1
|
Zhao J, Ren D, Xia J, Liu X, Liu X, Wang X, Xie F. Enantioselective Pd- and Cu-Catalyzed Hydrofunctionalization of Methylenecyclopropanes via a Distal C-C Bond Cleavage. Org Lett 2025. [PMID: 39875176 DOI: 10.1021/acs.orglett.4c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The enantioselective ring-opening reactions of methylenecyclopropanes (MCPs) involving C-C bond activation via oxidative addition of transition metals have been rarely reported. Here, we disclose a Pd/Cu-catalyzed enantio- and regioselective coupling between cyclic imino esters and MCPs to produce α-allylated 2H-pyrrole derivatives. In this reaction, azomethine ylide formed by a chiral copper catalyst with ketimine ester would serve as a nucleophile to react with activated MCPs via palladium catalysis. This bimetallic catalyst system exhibited a broad substrate scope and high regio- and enantioselectivities.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Deyue Ren
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jintao Xia
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, China
| | - Xiaodan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xinheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoyue Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
2
|
Haas BC, Hardy MA, Sowndarya S V S, Adams K, Coley CW, Paton RS, Sigman MS. Rapid prediction of conformationally-dependent DFT-level descriptors using graph neural networks for carboxylic acids and alkyl amines. DIGITAL DISCOVERY 2025; 4:222-233. [PMID: 39664609 PMCID: PMC11626426 DOI: 10.1039/d4dd00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Data-driven reaction discovery and development is a growing field that relies on the use of molecular descriptors to capture key information about substrates, ligands, and targets. Broad adaptation of this strategy is hindered by the associated computational cost of descriptor calculation, especially when considering conformational flexibility. Descriptor libraries can be precomputed agnostic of application to reduce the computational burden of data-driven reaction development. However, as one often applies these models to evaluate novel hypothetical structures, it would be ideal to predict the descriptors of compounds on-the-fly. Herein, we report DFT-level descriptor libraries for conformational ensembles of 8528 carboxylic acids and 8172 alkyl amines towards this goal. Employing 2D and 3D graph neural network architectures trained on these libraries culminated in the development of predictive models for molecule-level descriptors, as well as the bond- and atom-level descriptors for the conserved reactive site (carboxylic acid or amine). The predictions were confirmed to be robust for an external validation set of medicinally-relevant carboxylic acids and alkyl amines. Additionally, a retrospective study correlating the rate of amide coupling reactions demonstrated the suitability of the predicted DFT-level descriptors for downstream applications. Ultimately, these models enable high-fidelity predictions for a vast number of potential substrates, greatly increasing accessibility to the field of data-driven reaction development.
Collapse
Affiliation(s)
- Brittany C Haas
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Melissa A Hardy
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Shree Sowndarya S V
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Keir Adams
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| |
Collapse
|
3
|
Haas BC, Kalyani D, Sigman MS. Applying statistical modeling strategies to sparse datasets in synthetic chemistry. SCIENCE ADVANCES 2025; 11:eadt3013. [PMID: 39742471 DOI: 10.1126/sciadv.adt3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
The application of statistical modeling in organic chemistry is emerging as a standard practice for probing structure-activity relationships and as a predictive tool for many optimization objectives. This review is aimed as a tutorial for those entering the area of statistical modeling in chemistry. We provide case studies to highlight the considerations and approaches that can be used to successfully analyze datasets in low data regimes, a common situation encountered given the experimental demands of organic chemistry. Statistical modeling hinges on the data (what is being modeled), descriptors (how data are represented), and algorithms (how data are modeled). Herein, we focus on how various reaction outputs (e.g., yield, rate, selectivity, solubility, stability, and turnover number) and data structures (e.g., binned, heavily skewed, and distributed) influence the choice of algorithm used for constructing predictive and chemically insightful statistical models.
Collapse
Affiliation(s)
- Brittany C Haas
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Zhang X, Jia F, Guo X, Liu G. Pd-Catalyzed C(sp 2)-C(sp 3) Suzuki Coupling and Synthesis of Lumacaftor Using Designed Monophosphine Ligands. Org Lett 2024; 26:10419-10423. [PMID: 39382250 DOI: 10.1021/acs.orglett.4c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Novel monophosphine ligands L1 and L2 with a C-P ring were designed and synthesized for the efficient Pd-catalyzed C(sp2)-C(sp3) Suzuki coupling. With 0.5 mol % Pd2dba3 and 2 mol % L1, aryl halides coupled with alkylboronic acids to give the products in up to 99% yield. The aryl thianthrene salt was further applied for late-stage methylation in 97% yield. The active pharmaceutical ingredient lumacaftor was synthesized by aryl-alkyl and aryl-aryl Suzuki coupling reactions using L1 and L2.
Collapse
Affiliation(s)
- Xiangdong Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
| | - Fushun Jia
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
| | - Xu Guo
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
- Inner Mongolia Academy of Science and Technology, 2 Shandan Street, Hohhot 010010, China
| |
Collapse
|
5
|
Tâmega GS, Costa MO, de Araujo Pereira A, Barbosa Ferreira MA. Data Science Guiding Analysis of Organic Reaction Mechanism and Prediction. CHEM REC 2024; 24:e202400148. [PMID: 39499081 DOI: 10.1002/tcr.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Indexed: 11/07/2024]
Abstract
Advancements in synthetic organic chemistry are closely related to understanding substrate and catalyst reactivities through detailed mechanistic studies. Traditional mechanistic investigations are labor-intensive and rely on experimental kinetic, thermodynamic, and spectroscopic data. Linear free energy relationships (LFERs), exemplified by Hammett relationships, have long facilitated reactivity prediction despite their inherent limitations when using experimental constants or incorporating comprehensive experimental data. Data-driven modeling, which integrates cheminformatics with machine learning, offers powerful tools for predicting and interpreting mechanisms and effectively handling complex reactivities through multiparameter strategies. This review explores selected examples of data-driven strategies for investigating organic reaction mechanisms. It highlights the evolution and application of computational descriptors for mechanistic inference.
Collapse
Affiliation(s)
- Giovanna Scalli Tâmega
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Mateus Oliveira Costa
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ariel de Araujo Pereira
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | |
Collapse
|
6
|
Ruth M, Gensch T, Schreiner PR. Contrasting Historical and Physical Perspectives in Asymmetric Catalysis: ΔΔG ≠ versus Enantiomeric Excess. Angew Chem Int Ed Engl 2024; 63:e202410308. [PMID: 39405467 DOI: 10.1002/anie.202410308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 11/19/2024]
Abstract
With the rise of machine learning (ML), the modeling of chemical systems has reached a new era and has the potential to revolutionize how we understand and predict chemical reactions. Here, we probe the historic dependence on utilizing enantiomeric excess (ee) as a target variable and discuss the benefits of using relative Gibbs free activation energies (ΔΔG≠), grounded firmly in transition-state theory, emphasizing practical benefits for chemists. This perspective is intended to discuss best practices that enhance modeling efforts especially for chemists with an experimental background in asymmetric catalysis that wish to explore modelling of their data. We outline the enhanced modeling performance using ΔΔG≠, escaping physical limitations, addressing temperature effects, managing non-linear error propagation, adjusting for data distributions and how to deal with unphysical predictions,in order to streamline modeling for the practical chemist and provide simple guidelines to strong statistical tools. For this endeavor, we gathered ten datasets from the literature covering very different reaction types. We evaluated the datasets using fingerprint-, descriptor-, and graph neural network-based models. Our results highlight the distinction in performance among varying model complexities with respect to the target representation, emphasizing practical benefits for chemists.
Collapse
Affiliation(s)
- Marcel Ruth
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Present address: Red Bull GmbH, Am Brunnen 1, 5330, Fuschl am See, Austria
| | - Tobias Gensch
- Institute of Chemistry, TU Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
- Present address: CreativeQuantum GmbH, Am Studio 2, 12489, Berlin, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
7
|
Ravasco JMJM, Felicidade J, Pinto MV, Santos FMF, Campos-González R, Arteaga JF, Mehraz M, Langevin C, Fernandes A, Nguyen HC, Ng DYW, Coelho JAS, Pischel U, Gois PMP. Data-Driven Discovery of a New Fluorescent BASHY Dye for Bioimaging. JACS AU 2024; 4:4212-4222. [PMID: 39610736 PMCID: PMC11600176 DOI: 10.1021/jacsau.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Fluorescent molecules play a crucial role in biomedicine by facilitating the visualization and tracking of biological processes with sensitivity and specificity. However, tailoring their structure to meet the demands of live cell and in vivo imaging presents a significant challenge due to the intricate interplay of factors governing their structural and photophysical properties. In this study, we explored the potential of using multivariate linear free-energy relationships (mLFER) to optimize a multicomponent fluorescent platform. We prepared a small library of 20 fluorescent boronic-acid-derived salicylidenehydrazone (BASHY) complexes using a versatile reaction protocol and characterized their chemical stability in water-containing media. The obtained data served as input for the development of an mLFER model, enabling the prediction of a new BASHY dye and unraveling previously unknown mechanisms governing the stability of this unique platform of fluorescent dyes. The optimized dye was successfully employed in live cell experiments and in zebrafish larvae.
Collapse
Affiliation(s)
- João M J M Ravasco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - João Felicidade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Maria V Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Fábio M F Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - René Campos-González
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Jesús F Arteaga
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Manon Mehraz
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Christelle Langevin
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Ha-Chi Nguyen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, Universidade de Lisboa, Campo Grande, Lisbon 1749-016, Portugal
| | - Uwe Pischel
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| |
Collapse
|
8
|
Bock MJ, Denmark SE. Rapid, Homogenous, B-Alkyl Suzuki-Miyaura Cross-Coupling of Boronic Esters. J Org Chem 2024; 89:16195-16202. [PMID: 38483187 PMCID: PMC11399326 DOI: 10.1021/acs.joc.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A rapid, anhydrous Suzuki-Miyaura cross-coupling of alkylboronic esters with aryl halides is described. Parallel experimentation revealed that the combination of AntPhos, an oxaphosphole ligand, neopentyldiol alkylboronic esters, and potassium trimethylsilanolate (TMSOK) enables successful cross-coupling. In general, reactions proceed in under 1 h with good yields and high linear/branched (l/b) selectivities. Crucially, two literature examples which previously took >20 h to reach completion were accomplished in a fraction of the time with the method described herein. Mechanistic studies revealed that the reaction proceeds through a stereoretentive pathway and identified the boronic ester skeleton as a predominant pathway for deleterious protodehalogenation.
Collapse
Affiliation(s)
- Matthew J Bock
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Zhao M, Yuan H, Zhang J. Insights into the Synergistic Interplay of Ligand and Base Effects in Palladium-Catalyzed Enantioselectivity Hydrofunctionalization of Dienes. Inorg Chem 2024; 63:21031-21041. [PMID: 39436811 DOI: 10.1021/acs.inorgchem.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-catalyzed enantioselective C-O bond constructions via hydrofunctionalization involving the use of O-based nucleophiles are an important topic in synthetic chemistry. Herein, density functional theory calculations were conducted to unveil the mechanism and enantioselectivity of Pd-catalyzed asymmetric hydrofunctionalization of conjugated dienes. We found that the base-assisted 4,3-activation model of the ligand-to-ligand hydrogen transfer (LLHT) mechanism is the most preferred one among all the cases, which could be ascribed to the favorable C-H···O interactions and the electrostatic interactions. For the enantioselective C-O bond formation process, the orientation of the substrate in the chiral pocket plays a significant role in controlling the enantioselectivity by contributing different noncovalent interactions. On the basis of the distortion/interaction model and energy decomposition analysis, the distortion energy is identified as the dominant factor controlling the product chemoselectivity. BnOH acts as the substrate, proton shuttle, and stabilizer to facilitate the H-transfer process in both LLHT and the C-O bond formation process. This study provides molecular-level insights into the collaborative effect of the base and P,N-ligand to perform the catalytic activity in the asymmetric hydrofunctionalization of conjugated dienes, which might open a new avenue for designing more efficient base-assisted enantioselective hydrofunctionalization by Pd catalysis.
Collapse
Affiliation(s)
- Manzhu Zhao
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis. Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis. Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis. Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
11
|
Shan C, Liu X, Luo X, Lan Y. Theoretical study on ligand conformational self-adaptation for modulating reactivity. Sci Rep 2024; 14:24031. [PMID: 39402207 PMCID: PMC11473640 DOI: 10.1038/s41598-024-75141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
The combination of Josiphos-type ligands with Pd catalysts has been instrumental in the rapid development of efficient catalytic processes. We performed density functional theory (DFT) calculations to elucidate the mechanisms and dynamic conformational changes responsible for the reactivity and selectivity observed in Pd-catalysed bicyclization/carbonylation of 1,6-enynes. DFT calculations indicated that the most favourable reaction pathway involves an unusual alkene insertion into the carbon-palladium bond to give high level of enantioselectivity. Here, the reactivity is enhanced by the self-adaptation of the Josiphos-Pd backbone, which allows for two distinct ligand conformations with different steric environments. A half-chair conformation is preferred in migratory insertion, which is both the rate-determining step and the enantioselectivity controlling step. The less hindered steric environment of the half-chair conformation allows for rapid migratory insertion, as confirmed by Surface distance projection maps and IGM analysis. Furthermore, IGM analysis shows that the steric effect between the phenyl group in the ligand and the methyl group on the allene of the substrate is important for enantioselectivity control.
Collapse
Affiliation(s)
- Chunhui Shan
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Xiong Liu
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Xiaoling Luo
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
13
|
Wright BA, Sarpong R. Molecular complexity as a driving force for the advancement of organic synthesis. Nat Rev Chem 2024; 8:776-792. [PMID: 39251714 DOI: 10.1038/s41570-024-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
The generation of molecular complexity is a primary goal in the field of synthetic chemistry. In the context of retrosynthetic analysis, the concept of molecular complexity is central to identifying productive disconnections and the development of efficient total syntheses. However, this field-defining concept is frequently invoked on an intuitive basis without precise definition or appreciation of its subtleties. Methods for quantifying molecular complexity could prove useful for characterizing the state of synthesis in a more rigorous, reliable and reproducible fashion. As a first step to evaluating the importance of these methods to the state of the field, here we present our perspective on the development of molecular complexity quantification and its implications for chemical synthesis. The extension and application of these methods beyond computer-aided synthesis planning and medicinal chemistry to the traditional practice of 'complex molecule' synthesis could have the potential to unearth new opportunities and more efficient approaches for synthesis.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, USA.
| |
Collapse
|
14
|
Kovács B, Földes T, Szabó M, Dorkó É, Kótai B, Laczkó G, Holczbauer T, Domján A, Pápai I, Soós T. Illuminating the multiple Lewis acidity of triaryl-boranes via atropisomeric dative adducts. Chem Sci 2024:d4sc00925h. [PMID: 39257854 PMCID: PMC11382148 DOI: 10.1039/d4sc00925h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Using the principle that constrained conformational spaces can generate novel and hidden molecular properties, we challenged the commonly held perception that a single-centered Lewis acid reacting with a single-centered Lewis base always forms a single Lewis adduct. Accordingly, the emergence of single-centered but multiple Lewis acidity among sterically hindered and non-symmetric triaryl-boranes is reported. These Lewis acids feature several diastereotopic faces providing multiple binding sites at the same Lewis acid center in the interaction with Lewis bases giving rise to adducts with diastereomeric structures. We demonstrate that with a proper choice of the base, atropisomeric adduct species can be formed that interconvert via the dissociative mechanism rather than conformational isomerism. The existence of this exotic and peculiar molecular phenomenon was experimentally confirmed by the formation of atropisomeric piperidine-borane adducts using state-of-the-art NMR techniques in combination with computational methods.
Collapse
Affiliation(s)
- Benjámin Kovács
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Tamás Földes
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Márk Szabó
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Éva Dorkó
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Bianka Kótai
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Gergely Laczkó
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University P. O. Box 32 Budapest H-1518 Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Attila Domján
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Imre Pápai
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| |
Collapse
|
15
|
Tsutsui Y, Yanaka I, Takeda K, Kondo M, Takizawa S, Kojima R, Konishi A, Yasuda M. Selective recognition between aromatics and aliphatics by cage-shaped borates supported by a machine learning approach. Org Biomol Chem 2024; 22:4283-4291. [PMID: 38602393 DOI: 10.1039/d4ob00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Selective recognition between hydrocarbon moieties is a longstanding issue. Although we developed a π-pocket Lewis acid catalyst with high selectivity for aromatic aldehydes over aliphatic ones, a general strategy for catalyst design remains elusive. As an approach that transfers the molecular recognition based on multiple cooperative non-covalent interactions within the π-pocket to a rational catalyst design, herein, we demonstrate Lewis acid catalysts showing improved selectivity through the support of an ensemble algorithm with random forest, Ada Boost, and XG Boost as a machine learning (ML) approach. Using 7963 explanatory variables extracted from model hetero-Diels-Alder reactions, the ensemble algorithm predicted the chemoselectivity of unlearned catalysts. Experiments confirmed the prediction. The proposed catalyst shows the highest selective recognition, reminiscing enzymatic catalytic activity. Additionally, a SHapley Additive exPlanations (SHAP) method suggested that the selectivity originates from the polarizability and three-dimensional size of the catalyst. This insight leads to rational design guidelines for Lewis acid catalysts with dispersion forces.
Collapse
Affiliation(s)
- Yuya Tsutsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
| | - Issei Yanaka
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8561, Japan.
| | - Kazuhiro Takeda
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8561, Japan.
| | - Masaru Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | - Ryosuke Kojima
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, 606-8507, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
16
|
Pereira O, Ruth M, Gerbig D, Wende RC, Schreiner PR. Leveraging Limited Experimental Data with Machine Learning: Differentiating a Methyl from an Ethyl Group in the Corey-Bakshi-Shibata Reduction. J Am Chem Soc 2024; 146:14576-14586. [PMID: 38752849 DOI: 10.1021/jacs.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present a case study on how to improve an existing metal-free catalyst for a particularly difficult reaction, namely, the Corey-Bakshi-Shibata (CBS) reduction of butanone, which constitutes the classic and prototypical challenge of being able to differentiate a methyl from an ethyl group. As there are no known strategies on how to address this challenge, we leveraged the power of machine learning by constructing a realistic (for a typical laboratory) small, albeit high-quality, data set of about 100 reactions (run in triplicate) that we used to train a model in combination with a key-intermediate graph (of substrate and catalyst) to predict the differences in Gibbs activation energies ΔΔG‡ of the enantiomeric reaction paths. With the help of this model, we were able to select and subsequently screen a small selection of catalysts and increase the selectivity for the CBS reduction of butanone to 80% enantiomeric excess (ee), the highest possible value achieved to date for this substrate with a metal-free catalyst, thereby also exceeding the best available enzymatic systems (64% ee) and the selectivity with Corey's original catalyst (60% ee). This translates into a >50% improvement in relative ΔG‡ from 0.9 to 1.4 kcal mol-1. We underscore the transformative potential of machine learning in accelerating catalyst design because we rely on a manageable small data set and a key-intermediate graph representing a combination of catalyst and substrate graphs in lieu of a transition-state model. Our results highlight the synergy of synthetic chemistry and data-centric approaches and provide a blueprint for future catalyst optimization.
Collapse
Affiliation(s)
- Oliver Pereira
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Marcel Ruth
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Dennis Gerbig
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
17
|
Shen HC, Wang ZS, Noble A, Aggarwal VK. Simultaneous Stereoinvertive and Stereoselective C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates. J Am Chem Soc 2024; 146:13719-13726. [PMID: 38721780 PMCID: PMC11117407 DOI: 10.1021/jacs.4c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.
Collapse
Affiliation(s)
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
18
|
Xu MY, Jiang WT, Xia MZ, An ZL, Xie XY, Xiao B. Orthogonal sp 3-Ge/B Bimetallic Modules: Enantioselective Construction and Enantiospecific Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202317284. [PMID: 38342760 DOI: 10.1002/anie.202317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a series of enantioenriched sp3-Ge/B bimetallic modules were successfully synthesized via an enantioselective copper-catalyzed hydroboration of carbagermatrane (Ge)-containing alkenes. Orthogonal cross-coupling selectivity under different Pd-catalyzed conditions was achieved in an enantiospecific manner. Notably, the chiral secondary Ge exhibited a remarkable transmetallation ability prior to primary or secondary Bpin. The effectiveness of this Ge/B bimetallic strategy was further demonstrated through the development of new functional small molecules with Aggregation-Induced Emission (AIE) and Circularly Polarized Luminescence (CPL) performance. This represents the first successful example of synthesis of enantioenriched alkylgermanium reagents that permit enantiospecific cross-coupling reactions.
Collapse
Affiliation(s)
- Meng-Yu Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wei-Tao Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Zhi Xia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Long An
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiu-Ying Xie
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
19
|
Strieth-Kalthoff F, Szymkuć S, Molga K, Aspuru-Guzik A, Glorius F, Grzybowski BA. Artificial Intelligence for Retrosynthetic Planning Needs Both Data and Expert Knowledge. J Am Chem Soc 2024. [PMID: 38598363 DOI: 10.1021/jacs.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rapid advancements in artificial intelligence (AI) have enabled breakthroughs across many scientific disciplines. In organic chemistry, the challenge of planning complex multistep chemical syntheses should conceptually be well-suited for AI. Yet, the development of AI synthesis planners trained solely on reaction-example-data has stagnated and is not on par with the performance of "hybrid" algorithms combining AI with expert knowledge. This Perspective examines possible causes of these shortcomings, extending beyond the established reasoning of insufficient quantities of reaction data. Drawing attention to the intricacies and data biases that are specific to the domain of synthetic chemistry, we advocate augmenting the unique capabilities of AI with the knowledge base and the reasoning strategies of domain experts. By actively involving synthetic chemists, who are the end users of any synthesis planning software, into the development process, we envision to bridge the gap between computer algorithms and the intricate nature of chemical synthesis.
Collapse
Affiliation(s)
- Felix Strieth-Kalthoff
- University of Toronto, Department of Chemistry and Department of Computer Science, 80 St. George St., Toronto, Ontario M5S 3H6, Canada
- University of Toronto, Department of Computer Science, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Sara Szymkuć
- Allchemy, 2145 45th Street #201, Highland, Indiana 46322, United States
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Karol Molga
- Allchemy, 2145 45th Street #201, Highland, Indiana 46322, United States
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Alán Aspuru-Guzik
- University of Toronto, Department of Chemistry and Department of Computer Science, 80 St. George St., Toronto, Ontario M5S 3H6, Canada
- University of Toronto, Department of Computer Science, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave., Toronto, Ontario M5G 1M1, Canada
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College St., Toronto, Ontario M5S 3E5, Canada
- University of Toronto, Department of Materials Science and Engineering, 184 College St., Toronto, Ontario M5S 3E4, Canada
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut, Corrensstr. 36, 48149 Münster, Germany
| | - Bartosz A Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw 01-224, Poland
- IBS Center for Algorithmic and Robotized Synthesis, CARS, UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea
- Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea
| |
Collapse
|
20
|
Tcyrulnikov S, Hubbell AK, Pedro D, Reyes GP, Monfette S, Weix DJ, Hansen EC. Computationally Guided Ligand Discovery from Compound Libraries and Discovery of a New Class of Ligands for Ni-Catalyzed Cross-Electrophile Coupling of Challenging Quinoline Halides. J Am Chem Soc 2024; 146:6947-6954. [PMID: 38427582 DOI: 10.1021/jacs.3c14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Although screening technology has heavily impacted the fields of metal catalysis and drug discovery, its application to the discovery of new catalyst classes has been limited. The diversity of on- and off-cycle pathways, combined with incomplete mechanistic understanding, means that screens of potential new ligands have thus far been guided by intuitive analysis of the metal binding potential. This has resulted in the discovery of new classes of ligands, but the low hit rates have limited the use of this strategy because large screens require considerable cost and effort. Here, we demonstrate a method to identify promising screening directions via simple and scalable computational and linear regression tools that leads to a substantial improvement in hit rate, enabling the use of smaller screens to find new ligands. The application of this approach to a particular example of Ni-catalyzed cross-electrophile coupling of aryl halides with alkyl halides revealed a previously overlooked trend: reactions with more electron-poor amidine ligands result in a higher yield. Focused screens utilizing this trend were more successful than serendipity-based screening and led to the discovery of two new types of ligands, pyridyl oxadiazoles and pyridyl oximes. These ligands are especially effective for couplings of bromo- and chloroquinolines and isoquinolines, where they are now the state of the art. The simplicity of these models with parameters derived from metal-free ligand structures should make this approach scalable and widely accessible.
Collapse
Affiliation(s)
- Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dylan Pedro
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
21
|
Akana ME, Tcyrulnikov S, Akana-Schneider BD, Reyes GP, Monfette S, Sigman MS, Hansen EC, Weix DJ. Computational Methods Enable the Prediction of Improved Catalysts for Nickel-Catalyzed Cross-Electrophile Coupling. J Am Chem Soc 2024; 146:3043-3051. [PMID: 38276910 DOI: 10.1021/jacs.3c09554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cross-electrophile coupling has emerged as an attractive and efficient method for the synthesis of C(sp2)-C(sp3) bonds. These reactions are most often catalyzed by nickel complexes of nitrogenous ligands, especially 2,2'-bipyridines. Precise prediction, selection, and design of optimal ligands remains challenging, despite significant increases in reaction scope and mechanistic understanding. Molecular parameterization and statistical modeling provide a path to the development of improved bipyridine ligands that will enhance the selectivity of existing reactions and broaden the scope of electrophiles that can be coupled. Herein, we describe the generation of a computational ligand library, correlation of observed reaction outcomes with features of the ligands, and the in silico design of improved bipyridine ligands for Ni-catalyzed cross-electrophile coupling. The new nitrogen-substituted ligands display a 5-fold increase in selectivity for product formation versus homodimerization when compared to the current state of the art. This increase in selectivity and yield was general for several cross-electrophile couplings, including the challenging coupling of an aryl chloride with an N-alkylpyridinium salt.
Collapse
Affiliation(s)
- Michelle E Akana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brett D Akana-Schneider
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Bortolamiol E, Botter E, Cavarzerani E, Mauceri M, Demitri N, Rizzolio F, Visentin F, Scattolin T. Rational Design of Palladium(II) Indenyl and Allyl Complexes Bearing Phosphine and Isocyanide Ancillary Ligands with Promising Antitumor Activity. Molecules 2024; 29:345. [PMID: 38257258 PMCID: PMC10819880 DOI: 10.3390/molecules29020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Matteo Mauceri
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
23
|
Raghavan P, Haas BC, Ruos ME, Schleinitz J, Doyle AG, Reisman SE, Sigman MS, Coley CW. Dataset Design for Building Models of Chemical Reactivity. ACS CENTRAL SCIENCE 2023; 9:2196-2204. [PMID: 38161380 PMCID: PMC10755851 DOI: 10.1021/acscentsci.3c01163] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Models can codify our understanding of chemical reactivity and serve a useful purpose in the development of new synthetic processes via, for example, evaluating hypothetical reaction conditions or in silico substrate tolerance. Perhaps the most determining factor is the composition of the training data and whether it is sufficient to train a model that can make accurate predictions over the full domain of interest. Here, we discuss the design of reaction datasets in ways that are conducive to data-driven modeling, emphasizing the idea that training set diversity and model generalizability rely on the choice of molecular or reaction representation. We additionally discuss the experimental constraints associated with generating common types of chemistry datasets and how these considerations should influence dataset design and model building.
Collapse
Affiliation(s)
- Priyanka Raghavan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Brittany C. Haas
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Madeline E. Ruos
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jules Schleinitz
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Abigail G. Doyle
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sarah E. Reisman
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Waddell PM, Tian L, Scavuzzo AR, Venigalla L, Scholes GD, Carrow BP. Visible light-induced palladium-carbon bond weakening in catalytically relevant T-shaped complexes. Chem Sci 2023; 14:14217-14228. [PMID: 38098701 PMCID: PMC10717500 DOI: 10.1039/d3sc02588h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Triggering one-electron redox processes during palladium catalysis holds the potential to unlock new reaction mechanisms and synthetic methods not previously accessible in the typical two-electron reaction manifolds that dominate palladium catalysis. We report that T-shaped organopalladium(ii) complexes coordinated by a bulky monophosphine, a class of organometallic intermediate featured in a range of contemporary catalytic reactions, undergo blue light-promoted bond weakening leading to mild and efficient homolytic cleavage of strong Pd(ii)-C(sp3) bonds under ambient conditions. The origin of light-triggered radical formation in these systems, which lack an obvious ligand-based chromophore (i.e., π-systems), was investigated using a combination of DFT calculations, photoactinometry, and transient absorption spectroscopy. The available data suggest T-shaped organopalladium(ii) complexes manifest unusual blue light-accessible Pd-to-C(sp3) transition. The quantum efficiency and excited state lifetime of this process were unexpectedly superior compared to a prototypical (α-diimine)Pd(ii) complex featuring a low-lying, ligand-centered LUMO (π*). These results suggest coordinatively-unsaturated organopalladium(ii) compounds, catalysts in myriad catalytic processes, have untapped potential for one-electron reactivity under visible light excitation.
Collapse
Affiliation(s)
- Peter M Waddell
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Lei Tian
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | - Lalu Venigalla
- Department of Chemistry, University of Houston Houston TX 77204 USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Brad P Carrow
- Department of Chemistry, University of Houston Houston TX 77204 USA
| |
Collapse
|
25
|
Li B, Su S, Zhu C, Lin J, Hu X, Su L, Yu Z, Liao K, Chen H. A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data. J Cheminform 2023; 15:72. [PMID: 37568183 PMCID: PMC10422736 DOI: 10.1186/s13321-023-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/30/2023] [Indexed: 08/13/2023] Open
Abstract
In recent years, it has been seen that artificial intelligence (AI) starts to bring revolutionary changes to chemical synthesis. However, the lack of suitable ways of representing chemical reactions and the scarceness of reaction data has limited the wider application of AI to reaction prediction. Here, we introduce a novel reaction representation, GraphRXN, for reaction prediction. It utilizes a universal graph-based neural network framework to encode chemical reactions by directly taking two-dimension reaction structures as inputs. The GraphRXN model was evaluated by three publically available chemical reaction datasets and gave on-par or superior results compared with other baseline models. To further evaluate the effectiveness of GraphRXN, wet-lab experiments were carried out for the purpose of generating reaction data. GraphRXN model was then built on high-throughput experimentation data and a decent accuracy (R2 of 0.712) was obtained on our in-house data. This highlights that the GraphRXN model can be deployed in an integrated workflow which combines robotics and AI technologies for forward reaction prediction.
Collapse
Affiliation(s)
- Baiqing Li
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Shimin Su
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Chan Zhu
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Jie Lin
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Xinyue Hu
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Lebin Su
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Zhunzhun Yu
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kuangbiao Liao
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China.
| | - Hongming Chen
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
26
|
Liang H, Morken JP. Stereospecific Transformations of Alkylboronic Esters Enabled by Direct Boron-to-Zinc Transmetalation. J Am Chem Soc 2023; 145:9976-9981. [PMID: 37126565 PMCID: PMC10407644 DOI: 10.1021/jacs.3c01677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chiral secondary organoboronic esters, when activated with t-butyllithium, are shown to undergo efficient stereoretentive transmetalation with either zinc acetate or zinc chloride. This reaction provides chiral secondary alkylzinc reagents that are configurationally stable under practical experimental conditions. The organozinc compounds were found to engage in stereospecific reactions with difluorocarbene, catalytic cross-couplings with palladium-based catalysts, and trifluoromethylation with a copper(III) complex. Mechanistic and computational studies shed light on the inner workings of the transmetalation event.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
27
|
Zhang M, Lee PS, Allais C, Singer RA, Morken JP. Desymmetrization of Vicinal Bis(boronic) Esters by Enantioselective Suzuki-Miyaura Cross-Coupling Reaction. J Am Chem Soc 2023; 145:10.1021/jacs.3c01571. [PMID: 37023255 PMCID: PMC10556193 DOI: 10.1021/jacs.3c01571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The development of an enantioselective catalytic Suzuki-Miyaura reaction that applies to meso 1,2-diborylcycloalkanes is described. This reaction provides a modular route to enantiomerically enriched substituted carbocycles and heterocycles that retain a synthetically versatile boronic ester. With appropriately constructed substrates, compounds bearing additional stereogenic centers and fully substituted carbon atoms can be generated in a straightforward fashion. Preliminary mechanistic experiments suggest that substrate activation arises from the cooperative effect of vicinal boronic esters during the transmetalation step.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul S. Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert A. Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
28
|
Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen LA. Directed Asymmetric Nickel-Catalyzed Reductive 1,2-Diarylation of Electronically Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218286. [PMID: 36719253 DOI: 10.1002/anie.202218286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.
Collapse
Affiliation(s)
- Zhan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qiongyao Tang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Changyu Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sitian Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
29
|
Lukin RY, Sukhov AV, Kachmarzhik AD, Dobrynin AB, Khayarov KR, Sinyashin OG, Yakhvarov DG. Synthesis, X-ray Structure, and Catalytic Activity in the Hydrosilylation Process of Platinum Complexes Bearing Buchwald Ligands. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Ruslan Yu. Lukin
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 29/1, 420008 Kazan, Russian Federation
| | - Aleksander V. Sukhov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 29/1, 420008 Kazan, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Aleksander D. Kachmarzhik
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 29/1, 420008 Kazan, Russian Federation
| | - Alexey B. Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Khasan R. Khayarov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 29/1, 420008 Kazan, Russian Federation
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Dmitry G. Yakhvarov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 29/1, 420008 Kazan, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| |
Collapse
|
30
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
31
|
Goebel JF, Löffler J, Zeng Z, Handelmann J, Hermann A, Rodstein I, Gensch T, Gessner VH, Gooßen LJ. Computer-Driven Development of Ylide Functionalized Phosphines for Palladium-Catalyzed Hiyama Couplings. Angew Chem Int Ed Engl 2023; 62:e202216160. [PMID: 36538000 DOI: 10.1002/anie.202216160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Palladium-catalyzed couplings of silicon enolates with aryl electrophiles are of great synthetic utility, but often limited to expensive bromide substrates. A comparative experimental study confirmed that none of the established ligand systems allows to couple inexpensive aryl chlorides with α-trimethylsilyl alkylnitriles. In contrast, ylide functionalized phosphines (YPhos) led to encouraging results. A statistical model was developed that correlates the reaction yields with ligand features. It was employed to predict catalyst structures with superior performance. With this cheminformatics approach, YPhos ligands were tailored specifically to the demands of Hiyama couplings. The newly synthesized ligands displayed record-setting activities, enabling the elusive coupling of aryl chlorides with α-trimethylsilyl alkyl nitriles. The preparative utility of the catalyst system was demonstrated by the synthesis of pharmaceutically meaningful α-aryl alkylnitriles, α-arylcarbonyls and biaryls.
Collapse
Affiliation(s)
- Jonas F Goebel
- Chair of Organic Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Julian Löffler
- Chair of Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Zhongyi Zeng
- Chair of Organic Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jens Handelmann
- Chair of Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Albert Hermann
- Chair of Organic Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Ilja Rodstein
- Chair of Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Tobias Gensch
- Department of Chemistry, TU Berlin, 10623, Berlin, Germany
| | - Viktoria H Gessner
- Chair of Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Lukas J Gooßen
- Chair of Organic Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
32
|
Ohmura T. Development of Catalytic Reactions that Enable Efficient Conversions of sp<sup>3</sup> Carbon-Hydrogen and Carbon-Boron Bonds. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Toshimichi Ohmura
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| |
Collapse
|
33
|
Xu J, Grosslight S, Mack KA, Nguyen SC, Clagg K, Lim NK, Timmerman JC, Shen J, White NA, Sirois LE, Han C, Zhang H, Sigman MS, Gosselin F. Atroposelective Negishi Coupling Optimization Guided by Multivariate Linear Regression Analysis: Asymmetric Synthesis of KRAS G12C Covalent Inhibitor GDC-6036. J Am Chem Soc 2022; 144:20955-20963. [DOI: 10.1021/jacs.2c09917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Xu
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Samantha Grosslight
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kyle A. Mack
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sierra C. Nguyen
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kyle Clagg
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ngiap-Kie Lim
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jacob C. Timmerman
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeff Shen
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas A. White
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lauren E. Sirois
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chong Han
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Haiming Zhang
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
34
|
Ramachandran PV, Alawaed AA, Hamann HJ. TiCl 4-Catalyzed Hydroboration of Ketones with Ammonia Borane. J Org Chem 2022; 87:13259-13269. [PMID: 36094411 DOI: 10.1021/acs.joc.2c01744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigation of a variety of Lewis acids for the hydroboration-hydrolysis (reduction) of ketones with amine-boranes has revealed that catalytic (10 mol %) titanium tetrachloride (TiCl4) in diethyl ether at room temperature immensely accelerates the reaction of ammonia borane. The product alcohols are produced in good to excellent yields within 30 min, even with ketones which typically requires 24 h or longer to reduce under uncatalyzed conditions. Several potentially reactive functionalities are tolerated, and substituted cycloalkanones are reduced diastereoselectively to the thermodynamic product. A deuterium labeling study and 11B NMR analysis of the reaction have been performed to verify the proposed hydroboration mechanism.
Collapse
Affiliation(s)
| | - Abdulkhaliq A Alawaed
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Henry J Hamann
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
35
|
Deng H, Bengsch M, Tchorz N, Neumann CN. Sterically Controlled Late-Stage Functionalization of Bulky Phosphines. Chemistry 2022; 28:e202202074. [PMID: 35789048 PMCID: PMC9544633 DOI: 10.1002/chem.202202074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/07/2022]
Abstract
The fine-tuning of metal-phosphine-catalyzed reactions relies largely on accessing ever more precisely tuned phosphine ligands by de-novo synthesis. Late-stage C-H functionalization and diversification of commercial phosphines offers rapid access to entire libraries of derivatives based on privileged scaffolds. But existing routes, relying on phosphorus-directed transformations, only yield functionalization of Csp 2 -H bonds in a specific position relative to phosphorus. In contrast to phosphorus-directed strategies, herein we disclose an orthogonal functionalization strategy capable of introducing a range of substituents into previously inaccessible positions on arylphosphines. The strongly coordinating phosphine group acts solely as a bystander in the sterically controlled borylation of bulky phosphines, and the resulting borylated phosphines serve as the supporting ligands for palladium during diversification through phosphine self-assisted Suzuki-Miyaura reactions.
Collapse
Affiliation(s)
- Hao Deng
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Marco Bengsch
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Nico Tchorz
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Constanze N. Neumann
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
36
|
LaPorte AJ, Shi Y, Hein JE, Burke MD. Stereospecific Csp 3 Suzuki–Miyaura Cross-Coupling That Evades β-Oxygen Elimination. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio J. LaPorte
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yao Shi
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason E. Hein
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin D. Burke
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
- Arnold and Mabel Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
When machine learning meets molecular synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
39
|
Wei R, Ju S, Liu LL. Free Metallophosphines: Extremely Electron‐Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angew Chem Int Ed Engl 2022; 61:e202205618. [DOI: 10.1002/anie.202205618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Wei
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shaoying Ju
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
40
|
Roediger S, Leutenegger SU, Morandi B. Nickel-catalysed diversification of phosphine ligands by formal substitution at phosphorus. Chem Sci 2022; 13:7914-7919. [PMID: 35865908 PMCID: PMC9258342 DOI: 10.1039/d2sc02496a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
We report a diversification strategy that enables the direct substituent exchange of tertiary phosphines. Alkylated phosphonium salts, prepared by standard alkylation of phosphines, are selectively dearylated in a nickel-catalysed process to access alkylphosphine products via a formal substitution at the phosphorus center. The reaction can be used to introduce a wide range of alkyl substituents into both mono- and bisphosphines. We also show that the alkylation and dearylation steps can be conducted in a one-pot sequence, enabling accelerated access to derivatives of the parent ligand. The phosphine products of the reaction are converted in situ to air-stable borane adducts for isolation, and versatile derivatisation reactions of these adducts are demonstrated. Phosphine substituents can be exchanged by standard alkylation of a phosphine and a subsequent dearylation of the resulting phosphonium salt. A wide variety of alkyl groups can be introduced into both mono- and bidentate ligands using this method.![]()
Collapse
Affiliation(s)
- Sven Roediger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Sebastian U Leutenegger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
41
|
Xu N, Liang H, Morken JP. Copper-Catalyzed Stereospecific Transformations of Alkylboronic Esters. J Am Chem Soc 2022; 144:11546-11552. [PMID: 35735669 PMCID: PMC10436227 DOI: 10.1021/jacs.2c04037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper-catalyzed stereospecific cross-couplings of boronic esters are reported. Boron "ate" complexes derived from pinacol boronic esters and tert-butyl lithium undergo stereospecific transmetalation to copper cyanide, followed by coupling with alkynyl bromides, allyl halides, propargylic halides, β-haloenones, hydroxylamine esters, and acyl chlorides. Through this simple transformation, commercially available inexpensive compounds can be employed to convert primary and secondary alkylboronic esters to a wide array of synthetically useful compounds.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
42
|
Lustosa DM, Milo A. Mechanistic Inference from Statistical Models at Different Data-Size Regimes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danilo M. Lustosa
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
43
|
Wei J, Li M, Ding J, Dai W, Yang Q, Feng Y, Yang C, Yang W, Zheng Y, Wang MY, Ma X. Parameterization of Phosphine Ligands Modified Rh Complexes to Unravel Quantitative Structure‐Activity Relationship and Mechanistic Pathways in Hydroformylation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Wei
- Tianjin University School of Chemical Engineering and Technology Tianjin UniversitySchool of Chemical Engineering and Technology Tianjin CHINA
| | - Maoshuai Li
- Tianjin Chemical Engineering and Technology Weijin RoadNankai District 300072 Tianjin CHINA
| | - Jie Ding
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Weikang Dai
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Qi Yang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yi Feng
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Cheng Yang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Wanxin Yang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Ying Zheng
- Joint School of Tianjin University and National University of Singapore International Campus of Tianjin University CHINA
| | - Mei-Yan Wang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Xinbin Ma
- Tianjin University School of Chemical Engineering and Technology CHINA
| |
Collapse
|
44
|
Wei R, Ju S, Liu LL. Free Metallophosphines: Extremely Electron‐Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Wei
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shaoying Ju
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
45
|
Thane TA, Jarvo ER. Ligand-Based Control of Nickel Catalysts: Switching Chemoselectivity from One-Electron to Two-Electron Pathways in Competing Reactions of 4-Halotetrahydropyrans. Org Lett 2022; 24:5003-5008. [PMID: 35559652 DOI: 10.1021/acs.orglett.2c01335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of nickel-catalyzed transformations would be facilitated by an improved ability to predict which ligands promote and suppress competing mechanisms. We evaluate ligand-based modulation of catalyst preference for one- or two-electron pathways employing 4-halotetrahydropyrans as model substrates that can undergo divergent reaction pathways. Chemoselectivity for one- or two-electron oxidative addition is predicted by ligand class. Phosphine-ligated nickel catalysts favor closed-shell oxidative addition. In contrast, nitrogen-ligated nickel catalysts prefer the one-electron pathway, initiating with halogen atom transfer.
Collapse
Affiliation(s)
- Taylor A Thane
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Elizabeth R Jarvo
- Department of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
46
|
Wang H, Wu J, Noble A, Aggarwal VK. Selective Coupling of 1,2-Bis-Boronic Esters at the more Substituted Site through Visible-Light Activation of Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2022; 61:e202202061. [PMID: 35213775 PMCID: PMC9314813 DOI: 10.1002/anie.202202061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/15/2022]
Abstract
1,2-Bis-boronic esters are useful synthetic intermediates particularly as the two boronic esters can be selectively functionalized. Usually, the less hindered primary boronic ester reacts, but herein, we report a coupling reaction that enables the reversal of this selectivity. This is achieved through the formation of a boronate complex with an electron-rich aryllithium which, in the presence of an electron-deficient aryl nitrile, leads to the formation of an electron donor-acceptor complex. Following visible-light photoinduced electron transfer, a primary radical is generated which isomerizes to the more stable secondary radical before radical-radical coupling with the arene radical-anion, giving β-aryl primary boronic ester products. The reactions proceed under catalyst-free conditions. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to provide trans-substituted products, complementing the selectivity observed in the Suzuki-Miyaura reaction.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Jingjing Wu
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
- Current address: Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical EngineeringShanghai Jiaotong UniversityNo. 800, Dongchuan RoadShanghai200240China
| | - Adam Noble
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
47
|
Tang T, Friede NC, Minteer SD, Sigman MS. Comparing Halogen Atom Abstraction Kinetics for Mn(I), Fe(I), Co(I), and Ni(I) Complexes by Combining Electroanalytical and Statistical Modeling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Shelley D. Minteer
- The University of Utah Department of Chemistry 315 S 1400 E Room 2020 84112 Salt Lake City UNITED STATES
| | | |
Collapse
|
48
|
Crawford JM, Gensch T, Sigman MS, Elward JM, Steves JE. Impact of Phosphine Featurization Methods in Process Development. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jennifer M. Crawford
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tobias Gensch
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jennifer M. Elward
- Molecular Design, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Janelle E. Steves
- Chemical Development, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
49
|
Abramov YA, Sun G, Zeng Q. Emerging Landscape of Computational Modeling in Pharmaceutical Development. J Chem Inf Model 2022; 62:1160-1171. [PMID: 35226809 DOI: 10.1021/acs.jcim.1c01580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational chemistry applications have become an integral part of the drug discovery workflow over the past 35 years. However, computational modeling in support of drug development has remained a relatively uncharted territory for a significant part of both academic and industrial communities. This review considers the computational modeling workflows for three key components of drug preclinical and clinical development, namely, process chemistry, analytical research and development, as well as drug product and formulation development. An overview of the computational support for each step of the respective workflows is presented. Additionally, in context of solid form design, special consideration is given to modern physics-based virtual screening methods. This covers rational approaches to polymorph, coformer, counterion, and solvent virtual screening in support of solid form selection and design.
Collapse
Affiliation(s)
- Yuriy A Abramov
- XtalPi, Inc., 245 Main St., Cambridge, Massachusetts 02142, United States.,Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guangxu Sun
- XtalPi, Inc., Shenzhen Jingtai Technology Co., Ltd., Floor 3, Sf Industrial Plant, No. 2 Hongliu road, Fubao Community, Fubao Street, Futian District, Shenzhen 518100, China
| | - Qun Zeng
- XtalPi, Inc., Shenzhen Jingtai Technology Co., Ltd., Floor 3, Sf Industrial Plant, No. 2 Hongliu road, Fubao Community, Fubao Street, Futian District, Shenzhen 518100, China
| |
Collapse
|
50
|
Wang H, Wu J, Noble A, Aggarwal VK. Selective Coupling of 1,2‐Bis‐Boronic Esters at the more. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Wang
- Bristol University school of chemistry UNITED KINGDOM
| | - Jingjing Wu
- Bristol University school of chemistry UNITED KINGDOM
| | - Adam Noble
- Bristol University school of chemistry UNITED KINGDOM
| | | |
Collapse
|