universal quadratic scaling with temperature and voltage. At strong coupling, we demonstrate perfect Andreev reflection of fractionalized quasiparticles at the point contact. We use the strong coupling physics to realize a nearly dissipationless direct current voltage step-up transformer, whose gain arises directly from topological fractionalization of electrical charge.
Collapse
Affiliation(s)
- Liam A Cohen
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Noah L Samuelson
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Taige Wang
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrea F Young
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
14
|
Das S, Das S, Mandal SS. Anomalous Reentrant 5/2 Quantum Hall Phase at Moderate Landau-Level-Mixing Strength. PHYSICAL REVIEW LETTERS 2023; 131:056202. [PMID: 37595232 DOI: 10.1103/physrevlett.131.056202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 08/20/2023]
Abstract
A successful probing of the neutral Majorana mode in recent thermal Hall conductivity measurements opines in favor of the particle-hole symmetric Pfaffian (PH-Pf) topological order, contrasting the theoretical predictions of Pfaffian or anti-Pfaffian phases. Here we report a reentrant anomalous quantized phase that is found to be gapped in the thermodynamic limit, distinct from the conventional Pfaffian, anti-Pfaffian, or PH-Pf phases, at an intermediate strength of Landau level mixing. Our proposed wave function consistent with the PH-Pf shift in spherical geometry rightly captures the topological order of this phase, as its overlap with the exact ground state is very high and it reproduces low-lying entanglement spectra. A unique topological order, irrespective of the flux shifts, found for this phase, possibly corroborates the experimentally found topological order.
Collapse
Affiliation(s)
- Sudipto Das
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sahana Das
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sudhansu S Mandal
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
15
|
Wang C, Gupta A, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Winkler R, Shayegan M. Highly Anisotropic Even-Denominator Fractional Quantum Hall State in an Orbitally Coupled Half-Filled Landau Level. PHYSICAL REVIEW LETTERS 2023; 131:056302. [PMID: 37595236 DOI: 10.1103/physrevlett.131.056302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
The even-denominator fractional quantum Hall states (FQHSs) in half-filled Landau levels are generally believed to host non-Abelian quasiparticles and be of potential use in topological quantum computing. Of particular interest is the competition and interplay between the even-denominator FQHSs and other ground states, such as anisotropic phases and composite fermion Fermi seas. Here, we report the observation of an even-denominator fractional quantum Hall state with highly anisotropic in-plane transport coefficients at Landau level filling factor ν=3/2. We observe this state in an ultra-high-quality GaAs two-dimensional hole system when a large in-plane magnetic field is applied. By increasing the in-plane field, we observe a sharp transition from an isotropic composite fermion Fermi sea to an anisotropic even-denominator FQHS. Our data and calculations suggest that a unique feature of two-dimensional holes, namely the coupling between heavy-hole and light-hole states, combines different orbital components in the wave function of one Landau level, and leads to the emergence of a highly anisotropic even-denominator fractional quantum Hall state. Our results demonstrate that the GaAs two-dimensional hole system is a unique platform for the exploration of exotic, many-body ground states.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
16
|
Kim S, Kim D, Watanabe K, Taniguchi T, Smet JH, Kim Y. Orbitally Controlled Quantum Hall States in Decoupled Two-Bilayer Graphene Sheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300574. [PMID: 37259684 PMCID: PMC10427396 DOI: 10.1002/advs.202300574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/29/2023] [Indexed: 06/02/2023]
Abstract
The authors report on integer and fractional quantum Hall states in a stack of two twisted Bernal bilayer graphene sheets. By exploiting the momentum mismatch in reciprocal space, the single-particle tunneling between both bilayers is suppressed. Since the bilayers are spatially separated by only 0.34 nm, the stack benefits from strong interlayer Coulombic interactions. These interactions can cause the formation of a Bose-Einstein condensate. Indeed, such a condensate is observed for half-filling in each bilayer sheet. However, only when the partially filled levels have orbital index 1. It is absent for partially filled levels with orbital index 0. This discrepancy is tentatively attributed to the role of skyrmion/anti-skyrmion pair excitations and the dependence of the energy of these excitations on the orbital index. The application of asymmetric top and bottom gate voltages enables to influence the orbital nature of the electronic states of the graphene bilayers at the chemical potential and to navigate in orbital mixed space. The latter hosts an even denominator fractional quantum Hall state at total filling of -3/2. These observations suggest a unique edge reconstruction involving both electrons and chiral p-wave composite fermions.
Collapse
Affiliation(s)
- Soyun Kim
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Dohun Kim
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Kenji Watanabe
- Research Center for Functional MaterialsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Takashi Taniguchi
- International Center for Materials NanoarchitectonicsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Jurgen H. Smet
- Max Planck Institute for Solid State Research70569StuttgartGermany
| | - Youngwook Kim
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| |
Collapse
|
17
|
Yazdani A, von Oppen F, Halperin BI, Yacoby A. Hunting for Majoranas. Science 2023; 380:eade0850. [PMID: 37347870 DOI: 10.1126/science.ade0850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Over the past decade, there have been considerable efforts to observe non-abelian quasiparticles in novel quantum materials and devices. These efforts are motivated by the goals of demonstrating quantum statistics of quasiparticles beyond those of fermions and bosons and of establishing the underlying science for the creation of topologically protected quantum bits. In this Review, we focus on efforts to create topological superconducting phases that host Majorana zero modes. We consider the lessons learned from existing experimental efforts, which are motivating both improvements to present platforms and the exploration of new approaches. Although the experimental detection of non-abelian quasiparticles remains challenging, the knowledge gained thus far and the opportunities ahead offer high potential for discovery and advances in this exciting area of quantum physics.
Collapse
Affiliation(s)
- Ali Yazdani
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ 08540, USA
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Fu H, Huang K, Watanabe K, Taniguchi T, Kayyalha M, Zhu J. Aharonov-Bohm Oscillations in Bilayer Graphene Quantum Hall Edge State Fabry-Pérot Interferometers. NANO LETTERS 2023; 23:718-725. [PMID: 36622939 DOI: 10.1021/acs.nanolett.2c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bernal-stacked bilayer graphene exhibits a wealth of interaction-driven phenomena, including robust even-denominator fractional quantum Hall states. We construct Fabry-Pérot interferometers using a split-gate design and present measurements of the Aharonov-Bohm oscillations. The edge state velocity is found to be approximately 6 × 104 m/s at filling factor ν = 2 and decreases with increasing filling factor. The dc bias and temperature dependence of the interference point to electron-electron interaction induced decoherence mechanisms. These results pave the way for the quest of fractional and non-Abelian braiding statistics in this promising device platform.
Collapse
Affiliation(s)
- Hailong Fu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania16802, United States
- School of Physics, Zhejiang University, Hangzhou310058, People's Republic of China
| | - Ke Huang
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Morteza Kayyalha
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Jun Zhu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| |
Collapse
|
19
|
Kim D, Kang B, Choi YB, Watanabe K, Taniguchi T, Lee GH, Cho GY, Kim Y. Robust Interlayer-Coherent Quantum Hall States in Twisted Bilayer Graphene. NANO LETTERS 2023; 23:163-169. [PMID: 36524972 DOI: 10.1021/acs.nanolett.2c03836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We introduce a novel two-dimensional electronic system with ultrastrong interlayer interactions, namely, twisted bilayer graphene with a large twist angle, as an ideal ground for realizing interlayer-coherent excitonic condensates. In these systems, sub-nanometer atomic separation between the layers allows significant interlayer interactions, while interlayer electron tunneling is geometrically suppressed due to the large twist angle. By fully exploiting these two features we demonstrate that a sequence of odd-integer quantum Hall states with interlayer coherence appears at the second Landau level (N = 1). Notably the energy gaps for these states are of order 1 K, which is several orders of magnitude greater than those in GaAs. Furthermore, a variety of quantum Hall phase transitions are observed experimentally. All the experimental observations are largely consistent with our phenomenological model calculations. Hence, we establish that a large twist angle system is an excellent platform for high-temperature excitonic condensation.
Collapse
Affiliation(s)
- Dohun Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Byungmin Kang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Yong-Bin Choi
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Gil-Ho Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Gil Young Cho
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Youngwook Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
20
|
Popert A, Shimazaki Y, Kroner M, Watanabe K, Taniguchi T, Imamoğlu A, Smoleński T. Optical Sensing of Fractional Quantum Hall Effect in Graphene. NANO LETTERS 2022; 22:7363-7369. [PMID: 36124418 PMCID: PMC9523700 DOI: 10.1021/acs.nanolett.2c02000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Graphene and its heterostructures provide a unique and versatile playground for explorations of strongly correlated electronic phases, ranging from unconventional fractional quantum Hall (FQH) states in a monolayer system to a plethora of superconducting and insulating states in twisted bilayers. However, the access to those fascinating phases has been thus far entirely restricted to transport techniques, due to the lack of a robust energy bandgap that makes graphene hard to access optically. Here we demonstrate an all-optical, noninvasive spectroscopic tool for probing electronic correlations in graphene using excited Rydberg excitons in an adjacent transition metal dichalcogenide monolayer. These excitons are highly susceptible to the compressibility of graphene electrons, allowing us to detect the formation of odd-denominator FQH states at high magnetic fields. Owing to its submicron spatial resolution, the technique we demonstrate circumvents spatial inhomogeneities and paves the way for optical studies of correlated states in optically inactive atomically thin materials.
Collapse
Affiliation(s)
- Alexander Popert
- Institute
for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Yuya Shimazaki
- Institute
for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
- Center
for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Martin Kroner
- Institute
for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Ataç Imamoğlu
- Institute
for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tomasz Smoleński
- Institute
for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
21
|
Islam S, Shamim S, Ghosh A. Benchmarking Noise and Dephasing in Emerging Electrical Materials for Quantum Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109671. [PMID: 35545231 DOI: 10.1002/adma.202109671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/01/2022] [Indexed: 06/15/2023]
Abstract
As quantum technologies develop, a specific class of electrically conducting materials is rapidly gaining interest because they not only form the core quantum-enabled elements in superconducting qubits, semiconductor nanostructures, or sensing devices, but also the peripheral circuitry. The phase coherence of the electronic wave function in these emerging materials will be crucial when incorporated in the quantum architecture. The loss of phase memory, or dephasing, occurs when a quantum system interacts with the fluctuations in the local electromagnetic environment, which manifests in "noise" in the electrical conductivity. Hence, characterizing these materials and devices therefrom, for quantum applications, requires evaluation of both dephasing and noise, although there are very few materials where these properties are investigated simultaneously. Here, the available data on magnetotransport and low-frequency fluctuations in electrical conductivity are reviewed to benchmark the dephasing and noise. The focus is on new materials that are of direct interest to quantum technologies. The physical processes causing dephasing and noise in these systems are elaborated, the impact of both intrinsic and extrinsic parameters from materials synthesis and devices realization are evaluated, and it is hoped that a clearer pathway to design and characterize both material and devices for quantum applications is thus provided.
Collapse
Affiliation(s)
- Saurav Islam
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Saquib Shamim
- Experimentelle Physik III, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Topological Insulators, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
22
|
Hao T, Hao T. Quantized conductance and superconductivity of twisted graphene and other 2D crystals explained with the Eyring’s rate process theory and free volume concept. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Kumar R, Srivastav SK, Spånslätt C, Watanabe K, Taniguchi T, Gefen Y, Mirlin AD, Das A. Observation of ballistic upstream modes at fractional quantum Hall edges of graphene. Nat Commun 2022; 13:213. [PMID: 35017473 PMCID: PMC8752686 DOI: 10.1038/s41467-021-27805-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
The presence of "upstream" modes, moving against the direction of charge current flow in the fractional quantum Hall (FQH) phases, is critical for the emergence of renormalized modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun for the presence of upstream modes. Here, we report noise measurements at the edges of FQH states realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is injected at one of the edge contacts, and the noise generated at contacts at length, L = 4 μm and 10 μm away along the upstream direction is studied. For integer and particle-like FQH states, no detectable noise is measured. By contrast, for "hole-conjugate" FQH states, we detect a strong noise proportional to the injected current, unambiguously proving the existence of upstream modes. The noise magnitude remains independent of length, which matches our theoretical analysis demonstrating the ballistic nature of upstream energy transport, quite distinct from the diffusive propagation reported earlier in GaAs-based systems.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | | | - Christian Spånslätt
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96, Göteborg, Sweden
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - K Watanabe
- National Institute of Material Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - T Taniguchi
- National Institute of Material Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Yuval Gefen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander D Mirlin
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Petersburg Nuclear Physics Institute, 188300, St. Petersburg, Russia
- L. D. Landau Institute for Theoretical Physics RAS, 119334, Moscow, Russia
| | - Anindya Das
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
24
|
Liu M, Wang L, Yu G. Developing Graphene-Based Moiré Heterostructures for Twistronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103170. [PMID: 34723434 PMCID: PMC8728823 DOI: 10.1002/advs.202103170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based moiré heterostructures are strongly correlated materials, and they are considered to be an effective platform to investigate the challenges of condensed matter physics. This is due to the distinct electronic properties that are unique to moiré superlattices and peculiar band structures. The increasing research on strongly correlated physics via graphene-based moiré heterostructures, especially unconventional superconductors, greatly promotes the development of condensed matter physics. Herein, the preparation methods of graphene-based moiré heterostructures on both in situ growth and assembling monolayer 2D materials are discussed. Methods to improve the quality of graphene and optimize the transfer process are presented to mitigate the limitations of low-quality graphene and damage caused by the transfer process during the fabrication of graphene-based moiré heterostructures. Then, the topological properties in various graphene-based moiré heterostructures are reviewed. Furthermore, recent advances regarding the factors that influence physical performances via a changing twist angle, the exertion of strain, and regulation of the dielectric environment are presented. Moreover, various unique physical properties in graphene-based moiré heterostructures are demonstrated. Finally, the challenges faced during the preparation and characterization of graphene-based moiré heterostructures are discussed. An outlook for the further development of moiré heterostructures is also presented.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Liping Wang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
25
|
Zhang X, Tsai KT, Zhu Z, Ren W, Luo Y, Carr S, Luskin M, Kaxiras E, Wang K. Correlated Insulating States and Transport Signature of Superconductivity in Twisted Trilayer Graphene Superlattices. PHYSICAL REVIEW LETTERS 2021; 127:166802. [PMID: 34723600 DOI: 10.1103/physrevlett.127.166802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Layers of two-dimensional materials stacked with a small twist angle give rise to beating periodic patterns on a scale much larger than the original lattice, referred to as a "moiré superlattice." Here, we demonstrate a higher-order "moiré of moiré" superlattice in twisted trilayer graphene with two consecutive small twist angles. We report correlated insulating states near the half filling of the moiré of moiré superlattice at an extremely low carrier density (∼10^{10} cm^{-2}), near which we also report a zero-resistance transport behavior typically expected in a 2D superconductor. The full-occupancy (ν=-4 and ν=4) states are semimetallic and gapless, distinct from the twisted bilayer systems.
Collapse
Affiliation(s)
- Xi Zhang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kan-Ting Tsai
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ziyan Zhu
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wei Ren
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Yujie Luo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephen Carr
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mitchell Luskin
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Efthimios Kaxiras
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ke Wang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
26
|
Feldman DE, Halperin BI. Fractional charge and fractional statistics in the quantum Hall effects. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076501. [PMID: 34015771 DOI: 10.1088/1361-6633/ac03aa] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Quasiparticles with fractional charge and fractional statistics are key features of the fractional quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and the ways in which these properties may be observed. In addition to theoretical foundations, we review the present status of the experiments in the area. We also discuss the notions of non-Abelian statistics and attempts to find experimental evidence for the existence of non-Abelian quasiparticles in certain quantum Hall systems.
Collapse
Affiliation(s)
- D E Feldman
- Brown Theoretical Physics Center and Department of Physics, Brown University, Providence, RI 02912, United States of America
| | - Bertrand I Halperin
- Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
27
|
Srivastav SK, Kumar R, Spånslätt C, Watanabe K, Taniguchi T, Mirlin AD, Gefen Y, Das A. Vanishing Thermal Equilibration for Hole-Conjugate Fractional Quantum Hall States in Graphene. PHYSICAL REVIEW LETTERS 2021; 126:216803. [PMID: 34114853 DOI: 10.1103/physrevlett.126.216803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Transport through edge channels is responsible for conduction in quantum Hall (QH) phases. Robust quantized values of charge and thermal conductances dictated by bulk topology appear when equilibration processes become dominant. We report on measurements of electrical and thermal conductances of integer and fractional QH phases, realized in hexagonal boron nitride encapsulated graphite-gated bilayer graphene devices for both electron and hole doped sides with different valley and orbital symmetries. Remarkably, for complex edges at filling factors ν=5/3 and 8/3, closely related to the paradigmatic hole-conjugate ν=2/3 phase, we find quantized thermal conductance whose values (3κ_{0}T and 4κ_{0}T, respectively where κ_{0}T is the thermal conductance quantum) are markedly inconsistent with the values dictated by topology (1κ_{0}T and 2κ_{0}T, respectively). The measured thermal conductance values remain insensitive to different symmetries, suggesting its universal nature. Our findings are supported by a theoretical analysis, which indicates that, whereas electrical equilibration at the edge is established over a finite length scale, the thermal equilibration length diverges for strong electrostatic interaction. Our results elucidate the subtle nature of crossover from coherent, mesoscopic to topology-dominated transport.
Collapse
Affiliation(s)
| | - Ravi Kumar
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Christian Spånslätt
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - K Watanabe
- National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander D Mirlin
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
- Petersburg Nuclear Physics Institute, 188300 St. Petersburg, Russia
- L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow, Russia
| | - Yuval Gefen
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anindya Das
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Ma KKW, Wang R, Yang K. Realization of Supersymmetry and Its Spontaneous Breaking in Quantum Hall Edges. PHYSICAL REVIEW LETTERS 2021; 126:206801. [PMID: 34110185 DOI: 10.1103/physrevlett.126.206801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Supersymmetry (SUSY) relating bosons and fermions plays an important role in unifying different fundamental interactions in particle physics. Since no superpartners of elementary particles have been observed, SUSY, if present, must be broken at low-energy. This makes it important to understand how SUSY is realized and broken, and study their consequences. We show that an N=(1,0) SUSY, arguably the simplest type, can be realized at the edge of the Moore-Read quantum Hall state. Depending on the absence or presence of edge reconstruction, both SUSY-preserving and SUSY broken phases can be realized in the same system, allowing for their unified description. The significance of the gapless fermionic Goldstino mode in the SUSY broken phase is discussed.
Collapse
Affiliation(s)
- Ken K W Ma
- National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
| | - Ruojun Wang
- National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
| | - Kun Yang
- National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
29
|
Ronen Y, Werkmeister T, Haie Najafabadi D, Pierce AT, Anderson LE, Shin YJ, Lee SY, Lee YH, Johnson B, Watanabe K, Taniguchi T, Yacoby A, Kim P. Aharonov-Bohm effect in graphene-based Fabry-Pérot quantum Hall interferometers. NATURE NANOTECHNOLOGY 2021; 16:563-569. [PMID: 33633404 DOI: 10.1038/s41565-021-00861-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Interferometers probe the wave-nature and exchange statistics of indistinguishable particles-for example, electrons in the chiral one-dimensional edge channels of the quantum Hall effect (QHE). Quantum point contacts can split and recombine these channels, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can unveil the exchange statistics of anyonic quasi-particles in the fractional quantum Hall effect (FQHE). Here, we present a fabrication technique for QHIs in van der Waals (vdW) materials and realize a tunable, graphene-based Fabry-Pérot (FP) QHI. The graphite-encapsulated architecture allows observation of FQHE at a magnetic field of 3T and precise partitioning of integer and fractional edge modes. We measure pure Aharonov-Bohm interference in the integer QHE, a major technical challenge in small FP interferometers, and find that edge modes exhibit high-visibility interference due to large velocities. Our results establish vdW heterostructures as a versatile alternative to GaAs-based interferometers for future experiments targeting anyonic quasi-particles.
Collapse
Affiliation(s)
- Yuval Ronen
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Thomas Werkmeister
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Andrew T Pierce
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Young Jae Shin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Si Young Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea
| | - Bobae Johnson
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Philip Kim
- Department of Physics, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
30
|
Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li JIA. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 2021; 371:1261-1265. [PMID: 33737488 DOI: 10.1126/science.abb8754] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Physics, Brown University, Providence, RI 02912, USA
| | - Zhi Wang
- Department of Physics, Brown University, Providence, RI 02912, USA
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Oskar Vafek
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA.,National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - J I A Li
- Department of Physics, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
31
|
Abstract
Graphene is a good candidate for protective material owing to its extremely high stiffness and high strength-to-weight ratio. However, the impact performance of twisted bilayer graphene is still obscure. Herein we have investigated the ballistic resistance capacity of twisted bilayer graphene compared to that of AA-stacked bilayer graphene using molecular dynamic simulations. The energy propagation processes are identical, while the ballistic resistance capacity of the twisted bilayer graphene is almost two times larger than the AA-bilayer graphene. The enhanced capacity of the twisted bilayer graphene is assumed to be caused by the mismatch between the two sheets of graphene, which results in earlier fracture of the first graphene layer and reduces the possibility of penetration.
Collapse
|
32
|
Gromov A, Martinec EJ, Ryu S. Collective Excitations at Filling Factor 5/2: The View from Superspace. PHYSICAL REVIEW LETTERS 2020; 125:077601. [PMID: 32857582 DOI: 10.1103/physrevlett.125.077601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/07/2020] [Indexed: 05/06/2023]
Abstract
We present a microscopic theory of the neutral collective modes supported by the non-Abelian fractional quantum Hall states at filling factor 5/2. The theory is formulated in terms of the trial states describing the Girvin-MacDonald-Platzman mode and its fermionic counterpart. These modes are superpartners of each other in a concrete sense, which we elucidate.
Collapse
Affiliation(s)
- Andrey Gromov
- Brown Theoretical Physics Center and Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Emil J Martinec
- Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
- Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Shinsei Ryu
- Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
33
|
Shi Q, Shih EM, Gustafsson MV, Rhodes DA, Kim B, Watanabe K, Taniguchi T, Papić Z, Hone J, Dean CR. Odd- and even-denominator fractional quantum Hall states in monolayer WSe 2. NATURE NANOTECHNOLOGY 2020; 15:569-573. [PMID: 32632320 DOI: 10.1038/s41565-020-0685-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Monolayer semiconducting transition-metal dichalcogenides (TMDs) represent a unique class of two-dimensional (2D) electron systems. Their atomically thin structure facilitates gate tunability just like graphene does, but unlike graphene, TMDs have the advantage of a sizable band gap and strong spin-orbit coupling. Measurements under large magnetic fields have revealed an unusual Landau level (LL) structure1-3, distinct from other 2D electron systems. However, owing to the limited sample quality and poor electrical contact, probing the lowest LLs has been challenging, and observation of electron correlations within the fractionally filled LL regime has not been possible. Here, through bulk electronic compressibility measurements, we investigate the LL structure of monolayer WSe2 in the extreme quantum limit, and observe fractional quantum Hall states in the lowest three LLs. The odd-denominator fractional quantum Hall sequences demonstrate a systematic evolution with the LL orbital index, consistent with generic theoretical expectations. In addition, we observe an even-denominator state in the second LL that is expected to host non-Abelian statistics. Our results suggest that the 2D semiconductors can provide an experimental platform that closely resembles idealized theoretical models in the quantum Hall regime.
Collapse
Affiliation(s)
- Qianhui Shi
- Department of Physics, Columbia University, New York, NY, USA
| | - En-Min Shih
- Department of Physics, Columbia University, New York, NY, USA
| | - Martin V Gustafsson
- Department of Physics, Columbia University, New York, NY, USA
- Raytheon BBN Technologies, Cambridge, MA, USA
| | - Daniel A Rhodes
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Zlatko Papić
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Cory R Dean
- Department of Physics, Columbia University, New York, NY, USA.
| |
Collapse
|
34
|
Zhu Z, Sheng DN, Sodemann I. Widely Tunable Quantum Phase Transition from Moore-Read to Composite Fermi Liquid in Bilayer Graphene. PHYSICAL REVIEW LETTERS 2020; 124:097604. [PMID: 32202902 DOI: 10.1103/physrevlett.124.097604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
We develop a proposal to realize a widely tunable and clean quantum phase transition in bilayer graphene between two paradigmatic fractionalized phases of matter: the Moore-Read fractional quantum Hall state and the composite Fermi liquid metal. This transition can be realized at total fillings ν=±3+1/2 and the critical point can be controllably accessed by tuning either the interlayer electric bias or the perpendicular magnetic field values over a wide range of parameters. We study the transition numerically within a model that contains all leading single particle corrections to the band structure of bilayer graphene and includes the fluctuations between the n=0 and n=1 cyclotron orbitals of its zeroth Landau level to delineate the most favorable region of parameters to experimentally access this unconventional critical point. We also find evidence for a new anisotropic gapless phase stabilized near the level crossing of n=0/1 orbits.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D N Sheng
- Department of Physics and Astronomy, California State University, Northridge, California 91330, USA
| | - Inti Sodemann
- Max-Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| |
Collapse
|
35
|
Kim Y, Herlinger P, Taniguchi T, Watanabe K, Smet JH. Reliable Postprocessing Improvement of van der Waals Heterostructures. ACS NANO 2019; 13:14182-14190. [PMID: 31775000 DOI: 10.1021/acsnano.9b06992] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The successful assembly of heterostructures consisting of several layers of different 2D materials in arbitrary order by exploiting van der Waals forces has truly been a game changer in the field of low-dimensional physics. For instance, the encapsulation of graphene or MoS2 between atomically flat hexagonal boron nitride (hBN) layers with strong affinity and graphitic gates that screen charge impurity disorder provided access to a plethora of interesting physical phenomena by drastically boosting the device quality. The encapsulation is accompanied by a self-cleansing effect at the interfaces. The otherwise predominant charged impurity disorder is minimized, and random strain fluctuations ultimately constitute the main source of residual disorder. Despite these advances, the fabricated heterostructures still vary notably in their performance. Although some achieve record mobilities, others only possess mediocre quality. Here, we report a reliable method to improve fully completed van der Waals heterostructure devices with a straightforward postprocessing surface treatment based on thermal annealing and contact mode atomic force microscopy (AFM). The impact is demonstrated by comparing magnetotransport measurements before and after the AFM treatment on one and the same device as well as on a larger set of treated and untreated devices to collect device statistics. Both the low-temperature properties and the room temperature electrical characteristics, as relevant for applications, improve on average substantially. We surmise that the main beneficial effect arises from reducing nanometer scale corrugations at the interfaces, that is, the detrimental impact of random strain fluctuations.
Collapse
Affiliation(s)
- Youngwook Kim
- Max-Planck-Institut für Festkörperforschung , 70569 Stuttgart , Germany
- Department of Emerging Materials Science , DGIST , 42988 Daegu , Korea
| | - Patrick Herlinger
- Max-Planck-Institut für Festkörperforschung , 70569 Stuttgart , Germany
| | - Takashi Taniguchi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Kenji Watanabe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Jurgen H Smet
- Max-Planck-Institut für Festkörperforschung , 70569 Stuttgart , Germany
| |
Collapse
|
36
|
Fu H, Wu Y, Zhang R, Sun J, Shan P, Wang P, Zhu Z, Pfeiffer LN, West KW, Liu H, Xie XC, Lin X. 3/2 fractional quantum Hall plateau in confined two-dimensional electron gas. Nat Commun 2019; 10:4351. [PMID: 31554799 PMCID: PMC6761136 DOI: 10.1038/s41467-019-12245-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
Even-denominator fractional quantum Hall (FQH) states, such as 5/2 and 7/2, have been well known in a two-dimensional electron gas (2DEG) for decades and are still investigated as candidates of non-Abelian statistics. In this paper, we present the observation of a 3/2 FQH plateau in a single-layer 2DEG with lateral confinement at a bulk filling factor of 5/3. The 3/2 FQH plateau is quantized at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {\frac{h}{{e^2}}} \right)/\left( {\frac{3}{2}} \right)$$\end{document}he2∕32 within 0.02%, and can survive up to 300 mK. This even-denominator FQH plateau may imply intriguing edge structure and excitation in FQH system with lateral confinement. The observations in this work demonstrate that understanding the effect of the lateral confinement on the many-body system is critical in the pursuit of important theoretical proposals involving edge physics, such as the demonstration of non-Abelian statistics and the realization of braiding for fault-tolerant quantum computation. Fractional quantum Hall states in 2D electron gases arise due to strong electron-electron interactions, which makes a general theoretical understanding difficult. Fu et al. present data showing the ν = 5/3 quantum Hall state has a 3/2 plateau in the diagonal resistance that has not been captured by existing models.
Collapse
Affiliation(s)
- Hailong Fu
- International Center for Quantum Materials, Peking University, 100871, Beijing, China.,Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yijia Wu
- International Center for Quantum Materials, Peking University, 100871, Beijing, China
| | - Ruoxi Zhang
- International Center for Quantum Materials, Peking University, 100871, Beijing, China
| | - Jian Sun
- International Center for Quantum Materials, Peking University, 100871, Beijing, China
| | - Pujia Shan
- International Center for Quantum Materials, Peking University, 100871, Beijing, China
| | - Pengjie Wang
- International Center for Quantum Materials, Peking University, 100871, Beijing, China
| | - Zheyi Zhu
- International Center for Quantum Materials, Peking University, 100871, Beijing, China
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, 100875, Beijing, China
| | - X C Xie
- International Center for Quantum Materials, Peking University, 100871, Beijing, China.,Beijing Academy of Quantum Information Sciences, 100193, Beijing, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xi Lin
- International Center for Quantum Materials, Peking University, 100871, Beijing, China. .,Beijing Academy of Quantum Information Sciences, 100193, Beijing, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
37
|
Strong magnetophonon oscillations in extra-large graphene. Nat Commun 2019; 10:3334. [PMID: 31350410 PMCID: PMC6659705 DOI: 10.1038/s41467-019-11379-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/02/2019] [Indexed: 11/08/2022] Open
Abstract
Van der Waals materials and their heterostructures offer a versatile platform for studying a variety of quantum transport phenomena due to their unique crystalline properties and the exceptional ability in tuning their electronic spectrum. However, most experiments are limited to devices that have lateral dimensions of only a few micrometres. Here, we perform magnetotransport measurements on graphene/hexagonal boron-nitride Hall bars and show that wider devices reveal additional quantum effects. In devices wider than ten micrometres we observe distinct magnetoresistance oscillations that are caused by resonant scattering of Landau-quantised Dirac electrons by acoustic phonons in graphene. The study allows us to accurately determine graphene’s low energy phonon dispersion curves and shows that transverse acoustic modes cause most of phonon scattering. Our work highlights the crucial importance of device width when probing quantum effects and also demonstrates a precise, spectroscopic method for studying electron-phonon interactions in van der Waals heterostructures. Increasing the size of mesoscopic devices based on van der Waals heterostructures triggers additional quantum effects. Here, the authors observe distinct magnetoresistance oscillations in graphene/h-BN Hall bars only in devices wider than 10 μm due to resonant scattering of charge carriers by transverse acoustic phonons in graphene.
Collapse
|
38
|
Srivastav SK, Sahu MR, Watanabe K, Taniguchi T, Banerjee S, Das A. Universal quantized thermal conductance in graphene. SCIENCE ADVANCES 2019; 5:eaaw5798. [PMID: 31309156 PMCID: PMC6625820 DOI: 10.1126/sciadv.aaw5798] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
The universal quantization of thermal conductance provides information on a state's topological order. Recent measurements revealed that the observed value of thermal conductance of the 5 2 state is inconsistent with either Pfaffian or anti-Pfaffian model, motivating several theoretical articles. Analysis has been made complicated by the presence of counter-propagating edge channels arising from edge reconstruction, an inevitable consequence of separating the dopant layer from the GaAs quantum well and the resulting soft confining potential. Here, we measured thermal conductance in graphene with atomically sharp confining potential by using sensitive noise thermometry on hexagonal boron-nitride encapsulated graphene devices, gated by either SiO2/Si or graphite back gate. We find the quantization of thermal conductance within 5% accuracy for ν = 1 ; 4 3 ; 2 and 6 plateaus, emphasizing the universality of flow of information. These graphene quantum Hall thermal transport measurements will allow new insight into exotic systems like even-denominator quantum Hall fractions in graphene.
Collapse
Affiliation(s)
| | - Manas Ranjan Sahu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K. Watanabe
- National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T. Taniguchi
- National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Sumilan Banerjee
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anindya Das
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
39
|
Parisa Zare, Rezania H. Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419050364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Zeng Y, Li JIA, Dietrich SA, Ghosh OM, Watanabe K, Taniguchi T, Hone J, Dean CR. High-Quality Magnetotransport in Graphene Using the Edge-Free Corbino Geometry. PHYSICAL REVIEW LETTERS 2019; 122:137701. [PMID: 31012609 DOI: 10.1103/physrevlett.122.137701] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 06/09/2023]
Abstract
We report fabrication of graphene devices in a Corbino geometry consisting of concentric circular electrodes with no physical edge connecting the inner and outer electrodes. High device mobility is realized using boron nitride encapsulation together with a dual-graphite gate structure. Bulk conductance measurement in the quantum Hall effect (QHE) regime outperforms previously reported Hall bar measurements, with improved resolution observed for both the integer and fractional QHE states. We identify apparent phase transitions in the fractional sequence in both the lowest and first excited Landau levels (LLs) and observe features consistent with electron solid phases in higher LLs.
Collapse
Affiliation(s)
- Y Zeng
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - J I A Li
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - S A Dietrich
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - O M Ghosh
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - J Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10025, USA
| | - C R Dean
- Department of Physics, Columbia University, New York, New York 10025, USA
| |
Collapse
|
41
|
Hossain MS, Ma MK, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Unconventional Anisotropic Even-Denominator Fractional Quantum Hall State in a System with Mass Anisotropy. PHYSICAL REVIEW LETTERS 2018; 121:256601. [PMID: 30608773 DOI: 10.1103/physrevlett.121.256601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Indexed: 06/09/2023]
Abstract
The fractional quantum Hall state (FQHS) observed at a half-filled Landau level in an interacting two-dimensional electron system (2DES) is among the most exotic states of matter as its quasiparticles are expected to be Majorana excitations with non-Abelian statistics. We demonstrate here the unexpected presence of such a state in a novel 2DES with a strong band-mass anisotropy. The FQHS we observe has unusual characteristics. While its Hall resistance is well quantized at low temperatures, it exhibits highly anisotropic in-plane transport resembling compressible stripe or nematic charge-density-wave phases. More striking, the anisotropy sets in suddenly below a critical temperature, suggesting a finite-temperature phase transition. Our observations highlight how anisotropy modifies the many-body phases of a 2DES, and should further fuel the discussion surrounding the enigmatic even-denominator FQHS.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Meng K Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
42
|
Polshyn H, Zhou H, Spanton EM, Taniguchi T, Watanabe K, Young AF. Quantitative Transport Measurements of Fractional Quantum Hall Energy Gaps in Edgeless Graphene Devices. PHYSICAL REVIEW LETTERS 2018; 121:226801. [PMID: 30547606 DOI: 10.1103/physrevlett.121.226801] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Owing to their wide tunability, multiple internal degrees of freedom, and low disorder, graphene heterostructures are emerging as a promising experimental platform for fractional quantum Hall (FQH) studies. Here, we report FQH thermal activation gap measurements in dual graphite-gated monolayer graphene devices fabricated in an edgeless Corbino geometry. In devices with substrate-induced sublattice splitting, we find a tunable crossover between single- and multicomponent FQH states in the zero energy Landau level. Activation gaps in the single-component regime show excellent agreement with numerical calculations using a single broadening parameter Γ≈7.2 K. In the first excited Landau level, in contrast, FQH gaps are strongly influenced by Landau level mixing, and we observe an unexpected valley-ordered state at integer filling ν=-4.
Collapse
Affiliation(s)
- H Polshyn
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - H Zhou
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - E M Spanton
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - T Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - K Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - A F Young
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
43
|
Nam Y, Ki DK, Soler-Delgado D, Morpurgo AF. A family of finite-temperature electronic phase transitions in graphene multilayers. Science 2018; 362:324-328. [PMID: 30337406 DOI: 10.1126/science.aar6855] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Suspended Bernal-stacked graphene multilayers up to an unexpectedly large thickness exhibit a broken-symmetry ground state whose origin remains to be understood. We show that a finite-temperature second-order phase transition occurs in multilayers whose critical temperature (T c) increases from 12 kelvins (K) in bilayers to 100 K in heptalayers. A comparison of the data with a phenomenological model inspired by a mean-field approach suggests that the transition is associated with the appearance of a self-consistent valley- and spin-dependent staggered potential that changes sign from one layer to the next, appearing at T c and increasing upon cooling. The systematic evolution with thickness of several measured quantities imposes constraints on any microscopic theory aiming to analyze the nature of electronic correlations in this system.
Collapse
Affiliation(s)
- Youngwoo Nam
- Department of Quantum Matter Physics (DQMP) and Group of Applied Physics (GAP), University of Geneva, 24 Quai Ernest-Ansermet, CH1211 Genéve 4, Switzerland.,Department of Physics, Gyeongsang National University, Jinju-daero 501, Jinju-si, South Korea
| | - Dong-Keun Ki
- Department of Quantum Matter Physics (DQMP) and Group of Applied Physics (GAP), University of Geneva, 24 Quai Ernest-Ansermet, CH1211 Genéve 4, Switzerland.,Department of Physics, The University of Hong Kong, Hong Kong, China
| | - David Soler-Delgado
- Department of Quantum Matter Physics (DQMP) and Group of Applied Physics (GAP), University of Geneva, 24 Quai Ernest-Ansermet, CH1211 Genéve 4, Switzerland
| | - Alberto F Morpurgo
- Department of Quantum Matter Physics (DQMP) and Group of Applied Physics (GAP), University of Geneva, 24 Quai Ernest-Ansermet, CH1211 Genéve 4, Switzerland.
| |
Collapse
|
44
|
Yang F, Zhang Z, Wang NZ, Ye GJ, Lou W, Zhou X, Watanabe K, Taniguchi T, Chang K, Chen XH, Zhang Y. Quantum Hall Effect in Electron-Doped Black Phosphorus Field-Effect Transistors. NANO LETTERS 2018; 18:6611-6616. [PMID: 30216077 DOI: 10.1021/acs.nanolett.8b03267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The advent of black phosphorus field-effect transistors (FETs) has brought new possibilities in the study of two-dimensional (2D) electron systems. In a black phosphorus FET, the gate induces highly anisotropic 2D electron and hole gases. Although the 2D hole gas in black phosphorus has reached high carrier mobilities that led to the observation of the integer quantum Hall effect, the improvement in the sample quality of the 2D electron gas (2DEG) has however been only moderate; quantum Hall effect remained elusive. Here, we obtain high quality black phosphorus 2DEG by defining the 2DEG region with a prepatterned graphite local gate. The graphite local gate screens the impurity potential in the 2DEG. More importantly, it electrostatically defines the edge of the 2DEG, which facilitates the formation of well-defined edge channels in the quantum Hall regime. The improvements enable us to observe precisely quantized Hall plateaus in electron-doped black phosphorus FET. Magneto-transport measurements under high magnetic fields further revealed a large effective mass and an enhanced Landé g-factor, which points to strong electron-electron interaction in black phosphorus 2DEG. Such strong interaction may lead to exotic many-body quantum states in the fractional quantum Hall regime.
Collapse
Affiliation(s)
- Fangyuan Yang
- State Key Laboratory of Surface Physics and Department of Physics , Fudan University , Shanghai 200433 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China
- Institute for Nanoelectronic Devices and Quantum Computing , Fudan University , Shanghai 200433 , China
| | - Zuocheng Zhang
- State Key Laboratory of Surface Physics and Department of Physics , Fudan University , Shanghai 200433 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China
- Institute for Nanoelectronic Devices and Quantum Computing , Fudan University , Shanghai 200433 , China
| | - Nai Zhou Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Key Laboratory of Strongly Coupled Quantum Matter Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China
| | - Guo Jun Ye
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Key Laboratory of Strongly Coupled Quantum Matter Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China
| | - Wenkai Lou
- SKLSM, Institute of Semiconductors , Chinese Academy of Sciences , PO Box 912, Beijing 100083 , China
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiaoying Zhou
- SKLSM, Institute of Semiconductors , Chinese Academy of Sciences , PO Box 912, Beijing 100083 , China
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Kenji Watanabe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , 305-0044 , Japan
| | - Kai Chang
- SKLSM, Institute of Semiconductors , Chinese Academy of Sciences , PO Box 912, Beijing 100083 , China
- Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xian Hui Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Key Laboratory of Strongly Coupled Quantum Matter Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics and Department of Physics , Fudan University , Shanghai 200433 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China
- Institute for Nanoelectronic Devices and Quantum Computing , Fudan University , Shanghai 200433 , China
| |
Collapse
|
45
|
Falson J, Tabrea D, Zhang D, Sodemann I, Kozuka Y, Tsukazaki A, Kawasaki M, von Klitzing K, Smet JH. A cascade of phase transitions in an orbitally mixed half-filled Landau level. SCIENCE ADVANCES 2018; 4:eaat8742. [PMID: 30225370 PMCID: PMC6140610 DOI: 10.1126/sciadv.aat8742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Half-filled Landau levels host an emergent Fermi liquid that displays instability toward pairing, culminating in a gapped even-denominator fractional quantum Hall ground state. While this pairing may be probed by tuning the polarization of carriers in competing orbital and spin degrees of freedom, sufficiently high quality platforms offering such tunability remain few. We explore the ground states at filling factor ν = 5/2 in ZnO-based two-dimensional electron systems through a forced intersection of opposing spin branches of Landau levels taking quantum numbers N = 1 and 0. We reveal a cascade of phases with distinct magnetotransport features including a gapped phase polarized in the N = 1 level and a compressible phase in N = 0, along with an unexpected Fermi liquid, a second gapped, and a strongly anisotropic nematic-like phase at intermediate polarizations when the levels are near degeneracy. The phase diagram is produced by analyzing the proximity of the intersecting levels and highlights the excellent reproducibility and controllability that ZnO offers for exploring exotic fractionalized electronic phases.
Collapse
Affiliation(s)
- Joseph Falson
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Daniela Tabrea
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Ding Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Inti Sodemann
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Yusuke Kozuka
- Department of Applied Physics and Quantum-Phase Electronics Center, University of Tokyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Tsukazaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Masashi Kawasaki
- Department of Applied Physics and Quantum-Phase Electronics Center, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
| | - Klaus von Klitzing
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Jurgen H. Smet
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
46
|
Banszerus L, Frohn B, Epping A, Neumaier D, Watanabe K, Taniguchi T, Stampfer C. Gate-Defined Electron-Hole Double Dots in Bilayer Graphene. NANO LETTERS 2018; 18:4785-4790. [PMID: 29949375 DOI: 10.1021/acs.nanolett.8b01303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present gate-controlled single-, double-, and triple-dot operation in electrostatically gapped bilayer graphene. Thanks to the recent advancements in sample fabrication, which include the encapsulation of bilayer graphene in hexagonal boron nitride and the use of graphite gates, it has become possible to electrostatically confine carriers in bilayer graphene and to completely pinch-off current through quantum dot devices. Here, we discuss the operation and characterization of electron-hole double dots. We show a remarkable degree of control of our device, which allows the implementation of two different gate-defined electron-hole double-dot systems with very similar energy scales. In the single-dot regime, we extract excited state energies and investigate their evolution in a parallel magnetic field, which is in agreement with a Zeeman-spin-splitting expected for a g-factor of 2.
Collapse
Affiliation(s)
- L Banszerus
- JARA-FIT and 2nd Institute of Physics , RWTH Aachen University , 52074 Aachen , Germany, European Union
- Peter Grünberg Institute (PGI-9) , Forschungszentrum Jülich , 52425 Jülich , Germany, European Union
| | - B Frohn
- JARA-FIT and 2nd Institute of Physics , RWTH Aachen University , 52074 Aachen , Germany, European Union
| | - A Epping
- JARA-FIT and 2nd Institute of Physics , RWTH Aachen University , 52074 Aachen , Germany, European Union
- Peter Grünberg Institute (PGI-9) , Forschungszentrum Jülich , 52425 Jülich , Germany, European Union
| | - D Neumaier
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik , 52074 Aachen , Germany, European Union
| | - K Watanabe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , 305-0044 , Japan
| | - T Taniguchi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , 305-0044 , Japan
| | - C Stampfer
- JARA-FIT and 2nd Institute of Physics , RWTH Aachen University , 52074 Aachen , Germany, European Union
- Peter Grünberg Institute (PGI-9) , Forschungszentrum Jülich , 52425 Jülich , Germany, European Union
| |
Collapse
|
47
|
Drienovsky M, Joachimsmeyer J, Sandner A, Liu MH, Taniguchi T, Watanabe K, Richter K, Weiss D, Eroms J. Commensurability Oscillations in One-Dimensional Graphene Superlattices. PHYSICAL REVIEW LETTERS 2018; 121:026806. [PMID: 30085762 DOI: 10.1103/physrevlett.121.026806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 06/08/2023]
Abstract
We report the experimental observation of commensurability oscillations (COs) in 1D graphene superlattices. The widely tunable periodic potential modulation in hBN-encapsulated graphene is generated via the interplay of nanopatterned few-layer graphene acting as a local bottom gate and a global Si back gate. The longitudinal magnetoresistance shows pronounced COs when the sample is tuned into the unipolar transport regime. We observe up to six CO minima, providing evidence for a long mean free path despite the potential modulation. Comparison to existing theories shows that small-angle scattering is dominant in hBN/graphene/hBN heterostructures. We observe robust COs persisting to temperatures exceeding T=150 K. At high temperatures, we find deviations from the predicted T dependence, which we ascribe to electron-electron scattering.
Collapse
Affiliation(s)
- Martin Drienovsky
- Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Jonas Joachimsmeyer
- Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Andreas Sandner
- Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Ming-Hao Liu
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
- Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Klaus Richter
- Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Dieter Weiss
- Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Jonathan Eroms
- Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
48
|
Schreiber KA, Samkharadze N, Gardner GC, Lyanda-Geller Y, Manfra MJ, Pfeiffer LN, West KW, Csáthy GA. Electron-electron interactions and the paired-to-nematic quantum phase transition in the second Landau level. Nat Commun 2018; 9:2400. [PMID: 29921969 PMCID: PMC6008478 DOI: 10.1038/s41467-018-04879-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/23/2018] [Indexed: 11/12/2022] Open
Abstract
In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor ν = 5/2. At this filling factor a pressure-induced quantum phase transition was observed from the paired fractional quantum Hall state to the quantum Hall nematic. Here we show that the pressure-induced paired-to-nematic transition also develops at ν = 7/2, demonstrating therefore this transition in both spin branches of the second orbital Landau level. However, we find that pressure is not the only parameter controlling this transition. Indeed, ground states consistent with those observed under pressure also develop in a sample measured at ambient pressure, but in which the electron-electron interaction was tuned close to its value at the quantum critical point. Our experiments suggest that electron-electron interactions play a critical role in driving the paired-to-nematic transition.
Collapse
Affiliation(s)
- K A Schreiber
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - N Samkharadze
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- QuTech and Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, Netherlands
| | - G C Gardner
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Y Lyanda-Geller
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - M J Manfra
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - G A Csáthy
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
49
|
Liu X, Zhu X, Pan D. Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172370. [PMID: 30110426 PMCID: PMC6030270 DOI: 10.1098/rsos.172370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Lithium-ion batteries are widely used in various industries, such as portable electronic devices, mobile phones, new energy car batteries, etc., and show great potential for more demanding applications like electric vehicles. Among advanced anode materials applied to lithium-ion batteries, silicon-carbon anodes have been explored extensively due to their high capacity, good operation potential, environmental friendliness and high abundance. Silicon-carbon anodes have demonstrated great potential as an anode material for lithium-ion batteries because they have perfectly improved the problems that existed in silicon anodes, such as the particle pulverization, shedding and failures of electrochemical performance during lithiation and delithiation. However, there are still some problems, such as low first discharge efficiency, poor conductivity and poor cycling performance, which need to be improved. This paper mainly presents some methods for solving the existing problems of silicon-carbon anode materials through different perspectives.
Collapse
Affiliation(s)
- Xuyan Liu
- Authors for correspondence: Xuyan Liu e-mail:
| | | | - Deng Pan
- Authors for correspondence: Deng Pan e-mail:
| |
Collapse
|
50
|
Falson J, Kawasaki M. A review of the quantum Hall effects in MgZnO/ZnO heterostructures. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056501. [PMID: 29353814 DOI: 10.1088/1361-6633/aaa978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn[Formula: see text]O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility ([Formula: see text] cm2 Vs-1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.
Collapse
Affiliation(s)
- Joseph Falson
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | |
Collapse
|