1
|
Chen K, Li C, Dong S, Hong K, Huang J, Xu X. Gold-Catalyzed Alkyne Oxidative Cyclization/Mannich-Type Addition Cascade Reaction of Ynamides with 1,3,5-Triazinanes. J Org Chem 2024; 89:13623-13628. [PMID: 39238209 DOI: 10.1021/acs.joc.4c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, a gold-catalyzed alkyne oxidative cyclization/Mannich-type addition cascade reaction of ynamides with 1,3,5-triazinanes in the presence of a Brønsted acid has been presented. A class of functionalized fluorenes bearing a quaternary carbon center was synthesized directly with moderate to excellent yields via in situ formed α-oxo carbenes using quinoline N-oxide as the oxidant under mild reaction conditions.
Collapse
Affiliation(s)
- Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Shanliang Dong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Roper NJ, Campbell ADG, Waddell PG, Brown AK, Ermanis K, Armstrong RJ. A stereodivergent multicomponent approach for the synthesis of C-N atropisomeric peptide analogues. Chem Sci 2024:d4sc04700a. [PMID: 39323517 PMCID: PMC11418089 DOI: 10.1039/d4sc04700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
A four-component Ugi reaction is described for the stereoselective synthesis of novel C-N atropisomeric peptide analogues. Using this approach, a combination of simple, readily available starting materials (ortho-substituted anilines, aldehydes, carboxylic acids and isocyanides) could be combined to access complex products possessing both central and axial chirality in up to 92% yield and >95 : 5 d.r. Variation of the reaction temperature enabled the development of stereodivergent reactions capable of selectively targeting either diastereoisomer of a desired product from a single set of starting materials with high levels of stereocontrol. Detailed experimental and computational studies have been performed to probe the reaction mechanism and stereochemical outcome of these reactions. Preliminary studies show that novel atropisomeric scaffolds prepared using this method display inhibitory activity against M. tuberculosis with a significant difference in activity observed between different atropisomers.
Collapse
Affiliation(s)
- Natalie J Roper
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Aaron D G Campbell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Alistair K Brown
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Kristaps Ermanis
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Roly J Armstrong
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
3
|
Huang YQ, Zhou W, Retailleau P, Voituriez A. Brønsted Acid Catalyzed Asymmetric Synthesis of Cyclopentenones with C4-Quaternary Centers Starting from Vinyl Sulfoxides and Allenyl Ketones or Allenoates. Org Lett 2024; 26:6637-6641. [PMID: 39052993 DOI: 10.1021/acs.orglett.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Starting with chiral vinyl sulfoxides and allenyl ketones or allenoates, a triflic acid-catalyzed asymmetric [3,3]-sigmatropic rearrangement of sulfoniums is reported to have a direct access to highly functionalized C4-chiral cyclopentenones (19 examples, up to 85% yield and >95% enantiomeric excesses). In addition to the use of these chiral compounds as key building blocks in organic synthesis, the antiproliferative activities of sulfoxide substrates and the corresponding cyclopentenones were evaluated, and promising cytotoxicity against the HL-60 human tumor cell line was found.
Collapse
Affiliation(s)
- Ya-Qing Huang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Weiping Zhou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Zhang H, Xiao Y, Lemmerer M, Bortolato T, Maulide N. Domino Conjugate Addition-1,4-Aryl Migration for the Synthesis of α,β-Difunctionalized Amides. JACS AU 2024; 4:2456-2461. [PMID: 39055149 PMCID: PMC11267538 DOI: 10.1021/jacsau.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
A domino difunctionalization of sulfonyl(acryl)imides to form β-substituted α-aryl amides is reported. This transformation involves a 1,4-addition followed by a polar Truce-Smiles rearrangement process, entropically driven by release of SO2. A wide range of carbon- and heteroatom-based nucleophiles and sulfonyl imides were employed, allowing rapid access to highly functionalized amides. In contrast to related reactions with a radical pathway, unbiased substrates could be employed. Despite the usual requirement of an electron-poor migrating moiety for the SNAr event, we herein report unique and unprecedented vinylogous migrations of electron-neutral arenes. Additionally, a one-pot process toward β-amido amides starting from acrylic acids has been developed.
Collapse
Affiliation(s)
- Haoqi Zhang
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Christian-Doppler
Laboratory for Entropy-Oriented Drug Design, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Yi Xiao
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, Lazarettgasse
14, AKH BT 25.3, 1090 Vienna, Austria
| | - Miran Lemmerer
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Tommaso Bortolato
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Christian-Doppler
Laboratory for Entropy-Oriented Drug Design, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, Lazarettgasse
14, AKH BT 25.3, 1090 Vienna, Austria
| |
Collapse
|
5
|
Liu Y, Zhu Z, Zhang Y, Zhang Y, Liu S, Shen X. Stereoselective Synthesis of Silyl Enol Ethers with Acylsilanes and α,β-Unsaturated Ketones. Org Lett 2024; 26:5911-5916. [PMID: 38975934 DOI: 10.1021/acs.orglett.4c01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Acylsilanes are emerging bench-stable reagents for the generation of electron-rich oxycarbenes that are difficult to access with unstable diazo compounds. Herein, we report a siloxycarbene-mediated stereoselective synthesis of silyl enol ethers through visible-light-induced intermolecular reactions between acylsilanes and α,β-unsaturated ketones. Both the solvent and low temperature are important for the success of the reaction. This approach features atomic economics, exclusive stereocontrol, and broad substrate scope. The synthetic potential of this methodology is demonstrated by gram-scale reaction and various downstream transformations including that requiring configuration purity of the silyl enol ethers.
Collapse
Affiliation(s)
- Ying Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhihong Zhu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yizhi Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
6
|
Chen K, Zhou S, Li C, Dong S, Hong K, Xu X. Enantioselective Construction of Quaternary Stereocenters via A Chiral Spiro Phosphoric Acid-Assisted Formal Gold Carbene gem-Dialkylation Reaction. J Am Chem Soc 2024; 146:19261-19270. [PMID: 38950118 DOI: 10.1021/jacs.4c04540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Enantioselective construction of all-carbon quaternary stereocenters has attracted much attention over the past few decades. A variety of catalytic asymmetric methods have been disclosed based on the use of presynthesized complex reagents that impart congested steric hindrance to the reaction center, which generally produce the chiral molecules through forming one C-C bond. The use of readily available reagents that could build two C-C bonds on the same carbonic center with the concomitant assembly of quaternary stereocenters remains challenging. Herein, we disclose a catalytic asymmetric alkyne multifunctionalization reaction using a gold complex and a chiral spiro phosphoric acid (SPA) for synergistic catalysis. In this method, the readily accessible internal alkynes served as the key gold carbene precursors, followed by carbene gem-dialkylation through Mannich-type addition of enolate species or stepwise formal cycloaddition with methylenimines that are derived from 1,3,5-triazinanes in the presence of SPA. The reaction provides practical access to poly-functionalized chiral linear and cyclic ketones that bear two adjacent quaternary stereocenters in generally good yields and excellent enantioselectivities, leading to an essential complement to the asymmetric construction of quaternary stereocenters using readily available materials with high bond formation efficiency.
Collapse
Affiliation(s)
- Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Su Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Shanliang Dong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
G.-Simonian N, Spieß P, Riomet M, Maryasin B, Klose I, Beaton Garcia A, Pollesböck L, Kaldre D, Todorovic U, Minghua Liu J, Kaiser D, González L, Maulide N. Stereodivergent Synthesis of 1,4-Dicarbonyl Compounds through Sulfonium Rearrangement: Mechanistic Investigation, Stereocontrolled Access to γ-Lactones and γ-Lactams, and Total Synthesis of Paraconic Acids. J Am Chem Soc 2024; 146:13914-13923. [PMID: 38741029 PMCID: PMC11117187 DOI: 10.1021/jacs.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Although simple γ-lactones and γ-lactams have received considerable attention from the synthetic community, particularly due to their relevance in biological and medicinal contexts, stereoselective synthetic approaches to more densely substituted derivatives remain scarce. The in-depth study presented herein, showcasing a straightforward method for the stereocontrolled synthesis of γ-lactones and γ-lactams, builds on and considerably expands the stereodivergent synthesis of 1,4-dicarbonyl compounds by a ynamide/vinyl sulfoxide coupling. A full mechanistic and computational study of the rearrangement was conducted, uncovering the role of all of the reaction components and providing a rationale for stereoselection. The broad applicability of the developed tools to streamlining synthesis is demonstrated by concise enantioselective total syntheses of (+)-nephrosteranic acid, (+)-rocellaric acid, and (+)-nephromopsinic acid.
Collapse
Affiliation(s)
- Nicolas G.-Simonian
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Philipp Spieß
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Margaux Riomet
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Boris Maryasin
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Straße 17, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Alexander Beaton Garcia
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Laurin Pollesböck
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Dainis Kaldre
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Uroš Todorovic
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Julia Minghua Liu
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Straße 17, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Straße 17, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
8
|
Shen HC, Wang ZS, Noble A, Aggarwal VK. Simultaneous Stereoinvertive and Stereoselective C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates. J Am Chem Soc 2024; 146:13719-13726. [PMID: 38721780 PMCID: PMC11117407 DOI: 10.1021/jacs.4c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.
Collapse
Affiliation(s)
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
9
|
Sau S, Das KM, Mondal B, Thakur A. Cobalt(II)-Catalyzed Synthesis of γ-Diketones from Aryl Alkenes and Its Utilization in the Synthesis of Various Heterocyclic Compounds. J Org Chem 2024; 89:7095-7108. [PMID: 38701377 DOI: 10.1021/acs.joc.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An earth-abundant Co(II) salt-catalyzed mild and affordable synthetic route has been developed for the synthesis of industrially relevant 1,4-dicarbonyl compounds (or γ-diketones) via oxidative coupling between aryl alkenes and ketones (both cyclic and acyclic) using TBHP and DBU as the oxidant and base, respectively. 1,4-Dicarbonyl compounds are known to be synthesized using expensive metal catalysts, dual catalysts, or low-cost metal complexes combined with an additive or ligand template, which further needs to be synthesized. Herein, we report the synthesis of 1,4-dicarbonyl compounds using cobalt(II) acetate as a catalyst without any expensive co-catalyst or ligand templates. This methodology has a broad substrate scope with significant yields and good functional group tolerance. Generation of unsymmetrical 1,4-dicarbonyls at room temperature and its versatile synthetic expansion to produce synthetically and biologically valuable heterocyclic compounds are salient features of this novel methodology. In addition, various controlled experiments such as primary kinetic isotope effect study, Hammett analysis with variation of the nature of the substituents on the styrene ring, and theoretical calculations (density functional theory) unravel the mechanistic intricacies involved in this new, simple, and atom-economic methodology.
Collapse
Affiliation(s)
- Subham Sau
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Krishna Mohan Das
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Bijan Mondal
- Institut für Anorganische Chemie, Universität Regensburg, Universität Strasse 31, 93040 Regensburg, Germany
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
10
|
Kumar N, Bera C. Enhanced thermoelectric performance of a wide-bandgap twisted heterostructure of graphene and boron nitride. NANOSCALE 2024; 16:7951-7957. [PMID: 38546266 DOI: 10.1039/d4nr00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The manipulation of the relative twist angle between consecutive layers in two-dimensional (2D) materials dramatically modulates their electronic characteristics. Twisted bilayer graphene (tblg) and twisted boron nitride (tBN) exhibit Moiré patterns that have the potential to revolutionize various fields, from electronics to quantum materials. Here, the electronic and thermoelectric properties of 21.8° tblg and 21.8° tBN and a 21.8° twisted graphene/boron nitride (Gr/BN) heterostructure were investigated using density functional theory and Boltzmann transport theory. The twisted Gr/BN heterostructure possesses a wide band gap of 1.95 eV, which overcomes the limitations of the absence of a band gap of graphene and boron nitride's extremely wide band gap. A significant increase in thermoelectric power factor was obtained for the heterostructure compared to its parent materials, 21.8° tblg and 21.8° tBN. It has a thermal conductivity of 5.88 W m-1 K-1 at 300 K, which is much lower than those of 21.8° tblg and 21.8° tBN. It is observed that graphene plays an important role in electron transport or power factor enhancement, whereas BN helps in reducing the thermal conductivity in twisted Gr/BN systems. A strong role of boundary scattering in thermal transport compared to electrical transport was observed. A high figure of merit (ZT) of 1.28 for the twisted Gr/BN heterostructure at a ribbon width of L = 10 nm and T = 900 K was obtained. This suggests its suitability as an effective material for thermoelectric applications.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Chandan Bera
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
11
|
Gonçalves CR, Klose I, Placidi S, Kaiser D, Maulide N. Sulfonium Rearrangements Enable the Direct Preparation of Sulfenyl Imidinium Salts. Angew Chem Int Ed Engl 2024; 63:e202316579. [PMID: 38179790 DOI: 10.1002/anie.202316579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Sulfenyl imidinium salts are a virtually unexplored class of intermediates in organic chemistry. Herein, we demonstrate how sulfonium rearrangements can be deployed to access these versatile synthetic intermediates, bearing three contiguous (and congested) stereogenic centers, with high levels of selectivity. The synthetic value of the scaffold was unraveled by selective transformations into a range of building blocks, including 1,4-dicarbonyl derivatives and sulfonolactones.
Collapse
Affiliation(s)
- Carlos R Gonçalves
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Wien, Austria
| | - Immo Klose
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Wien, Austria
| | - Simone Placidi
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Wien, Austria
| | - Daniel Kaiser
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Wien, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Wien, Austria
| |
Collapse
|
12
|
Brutiu BR, Iannelli G, Riomet M, Kaiser D, Maulide N. Stereodivergent 1,3-difunctionalization of alkenes by charge relocation. Nature 2024; 626:92-97. [PMID: 38297174 PMCID: PMC10830407 DOI: 10.1038/s41586-023-06938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
Alkenes are indispensable feedstocks in chemistry. Functionalization at both carbons of the alkene-1,2-difunctionalization-is part of chemistry curricula worldwide1. Although difunctionalization at distal positions has been reported2-4, it typically relies on designer substrates featuring directing groups and/or stabilizing features, all of which determine the ultimate site of bond formation5-7. Here we introduce a method for the direct 1,3-difunctionalization of alkenes, based on a concept termed 'charge relocation', which enables stereodivergent access to 1,3-difunctionalized products of either syn- or anti-configuration from unactivated alkenes, without the need for directing groups or stabilizing features. The usefulness of the approach is demonstrated in the synthesis of the pulmonary toxin 4-ipomeanol and its derivatives.
Collapse
Affiliation(s)
- Bogdan R Brutiu
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Giulia Iannelli
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Margaux Riomet
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Daniel Kaiser
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria.
- Research Platform NeGeMac, Vienna, Austria.
| |
Collapse
|
13
|
Zhang J, Zhu W, Chen Z, Zhang Q, Guo C. Dual-Catalyzed Stereodivergent Electrooxidative Homocoupling of Benzoxazolyl Acetate. J Am Chem Soc 2024; 146:1522-1531. [PMID: 38166394 DOI: 10.1021/jacs.3c11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Peng PK, Isho A, May JA. Regio- and enantioselective synthesis of acyclic quaternary carbons via organocatalytic addition of organoborates to (Z)-Enediketones. Nat Commun 2024; 15:504. [PMID: 38218961 PMCID: PMC10787796 DOI: 10.1038/s41467-024-44744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
The chemical synthesis of molecules with closely packed atoms having their bond coordination saturated is a challenge to synthetic chemists, especially when three-dimensional control is required. The organocatalyzed asymmetric synthesis of acyclic alkenylated, alkynylated and heteroarylated quaternary carbon stereocenters via 1,4-conjugate addition is here catalyzed by 3,3´-bisperfluorotoluyl-BINOL. The highly useful products (31 examples) are produced in up to 99% yield and 97:3 er using enediketone substrates and potassium trifluoroorganoborate nucleophiles. In addition, mechanistic experiments show that the (Z)-isomer is the reactive form, ketone rotation at the site of bond formation is needed for enantioselectivity, and quaternary carbon formation is favored over tertiary. Density functional theory-based calculations show that reactivity and selectivity depend on a key n→π* donation by the unbound ketone's oxygen lone pair to the boronate-coordinated ketone in a 5-exo-trig cyclic ouroboros transition state. Transformations of the conjugate addition products to key quaternary carbon-bearing synthetic building blocks proceed in good yield.
Collapse
Affiliation(s)
- Po-Kai Peng
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Andrew Isho
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
15
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
16
|
Zhou J, Wang W, Zuo F, Liu S, Mosim Amin P, Zhong K, Bai R, Wang Y. Catalyst-Controlled Divergent Generations and Transformations of α-Carbonyl Cations from Alkynes. Angew Chem Int Ed Engl 2023; 62:e202302545. [PMID: 37856619 DOI: 10.1002/anie.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
α-Carbonyl cations are the umpolung forms of the synthetically fundamental α-carbonyl carbanions. They are highly reactive yet rarely studied and utilized species and their precursors were rather limited. Herein, we report the catalyst-controlled divergent generations of α-carbonyl cations from single alkyne functionalities and the interception of them via Wagner-Meerwein rearrangement. Two chemodivergent catalytic systems have been established, leading to two different types of α-carbonyl cations and, eventually, two different types of products, i.e. the α,β- and β,γ-unsaturated carbonyl compounds. Broad spectrum of alkynes including aryl alkyne, ynamide, alkynyl ether, and alkynyl sulfide could be utilized and the migration priorities of different groups in the Wagner-Meerwein rearrangement step was elucidated. Density functional theory calculations further supported the intermediacy of α-carbonyl cations via the N-O bond cleavage in both the two catalytic systems. Another key feature of this methodology was the fragmentation of synthetically inert tert-butyl groups into readily transformable olefin functionalities. The synthetic potential was highlighted by the scale-up reactions and the downstream diversifications including the formal synthesis of nicotlactone B and galbacin.
Collapse
Affiliation(s)
- Junrui Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Weilin Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Fenfang Zuo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Pathan Mosim Amin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
17
|
Moser D, Schmidt TA, Sparr C. Diastereodivergent Catalysis. JACS AU 2023; 3:2612-2630. [PMID: 37885579 PMCID: PMC10598570 DOI: 10.1021/jacsau.3c00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Alongside enantioselective catalysis, synthetic chemists are often confronted by the challenge of achieving catalyst control over the relative configuration to stereodivergently access desired diastereomers. Typically, these approaches iteratively or simultaneously control multiple stereogenic units for which dual catalytic methods comprising sequential, relay, and synergistic catalysis emerged as particularly efficient strategies. In this Perspective, the benefits and challenges of catalyst-controlled diastereodivergence in the construction of carbon stereocenters are discussed on the basis of illustrative examples. The concepts are then transferred to diastereodivergent catalysis for atropisomeric systems with twofold and higher-order stereogenicity as well as diastereodivergent catalyst control over E- and Z-configured alkenes.
Collapse
Affiliation(s)
| | | | - Christof Sparr
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
18
|
Palani P, Arumugam A, Raja D, Muthu K, Senadi GC. Photoredox-catalyzed 1,2-oxo-alkylation of vinyl arenes with 1,3-diketones: an approach to 1,4-dicarbonyls via C-C activation. Chem Commun (Camb) 2023; 59:11433-11436. [PMID: 37671608 DOI: 10.1039/d3cc02366d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A mild and inexpensive approach to synthesising a series of 1,4-diketones in moderate to excellent yields via 1,2-oxo alkylation has been developed using fluorescein as a photocatalyst and air as an oxidant. The key features include (i) varied substrate scope (39 examples); (ii) good functional group tolerance; (iii) unsymmetrical 1,4-dicarbonyls; (iv) late-stage functionalization of thymol and ibuprofen derivatives; and (v) the synthetic expansion to 5- and 6-membered N-, O- and S-containing heterocycles.
Collapse
Affiliation(s)
- Pushbaraj Palani
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ajithkumar Arumugam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Dineshkumar Raja
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
19
|
Fang L, Jia S, Fan S, Zhu J. Palladium-catalyzed coupling of amides and cyclopropanols for the synthesis of γ-diketones. Chem Commun (Camb) 2023; 59:10392-10395. [PMID: 37551733 DOI: 10.1039/d3cc02888g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
A palladium catalytic method has been developed for the coupling of amides and cyclopropanols to γ-diketones, through simultaneous C-N and C-C activation. Heteroatom ligand exchange and heteroatom-to-carbon ligation mode switching enable the achievement of molecular cross-coupling in an amide N-atom structural context-dependent manner, avoiding any stoichiometric organometallic reagent or base.
Collapse
Affiliation(s)
- Lili Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuqi Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuaixin Fan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Feng M, Fernandes AJ, Sirvent A, Spinozzi E, Shaaban S, Maulide N. Transfer freier Aminogruppen via α-Aminierung von Carbonylen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304990. [PMID: 38516250 PMCID: PMC10952326 DOI: 10.1002/ange.202304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 03/23/2024]
Abstract
AbstractEine Strategie zur direkten α‐Aminierung unfunktionalisierter Carbonylverbindungen wird berichtet. Unter Verwendung einer kommerziell verfügbaren Stickstoffquelle zur Übertragung der freien Aminogruppe (NH2) werden primäre α‐Aminocarbonylverbindungen unter besonders milden Bedingungen hergestellt. Die direkte Einführung einer ungeschützten, primären Aminogruppe ermöglicht in der Folge zahlreiche in situ Funktionalisierungen der erhaltenen Reaktionsprodukte, einschließlich Peptidkupplungen und Pictet–Spengler Cyclisierungen.
Collapse
Affiliation(s)
- Minghao Feng
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Anthony J. Fernandes
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| | - Ana Sirvent
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| | - Eleonora Spinozzi
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Saad Shaaban
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| |
Collapse
|
21
|
Feng M, Fernandes AJ, Sirvent A, Spinozzi E, Shaaban S, Maulide N. Free Amino Group Transfer via α-Amination of Native Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202304990. [PMID: 37114555 PMCID: PMC10952782 DOI: 10.1002/anie.202304990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 04/29/2023]
Abstract
We report herein a straightforward transfer of a free amino group (NH2 ) from a commercially available nitrogen source to unfunctionalized, native carbonyls (amides and ketones) resulting in direct α-amination. Primary α-amino carbonyls are readily produced under mild conditions, further enabling diverse in situ functionalization reactions-including peptide coupling and Pictet-Spengler cyclization-that capitalize on the presence of the unprotected primary amine.
Collapse
Affiliation(s)
- Minghao Feng
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Anthony J. Fernandes
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Eleonora Spinozzi
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Saad Shaaban
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
22
|
Fischer DM, Freis M, Amberg WM, Lindner H, Carreira EM. Organophotocatalytic carbo-heterofunctionalization of unactivated olefins with pendant nucleophiles. Chem Sci 2023; 14:7256-7261. [PMID: 37416720 PMCID: PMC10321488 DOI: 10.1039/d3sc02250a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
We report the difunctionalization of unactivated, terminal olefins through intermolecular addition of α-bromoketones, -esters, and -nitriles followed by formation of 4- to 6-membered heterocycles with pendant nucleophiles. The reaction can be conducted with alcohols, acids, and sulfonamides as nucleophiles furnishing products bearing 1,4 functional group relationships that offer various handles for further manipulation. Salient features of the transformations are the use of 0.5 mol% of a benzothiazinoquinoxaline organophotoredox catalyst and their robustness with respect to air and moisture. Mechanistic investigations are carried out and a catalytic cycle for the reaction is proposed.
Collapse
Affiliation(s)
- David M Fischer
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Manuel Freis
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Willi M Amberg
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Henry Lindner
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| |
Collapse
|
23
|
Higuchi K, Yamamoto K, Nakamura S, Naruse H, Ito M, Sugiyama S. Preparation of Alkyl Di( p-tolyl)sulfonium Salts and Their Application in Metal-Free C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formations. Org Lett 2023; 25:3766-3771. [PMID: 37167562 DOI: 10.1021/acs.orglett.3c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Alkyldiarylsulfonium salts were synthesized by a combination of active sulfonium species, prepared through the activation of diarylsulfoxide, and alkyl nucleophiles. The isolated sulfonium salts were subjected to the allylation and cyclopropanation of the active methylene compounds and metal-free C(sp3)-C(sp2) couplings via oxyallyl cation intermediates under mild conditions. The series of reactions included an umpolung strategy for the coupling of alkyl nucleophiles and metal-free C-C bond formation using sulfonium salts.
Collapse
Affiliation(s)
- Kazuhiro Higuchi
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kai Yamamoto
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shunsuke Nakamura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Haruka Naruse
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Motoki Ito
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeo Sugiyama
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
24
|
Liu ZC, Wang ZQ, Zhang X, Yin L. Copper(I)-catalyzed asymmetric alkylation of α-imino-esters. Nat Commun 2023; 14:2187. [PMID: 37069200 PMCID: PMC10110621 DOI: 10.1038/s41467-023-37967-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Asymmetric alkylation of enolates is one of the most direct and important reactions to prepare α-chiral carbonyl compounds. Except for the classical methods that rely on the use of chiral auxiliaries, asymmetric catalysis emerged as a powerful tool, especially asymmetric phase-transfer catalysis. However, in the field of transition metal catalysis, only limited success with asymmetric alkylation of enolates was achieved. Hereby, we disclose a copper(I)-catalyzed asymmetric alkylation of α-imino-esters with various alkyl halides, including allyl bromides, propargyl bromide, benzyl bromides, α-bromo carbonyl compounds, and alkyl iodides. Both linear and cyclic α-imino-esters serve as competent pronucleophiles in the alkylation, which affords α-amino acid derivatives bearing either a trisubstituted or a tetrasubstituted stereogenic carbon center in high to excellent enantioselectivity. Control experiments indicate that the α-imino-ester is activated by a chiral copper(I)-phosphine complex through coordination, thus enabling facile deprotonation to provide a stabilized copper(I)-enolate in the presence of a mild base. Finally, the mildly basic nature allows the asymmetric alkylation of chiral dipeptides with excellent both chemo- and enantioselectivities.
Collapse
Affiliation(s)
- Zong-Ci Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Zi-Qing Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Xuan Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| |
Collapse
|
25
|
Feng M, Fernandes AJ, Meyrelles R, Maulide N. Direct enantioselective α-amination of amides guided by DFT prediction of E/Z selectivity in a sulfonium intermediate. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Hu Y, Huang JY, Yan RJ, Chen ZC, Ouyang Q, Du W, Chen YC. Diastereodivergent cis- and trans-fused [4 + 2] annulations of cyclic 1,3-dienes and 1-azadienes via ligand-controlled palladium catalysis. Chem Sci 2023; 14:1896-1901. [PMID: 36819872 PMCID: PMC9931049 DOI: 10.1039/d2sc06813c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Despite the blossoming of reports of diastereodivergent synthesis over the past years, switchable control of the stereochemistry of the bridgehead atoms of the fused frameworks has been significantly underdeveloped. Here we disclose the ability of Pd0-π-Lewis base catalysis to finely reverse the concerted inverse-electron-demand aza-Diels-Alder cycloaddition reaction between cyclic 1,3-dienes and aurone-derived 1-azadienes. In contrast, the in situ-formed HOMO-energy-increased Pd0-η2-complexes of cyclic 1,3-dienes underwent a cascade vinylogous Michael addition/allylic amination process with 1-azadienes. Moreover, judicious selection of chiral ligands allowed for switchable diastereodivergent [4 + 2] annulations to be accomplished, resulting in the construction of both cis- and trans-fused tetrahydropyridine architectures in high yields with moderate to excellent stereoselectivity levels. A variety of acyclic 1,3-dienes and 1-heterodienes were also applied, and furnished a structural diversity of enantioenriched frameworks.
Collapse
Affiliation(s)
- Yuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Jin-Yu Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ru-Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical UniversityShapingbaChongqing 400038China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609.,College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
27
|
Takeshima A, Kano T. Diethylzinc-Mediated Cross-Coupling Reactions between Dibromoketones and Monobromo Carbonyl Compounds. Angew Chem Int Ed Engl 2023; 62:e202217496. [PMID: 36583678 DOI: 10.1002/anie.202217496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
A novel route to synthesize 1,4-dicarbonyl compounds is described. α,α-Dibromoketones generate zinc enolates through a diethylzinc-mediated halogen-metal exchange and react with α-bromocarbonyl compounds to furnish 1,4-dicarbonyl compounds via a second generation of zinc enolates. This cross-coupling reaction is enabled by the chemoselective formation of zinc enolates from α,α-dibromoketones in the presence of α-bromocarbonyl compounds. Chiral 1,4-dicarbonyl compounds can be obtained via the enantioselective bromination of aldehydes using a chiral secondary amine catalyst and a subsequent cross-coupling reaction between the resulting chiral α-bromoaldehydes and α,α-dibromoacetophenones.
Collapse
Affiliation(s)
- Aika Takeshima
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
28
|
Yang S, Yu X, Szostak M. Divergent Acyl and Decarbonylative Liebeskind-Srogl Cross-Coupling of Thioesters by Cu-Cofactor and Pd-NHC (NHC = N-Heterocyclic Carbene) Catalysis. ACS Catal 2023; 13:1848-1855. [PMID: 38037656 PMCID: PMC10686545 DOI: 10.1021/acscatal.2c05550] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-catalyzed cross-coupling reactions of thioesters by selective acyl C(O)-S cleavage have emerged as a powerful platform for the preparation of complex molecules. Herein, we report divergent Liebeskind-Srogl cross-coupling of thioesters by Pd-NHC (NHC = N-heterocyclic carbene) catalysis. The reaction provides straightforward access to functionalized ketones by highly selective C(acyl)-S cleavage under mild conditions. Most crucially, the conditions enable direct functionalization of a range of complex pharmaceuticals decorated with a palette of sensitive functional groups, providing attractive products for medicinal chemistry programs. Furthermore, decarbonylative Liebeskind-Srogl cross-coupling by C(acyl)-S/C(aryl)-C(O) cleavage is reported. Cu metal cofactor directs the reaction pathway to acyl or decarbonylative pathway. This reactivity is applicable to complex pharmaceuticals. The reaction represents the mildest decarbonylative Suzuki cross-coupling discovered to date. The Cu-directed divergent acyl and decarbonylative cross-coupling of thioesters opens up chemical space in complex molecule synthesis.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
29
|
Feng M, Tinelli R, Meyrelles R, González L, Maryasin B, Maulide N. Direct Synthesis of α-Amino Acid Derivatives by Hydrative Amination of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202212399. [PMID: 36222199 PMCID: PMC10098499 DOI: 10.1002/anie.202212399] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/07/2022]
Abstract
α-Amino acid derivatives are key components of the molecules of life. The synthesis of α-amino carbonyl/carboxyl compounds is a contemporary challenge in organic synthesis. Herein, we report a practical method for the preparation of α-amino acid derivatives via direct hydrative amination of activated alkynes under mild conditions, relying on sulfinamides as the nitrogen source. Computational studies suggest that the reaction is enabled by a new type of sulfonium [2,3]-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Minghao Feng
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Roberto Tinelli
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Ricardo Meyrelles
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria.,Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
30
|
Feng M, Tinelli R, Meyrelles R, González L, Maryasin B, Maulide N. Synthese von α-Aminosäurederivaten durch hydrative Aminierung von Alkinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202212399. [PMID: 38516564 PMCID: PMC10952632 DOI: 10.1002/ange.202212399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Abstractα‐Aminosäurederivate sind Kernbestandteile jeglichen Lebens. Die Synthese von α‐Aminocarbonyl/carboxyl Verbindungen ist jedoch weiterhin eine Herausforderung für die organische Synthese. In dieser Arbeit berichten wir von einer praktischen Herstellungsmethode für α‐Aminosäurederivate durch direkte hydrative Aminierung von aktivierten Alkinen mit Sulfinamiden unter milden Bedingungen. Computergestützte Untersuchungen legen nahe, dass eine [2,3]‐sigmatrope Sulfoniumumlagerung der zentrale Schritt der Reaktion ist.
Collapse
Affiliation(s)
- Minghao Feng
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Roberto Tinelli
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Vienna Doctoral School in ChemistryUniversität WienWähringer Straße 421090WienÖsterreich
| | - Ricardo Meyrelles
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
- Vienna Doctoral School in ChemistryUniversität WienWähringer Straße 421090WienÖsterreich
| | - Leticia González
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
| | - Boris Maryasin
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| |
Collapse
|
31
|
Quinodoz P, Kolleth A, Dagoneau D, Yoshimura M, Reyes Méndez L, Joigneaux M, Staiger R, Horber R, Sulzer‐Mossé S, Bekar Cesaretli A, Karadeniz Yezer U, Catak S, De Mesmaeker A. Efficient Synthesis of 9‐Aminophenanthrenes and Heterocyclic Analogues by Electrocyclization of Biaryl Keteniminium Salts. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pierre Quinodoz
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Amandine Kolleth
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Dylan Dagoneau
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Masahiko Yoshimura
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Lucía Reyes Méndez
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Mylène Joigneaux
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Roman Staiger
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Robin Horber
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Sarah Sulzer‐Mossé
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | | | | | - Saron Catak
- Bogazici University Department of Chemistry Bebek, Istanbul TR-34342 Turkey
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
32
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov OV. Decarboxylative Sulfinylation Enables a Direct, Metal-Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202210525. [PMID: 36006859 PMCID: PMC9588746 DOI: 10.1002/anie.202210525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The intermediate oxidation state of sulfoxides is central to the plethora of their applications in chemistry and medicine, yet it presents challenges for an efficient synthetic access, limiting the structural diversity of currently available sulfoxides. Here, we report a data-guided development of direct decarboxylative sulfinylation that enables the previously inaccessible functional group interconversion of carboxylic acids to sulfoxides in a reaction with sulfinates. Given the broad availability of carboxylic acids and the growing synthetic potential of sulfinates, the direct decarboxylative sulfinylation is poised to improve the structural diversity of synthetically accessible sulfoxides. The reaction is facilitated by a kinetically favored sulfoxide formation from the intermediate sulfinyl sulfones, despite the strong thermodynamic preference for the sulfone formation, unveiling the previously unknown and chemoselective radicalophilic sulfinyl sulfone reactivity.
Collapse
Affiliation(s)
- Viet D Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Samuel G Greco
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Guna B Karki
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
33
|
Kikuchi J, Maesaki K, Sasaki S, Wang W, Ito S, Yoshikai N. Stereoselective Synthesis of β-Alkoxy-β-amido Vinylbenziodoxoles via Iodo(III)etherification of Ynamides. Org Lett 2022; 24:6914-6918. [PMID: 36125122 DOI: 10.1021/acs.orglett.2c02570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A trans-iodo(III)etherification reaction of ynamides with benziodoxole triflate and alcohols is reported. Despite the sensitivity of ynamides and enamides toward Brønsted acid, the reaction could be successfully performed under carefully controlled conditions to afford β-alkoxy-β-amido vinylbenziodoxoles in moderate to good yields. The products could be subjected to a sequence of cross-coupling via C-I(III) bond cleavage and electrophilic halogenation of the resulting α-alkoxyenamides, allowing for the preparation of densely functionalized esters.
Collapse
Affiliation(s)
- Jun Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kaito Maesaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shuma Sasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Weifan Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
34
|
Chang X, Cheng X, Liu X, Fu C, Wang W, Wang C. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206517. [DOI: 10.1002/anie.202206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xue‐Tao Liu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Cong Fu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Wei‐Yi Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
35
|
Augustin AU, Di Silvio S, Marek I. Borylated Cyclopropanes as Spring-Loaded Entities: Access to Vicinal Tertiary and Quaternary Carbon Stereocenters in Acyclic Systems. J Am Chem Soc 2022; 144:16298-16302. [PMID: 36041738 PMCID: PMC9479080 DOI: 10.1021/jacs.2c07394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we present the formation of acyclic frameworks
bearing
two consecutive stereocenters of either tertiary or quaternary nature
starting from easily accessible cyclopropenes. This holistic approach
involves a regio- and diastereoselective hydro- or carboborylation
of substituted cyclopropenyl esters. Formation of boronate complexes
of the latter via the addition of nucleophiles and subsequent stereospecific
1,2-migration with carbon–carbon bond cleavage delivered the
title compounds.
Collapse
Affiliation(s)
- André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Sergio Di Silvio
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
36
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov O. Decarboxylative Sulfinylation Enables a Direct, Metal‐Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viet D. Nguyen
- The University of Texas at San Antonio Department of Chemistry 78249 San Antonio UNITED STATES
| | - Graham C. Haug
- The University of Texas at San Antonio Deoartment of Chemistry 1 utsa circle 78249 SAN ANTONIO UNITED STATES
| | - Samuel G. Greco
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Ramon Trevino
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Guna B. Karki
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Hadi D. Arman
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Oleg Larionov
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| |
Collapse
|
37
|
Moskalik MY, Astakhova VV. Triflamides and Triflimides: Synthesis and Applications. Molecules 2022; 27:5201. [PMID: 36014447 PMCID: PMC9414225 DOI: 10.3390/molecules27165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Among the variety of sulfonamides, triflamides (CF3SO2NHR, TfNHR) occupy a special position in organic chemistry. Triflamides are widely used as reagents, efficient catalysts or additives in numerous reactions. The reasons for the widespread use of these compounds are their high NH-acidity, lipophilicity, catalytic activity and specific chemical properties. Their strong electron-withdrawing properties and low nucleophilicity, combined with their high NH-acidity, makes it possible to use triflamides in a vast variety of organic reactions. This review is devoted to the synthesis and use of N-trifluoromethanesulfonyl derivatives in organic chemistry, medicine, biochemistry, catalysis and agriculture. Part of the work is a review of areas and examples of the use of bis(trifluoromethanesulfonyl)imide (triflimide, (CF3SO2)2NH, Tf2NH). Being one of the strongest NH-acids, triflimide, and especially its salts, are widely used as catalysts in cycloaddition reactions, Friedel-Crafts reactions, condensation reactions, heterocyclization and many others. Triflamides act as a source of nitrogen in C-amination (sulfonamidation) reactions, the products of which are useful building blocks in organic synthesis, catalysts and ligands in metal complex catalysis, and have found applications in medicine. The addition reactions of triflamide in the presence of oxidizing agents to alkenes and dienes are considered separately.
Collapse
Affiliation(s)
- Mikhail Y. Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | | |
Collapse
|
38
|
Zhu M, Wang P, Zhang Q, Tang W, Zi W. Diastereodivergent Aldol-Type Coupling of Alkoxyallenes with Pentafluorophenyl Esters Enabled by Synergistic Palladium/Chiral Lewis Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207621. [PMID: 35713176 DOI: 10.1002/anie.202207621] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/15/2022]
Abstract
As a fundamental and synthetically useful C-C bond formation reaction, the aldol reaction is one of the most versatile transformations in organic synthesis. However, despite extensive research on asymmetric versions of the reaction, a unified method for stereoselective access to the complementary syn and anti diastereomeric products remains to be developed. In this study, we developed a synergistic palladium/chiral Lewis base system that overcomes the inherent diastereoselectivity bias of aldol reactions and, as a result, allowed us to achieve the first diastereodivergent coupling reactions of alkoxyallenes with pentafluorophenol esters. Computational studies suggest a mechanism involving an intermolecular protonative hydropalladation pathway rather than a palladium-hydride migratory insertion pathway. The origin of the stereochemistry for this synergistic catalysis system is rationalized by DFT calculations.
Collapse
Affiliation(s)
- Minghui Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peixin Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
39
|
Liang Y, Peng B. Revisiting Aromatic Claisen Rearrangement Using Unstable Aryl Sulfonium/Iodonium Species: The Strategy of Breaking Up the Whole into Parts. Acc Chem Res 2022; 55:2103-2122. [PMID: 35861672 DOI: 10.1021/acs.accounts.2c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusSince Ludwig Claisen's discovery of the sigmatropic rearrangement of allyl aryl ethers in 1912, aromatic Claisen rearrangement has continuously attracted the attention of both experimental and theoretical chemists. Over more than a century of growth, this protocol has proven to be a practical and powerful synthetic tool in many aspects. However, the reaction scope has long been limited to aryl ethers and their S or N analogs until the serendipitous discovery of aromatic iodonium-Claisen rearrangement by Oh et al. in 1988 and the development of aromatic sulfonium-Claisen rearrangement by Kita et al. in 2004. Unlike traditional Claisen rearrangements, these hypervalent-bonding-based Claisen-type rearrangements can be performed by simply mixing electrophilically activated aryl sulfoxides/iodanes with certain nucleophiles to directly deliver rearrangement products. In addition to the simple operation, remarkable features, such as readily available substrates, valuable products and intriguing rearrangement patterns, have led to a dramatic resurgence of this rearrangement chemistry.In this Account, we summarize our recent works on developing new aromatic rearrangement modes using sulfonium/iodonium reagents. Interestingly, the program started with an accidental discovery that aryl sulfoxides could be coupled with alkyl nitriles in the presence of Tf2O and base. Mechanistic studies reveal that the reaction proceeds in three major steps, including the Tf2O-triggered assembly of both coupling partners, base-promoted deprotonation of in situ-generated aryl sulfonium-imine species leading to a key rearrangement precursor called aryl sulfonium-ketenimine species, and subsequent facile and rapid [3,3]-rearrangement. On the basis of the mechanistic underpinning, we divided the one-step operation into two steps called the "assembly/deprotonation" protocol for constructing unstable rearrangement precursors. Most notably, the switch from the commonly used one-step to mechanism-based multiple-step manipulation, which can be termed "breaking up the whole into parts", not only enables the independent control of each step of the reaction, thus significantly expanding the accessible synthetic scope, but also raises opportunities for developing new rearrangement patterns. For example, the "assembly/deprotonation" protocol has also been applied to the development of [5,5]-rearrangement of aryl sulfoxides and the asymmetric rearrangement of aryl iodanes, thus enabling the unprecedented regio- and stereocontrol of the rearrangement process. Furthermore, the "breaking up the whole into parts" thinking triggered us to merge the Morita-Baylis-Hillman (MBH) reaction into the rearrangement process to accomplish Z-selective MBH-type [3,3]-rearrangement of α,β-unsaturated nitriles and E-selective MBH-type [3,3]-rearrangement of α,β-unsaturated 2-oxazolines, which expands the scope of rearrangement partners to include α,β-unsaturated carbonyls. In addition, the impressive rapidity of the rearrangement process found in our initial discovery has also been recognized as a congestion-acceleration effect, which was further utilized to forge the rapid ortho-cyanoalkylative rearrangement of aryl iodanes, and thus leading to the first dearomatization of aryl iodanes. We anticipate that our protocols and ideas behind the methods will be complementary to the traditional thinking of the aromatic Claisen rearrangement.
Collapse
Affiliation(s)
- Yuchen Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua321004, China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua321004, China
| |
Collapse
|
40
|
Feng M, Mosiagin I, Kaiser D, Maryasin B, Maulide N. Deployment of Sulfinimines in Charge-Accelerated Sulfonium Rearrangement Enables a Surrogate Asymmetric Mannich Reaction. J Am Chem Soc 2022; 144:13044-13049. [PMID: 35839521 PMCID: PMC9374180 DOI: 10.1021/jacs.2c05368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
β-Amino acid derivatives are key structural elements in synthetic and biological chemistry. Despite being a hallmark method for their preparation, the direct Mannich reaction encounters significant challenges when carboxylic acid derivatives are employed. Indeed, not only is chemoselective enolate formation a pitfall (particularly with carboxamides), but most importantly the inability to reliably access α-tertiary amines through an enolate/ketimine coupling is an unsolved problem of this century-old reaction. Herein, we report a strategy enabling the first direct coupling of carboxamides with ketimines for the diastereo- and enantioselective synthesis of β-amino amides. This conceptually novel approach hinges on the innovative deployment of enantiopure sulfinimines in sulfonium rearrangements, and at once solves the problems of chemoselectivity, reactivity, and (relative and absolute) stereoselectivity of the Mannich process. In-depth computational studies explain the observed, unexpected (dia)stereoselectivity and showcase the key role of intramolecular interactions, including London dispersion, for the accurate description of the reaction mechanism.
Collapse
Affiliation(s)
- Minghao Feng
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Ivan Mosiagin
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria.,Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
41
|
Wang Y, Li EQ, Duan Z. Ligand-dependent, palladium-catalyzed stereodivergent synthesis of chiral tetrahydroquinolines. Chem Sci 2022; 13:8131-8136. [PMID: 35919424 PMCID: PMC9278114 DOI: 10.1039/d2sc02771b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/18/2022] [Indexed: 12/05/2022] Open
Abstract
The most fundamental tasks in asymmetric synthesis are the development of fully stereodivergent strategies to access the full complement of stereoisomers of products bearing multiple stereocenters. Although great progress has been made in the past few decades, developing general and practical strategies that allow selective generation of any diastereomer of a reaction product bearing multiple stereocentres through switching distinct chiral catalysts is a significant challenge. Here, attaining precise switching of the product stereochemistry, we develop a novel P-chirogenic ligand, i.e.YuePhos, which can be easily derived from inexpensive and commercially available starting materials in four chemical operations. Through switching of three chiral ligands, an unprecedented ligand-dependent diastereodivergent Pd-catalyzed asymmetric intermolecular [4 + 2] cycloaddition reaction of vinyl benzoxazinanone with α-arylidene succinimides was developed. This novel method provides an efficient route for the stereodivergent synthesis of six stereoisomers of pyrrolidines bearing up to three adjacent stereocenters (one quaternary center). Despite the anticipated challenges associated with controlling stereoselectivity in such a complex system, the products are obtained in enantiomeric excesses ranging up to 98% ee. In addition, the synthetic utilities of optically active hexahydrocarbazoles are also shown.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
42
|
Wang L, Lin S, Santos E, Pralat J, Spotton K, Sharma A. Boron-Promoted Deprotonative Conjugate Addition: Geminal Diborons as Soft Pronucleophiles and Acyl Anion Equivalents. J Org Chem 2022; 87:9896-9906. [PMID: 35819798 PMCID: PMC9509689 DOI: 10.1021/acs.joc.2c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conjugate addition of α-boron-stabilized carbanions is an underexplored reaction modality. Existing methods require deborylation of geminal di-/triboryl alkanes and/or the presence of additional activating groups. We report the 1,4-addition of α,α-diboryl carbanions generated via deprotonation of the corresponding geminal diborons. The methodology provided a general route to highly substituted and synthetically useful γ,γ-diboryl ketones. The development of geminal diborons as soft pronucleophiles also enabled their use as acyl anion equivalents via a one-pot tandem conjugate addition-oxidation sequence.
Collapse
Affiliation(s)
- Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Shengjia Lin
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Emmanuel Santos
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jenna Pralat
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kaylyn Spotton
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
43
|
Zhu G, Zhou J, Liu L, Li X, Zhu X, Lu X, Zhou J, Ye L. Catalyst‐Dependent Stereospecific [3,3]‐Sigmatropic Rearrangement of Sulfoxide‐Ynamides: Divergent Synthesis of Chiral Medium‐Sized
N
,
S
‐Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202204603. [DOI: 10.1002/anie.202204603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Guang‐Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ji‐Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Li‐Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jin‐Mei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
44
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring-Opening of 1,1-Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203652. [PMID: 35521738 PMCID: PMC9401570 DOI: 10.1002/anie.202203652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/15/2022]
Abstract
The diastereoselective double carbometalation reaction of cyclopropenes provides, in a single-pot operation, two ω-ene-[1,1]-bicyclopropyl ester derivatives. One regioisomer then undergoes a Pd-catalyzed addition of aryl iodide to provide skipped dienes possessing several distant stereocenters including two congested quaternary carbon centers with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yogesh Siddaraju
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Juliette Sabbatani
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Anthony Cohen
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| |
Collapse
|
45
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
46
|
Zhu M, Wang P, Zhang Q, Tang W, Zi W. Diastereodivergent Aldol‐Type Coupling of Alkoxyallenes with Pentafluorophenyl Esters Enabled by Synergistic Palladium/Chiral Lewis Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minghui Zhu
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Peixin Wang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Qinglong Zhang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry 94 Weijin Road 300071 Tianjin CHINA
| | - Wenjun Tang
- Chinese Academy of Sciences Shanghai Institute of Organic Chemistry State Key Laboratory of Bio-Organic and Natural Products Chemistry CHINA
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry Chemistry Department of Nankai University 94 Weijin Rd. 300071 Tianjin CHINA
| |
Collapse
|
47
|
Zhu G, Zhou J, Liu L, Li X, Zhu X, Lu X, Zhou J, Ye L. Catalyst‐Dependent Stereospecific [3,3]‐Sigmatropic Rearrangement of Sulfoxide‐Ynamides: Divergent Synthesis of Chiral Medium‐Sized
N
,
S
‐Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guang‐Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ji‐Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Li‐Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jin‐Mei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
48
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring‐Opening of 1,1‐Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Anthony Cohen
- Technion Israel Institute of Technology Chemistry ISRAEL
| | - Ilan Marek
- Technion - Israel Institute of Technology Schulich Faculty of Chemistry Technion City 32000 Haifa ISRAEL
| |
Collapse
|
49
|
Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction. Chem Sci 2022; 13:4801-4812. [PMID: 35655885 PMCID: PMC9067570 DOI: 10.1039/d1sc07271d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 12/20/2022] Open
Abstract
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
Collapse
Affiliation(s)
- Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
50
|
Mutra MR, Wang JJ. Photoinduced ynamide structural reshuffling and functionalization. Nat Commun 2022; 13:2345. [PMID: 35487916 PMCID: PMC9055057 DOI: 10.1038/s41467-022-30001-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
The radical chemistry of ynamides has recently drawn the attention of synthetic organic chemists to the construction of various N-heterocyclic compounds. Nevertheless, the ynamide-radical chemistry remains a long-standing challenge for chemists due to its high reactivity, undesirable byproducts, severe inherent regio- and chemoselective problems. Importantly, the ynamide C(sp)-N bond fission remains an unsolved challenge. In this paper, we observe Photoinduced radical trigger regio- and chemoselective ynamide bond fission, structural reshuffling and functionalization of 2-alkynyl-ynamides to prepare synthetically inaccessible/challenging chalcogen-substituted indole derivatives with excellent step/atom economy. The key breakthroughs of this work includes, ynamide bond cleavage, divergent radical precursors, broad scope, easy to handle, larger-scale reactions, generation of multiple bonds (N-C(sp2), C(sp2)-C(sp2), C(sp2)-SO2R/C-SR, and C-I/C-Se/C-H) in a few minutes without photocatalysts, metals, oxidants, additives. Control experiments and 13C-labeling experiments supporting the conclusion that sulfone radicals contribute to ynamide structural reshuffling processes via a radical pathway. Although ynamides have emerged as a versatile class of compounds for organic synthesis, the radical chemistry of ynamides usually proceeds with the expected connectivity largely intact. Here the authors show a methodology by which the C(sp)–N bond undergoes scission, alkyne migration and functionalization under blue LED light in the absence of metals or additives.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| |
Collapse
|