1
|
Blaney DL, Hibbitts K, Diniega S, Davies AG, Clark RN, Green RO, Hedman M, Langevin Y, Lunine J, McCord TB, Murchie S, Paranicas C, Seelos F, Soderblom JM, Cable ML, Eckert R, Thompson DR, Trumbo SK, Bruce C, Lundeen SR, Bender HA, Helmlinger MC, Moore LB, Mouroulis P, Small Z, Tang H, Van Gorp B, Sullivan PW, Zareh S, Rodriquez JI, McKinley I, Hahn DV, Bowers M, Hourani R, Bryce BA, Nuding D, Bailey Z, Rettura A, Zarate ED. The Mapping Imaging Spectrometer for Europa (MISE). SPACE SCIENCE REVIEWS 2024; 220:80. [PMID: 39398102 PMCID: PMC11464581 DOI: 10.1007/s11214-024-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/25/2024] [Indexed: 10/15/2024]
Abstract
The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to "understand the habitability of Europa's ocean through composition and chemistry" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to "explore Europa to investigate its habitability." MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.
Collapse
Affiliation(s)
- Diana L. Blaney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Karl Hibbitts
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Serina Diniega
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Robert O. Green
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | | | | | - Scott Murchie
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Chris Paranicas
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Frank Seelos
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | | | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Regina Eckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - David R. Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Carl Bruce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Sarah R. Lundeen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Holly A. Bender
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mark C. Helmlinger
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lori B. Moore
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Pantazis Mouroulis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Zachary Small
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Hong Tang
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Byron Van Gorp
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Peter W. Sullivan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Shannon Zareh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Jose I. Rodriquez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Ian McKinley
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Daniel V. Hahn
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Matthew Bowers
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Ramsey Hourani
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Brian A. Bryce
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Danielle Nuding
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Zachery Bailey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Alessandro Rettura
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Evan D. Zarate
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
2
|
Yoshimura T, Araoka D, Naraoka H, Sakai S, Ogawa NO, Yurimoto H, Morita M, Onose M, Yokoyama T, Bizzarro M, Tanaka S, Ohkouchi N, Koga T, Dworkin JP, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y, Tachibana S, Takano Y. Breunnerite grain and magnesium isotope chemistry reveal cation partitioning during aqueous alteration of asteroid Ryugu. Nat Commun 2024; 15:6809. [PMID: 39237539 PMCID: PMC11377773 DOI: 10.1038/s41467-024-50814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Returned samples from the carbonaceous asteroid (162173) Ryugu provide pristine information on the original aqueous alteration history of the Solar System. Secondary precipitates, such as carbonates and phyllosilicates, reveal elemental partitioning of the major component ions linked to the primordial brine composition of the asteroid. Here, we report on the elemental partitioning and Mg isotopic composition (25Mg/24Mg) of breunnerite [(Mg, Fe, Mn)CO3] from the Ryugu C0002 sample and the A0106 and C0107 aggregates by sequential leaching extraction of salts, exchangeable ions, carbonates, and silicates. Breunnerite was the sample most enriched in light Mg isotopes, and the 25Mg/24Mg value of the fluid had shifted lower by ~0.38‰ than the initial value (set to 0‰) before dolomite precipitation. As a simple model, the Mg2+ first precipitated in phyllosilicates, followed by dolomite precipitation, at which time ~76-87% of Mg2+ had been removed from the primordial brine. A minor amount of phyllosilicate precipitation continued after dolomite precipitation. The element composition profiles of the latest solution that interacted with the cation exchange pool of Ryugu were predominantly Na-rich. Na+ acts as a bulk electrolyte and contributes to the stabilization of the negative surface charge of phyllosilicates and organic matter on Ryugu.
Collapse
Affiliation(s)
- Toshihiro Yoshimura
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Daisuke Araoka
- Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Saburo Sakai
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hisayoshi Yurimoto
- Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Mayu Morita
- HORIBA Techno Service Co., Ltd., Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Morihiko Onose
- HORIBA Techno Service Co., Ltd., Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Tetsuya Yokoyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8551, Japan
| | - Martin Bizzarro
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, K 1350, Denmark
| | - Satoru Tanaka
- HORIBA Techno Service Co., Ltd., Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Toshiki Koga
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, 980-8678, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Earth and Planetary Systems Science Program, Hiroshima University, Higashi Hiroshima, 739-8526, Japan
| | - Kanako Sakamoto
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Toru Yada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masahiro Nishimura
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Aiko Nakato
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Akiko Miyazaki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Kasumi Yogata
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masanao Abe
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tatsuaki Okada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tomohiro Usui
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Takanao Saiki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Satoshi Tanaka
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Sei-Ichiro Watanabe
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Shogo Tachibana
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
- UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
| |
Collapse
|
3
|
Takir D, Emery JP, Bottke WF, Arredondo A. Origin of asteroid (101955) Bennu and its connection to the New Polana family. Sci Rep 2024; 14:15965. [PMID: 38987360 PMCID: PMC11236983 DOI: 10.1038/s41598-024-66237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
The asteroid (142) Polana is classified as a B-type asteroid located in the inner Main Belt. This asteroid is the parent of the New Polana family, which has been proposed to be the likely source of primitive near-Earth asteroids such as the B-type asteroid (101955) Bennu. To investigate the compositional correlation between Polana and Bennu at the 3 µm band and their aqueous alteration histories, we analyzed the spectra of Polana in the ~ 2.0-4.0 µm spectral range using the NASA Infrared Telescope Facility in Hawai'i. Our findings indicate that Polana does not exhibit discernable 3 µm hydrated mineral absorption (within 2σ), which is in contrast to asteroid Bennu. Bennu displayed a significant 3 µm absorption feature similar to CM- and CI-type carbonaceous chondrites. This suggests two possibilities: either Bennu did not originate from the New Polana family parented by asteroid Polana or the interior of Bennu's parent body was not homogenous, with diverse levels of aqueous alteration. Several explanations support the latter possibility, including heating due to shock waves and pressure, which could have caused the current dehydrated state of Bennu's parent body.
Collapse
Affiliation(s)
- Driss Takir
- Jacobs, NASA Johnson Space Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
4
|
Takano Y, Naraoka H, Dworkin JP, Koga T, Sasaki K, Sato H, Oba Y, Ogawa NO, Yoshimura T, Hamase K, Ohkouchi N, Parker ET, Aponte JC, Glavin DP, Furukawa Y, Aoki J, Kano K, Nomura SIM, Orthous-Daunay FR, Schmitt-Kopplin P, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y, Tachibana S. Primordial aqueous alteration recorded in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu. Nat Commun 2024; 15:5708. [PMID: 38987536 PMCID: PMC11237059 DOI: 10.1038/s41467-024-49237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million). A wide variety of structural isomers, including α- and β-hydroxy acids, are observed among the hydrophilic molecules. We also identify pyruvic acid and dihydroxy and tricarboxylic acids, which are biochemically important intermediates relevant to molecular evolution, such as the primordial TCA (tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu samples underwent substantial aqueous alteration, as revealed by the presence of malonic acid during keto-enol tautomerism in the dicarboxylic acid profile. The comprehensive data suggest the presence of a series for water-soluble organic molecules in the regolith of Ryugu and evidence of signatures in coevolutionary aqueous alteration between water and organics in this carbonaceous asteroid.
Collapse
Affiliation(s)
- Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan.
- Institute for Advanced Biosciences (IAB), Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Toshiki Koga
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Kazunori Sasaki
- Institute for Advanced Biosciences (IAB), Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Human Metabolome Technologies Inc., Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hajime Sato
- Human Metabolome Technologies Inc., Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Yasuhiro Oba
- Institute of Low Temperature Science (ILTS), Hokkaido University, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Toshihiro Yoshimura
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-0054, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Yoshihiro Furukawa
- Department of Earth Material Science, Tohoku University, Sendai, 980-8578, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Shin-Ichiro M Nomura
- Department of Robotics Graduate school of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Francois-Regis Orthous-Daunay
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Centre National d'Etudes Spatiales, L'Institut de Planétologie et d'Astrophysique de Grenoble, 38000, Grenoble, France
| | - Philippe Schmitt-Kopplin
- Technische Universitӓt München, Analytische Lebensmittel Chemie, 85354, Freising, Germany
- Max Planck Institute for Extraterrestrial Physics, 85748, Garching bei München, Germany
- Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Hisayoshi Yurimoto
- Department of Earth and Planetary Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoki Nakamura
- Department of Earth Material Science, Tohoku University, Sendai, 980-8578, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Kanako Sakamoto
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Toru Yada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Sei-Ichiro Watanabe
- Department of Earth and Environment Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Shogo Tachibana
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
- UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Yoshimura T, Takano Y, Naraoka H, Koga T, Araoka D, Ogawa NO, Schmitt-Kopplin P, Hertkorn N, Oba Y, Dworkin JP, Aponte JC, Yoshikawa T, Tanaka S, Ohkouchi N, Hashiguchi M, McLain H, Parker ET, Sakai S, Yamaguchi M, Suzuki T, Yokoyama T, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y, Tachibana S. Chemical evolution of primordial salts and organic sulfur molecules in the asteroid 162173 Ryugu. Nat Commun 2023; 14:5284. [PMID: 37723151 PMCID: PMC10507048 DOI: 10.1038/s41467-023-40871-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023] Open
Abstract
Samples from the carbonaceous asteroid (162173) Ryugu provide information on the chemical evolution of organic molecules in the early solar system. Here we show the element partitioning of the major component ions by sequential extractions of salts, carbonates, and phyllosilicate-bearing fractions to reveal primordial brine composition of the primitive asteroid. Sodium is the dominant electrolyte of the salt fraction extract. Anions and NH4+ are more abundant in the salt fraction than in the carbonate and phyllosilicate fractions, with molar concentrations in the order SO42- > Cl- > S2O32- > NO3- > NH4+. The salt fraction extracts contain anionic soluble sulfur-bearing species such as Sn-polythionic acids (n < 6), Cn-alkylsulfonates, alkylthiosulfonates, hydroxyalkylsulfonates, and hydroxyalkylthiosulfonates (n < 7). The sulfur-bearing soluble compounds may have driven the molecular evolution of prebiotic organic material transforming simple organic molecules into hydrophilic, amphiphilic, and refractory S allotropes.
Collapse
Affiliation(s)
- Toshihiro Yoshimura
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshiki Koga
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Daisuke Araoka
- Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Technische Universität München, Analytische Lebensmittel Chemie, Maximus-von-Forum 2, 85354, Freising, Germany
| | - Norbert Hertkorn
- Helmholtz Zentrum München, Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Yasuhiro Oba
- Institute of Low Temperature Science (ILTS), Hokkaido University, N19W8 Kita-ku, Sapporo, 060-0189, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Takaaki Yoshikawa
- HORIBA Advanced Techno, Co., Ltd., Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Satoru Tanaka
- HORIBA Techno Service Co., Ltd. Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Minako Hashiguchi
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hannah McLain
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Saburo Sakai
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Mihoko Yamaguchi
- Thermo Fisher Scientific Inc., 3-9 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Takahiro Suzuki
- Thermo Fisher Scientific Inc., 3-9 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Tetsuya Yokoyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8551, Japan
| | - Hisayoshi Yurimoto
- Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, 980-8678, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Earth and Planetary Systems Science Program, Hiroshima University, Higashi Hiroshima, 739-8526, Japan
| | - Kanako Sakamoto
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Toru Yada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masahiro Nishimura
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Aiko Nakato
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Akiko Miyazaki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Kasumi Yogata
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masanao Abe
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tatsuaki Okada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tomohiro Usui
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Takanao Saiki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Satoshi Tanaka
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Sei-Ichiro Watanabe
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Shogo Tachibana
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
- UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Urashima SH, Morita M, Komatani S, Yui H. Non-destructive estimation of the cation composition of natural carbonates by micro-Raman spectroscopy. Anal Chim Acta 2023; 1242:340798. [PMID: 36657892 DOI: 10.1016/j.aca.2023.340798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Carbonates play a crucial role in the water and carbon cycles of both geochemical and cosmochemical environments. As carbonates do not exist homogeneously with other minerals in rocks and sands of various sizes, an analytical method that simultaneously satisfies non-destructivity and high spatial resolution has been desired. Further, the ability of semi-quantitative analysis with carbonates-selectivity and without any pre-treatments is added, for its applicability would be extended to remote sensing for deep sea and outer spaces. Here, we focused on the application of micro-Raman spectroscopy, where the vibrational wavenumbers of the translational (T) and librational (L) modes of carbonates are sensitively related to their cation composition. By comparing the semi-quantitative information obtained by X-ray fluorescence spectroscopy, it was found that these vibrational wavenumbers are approximately linearly related to the cation composition. Consequently, a conversion matrix was proposed to estimate the cation composition from the T and L mode vibrational wavenumbers. This method is universally applicable to any cation composition in carbonates, with no background information on the analyte required. To improve the accuracy, conversion matrices were further optimized to three solid-solution series of carbonates. It is worth noting that the proposed conversion matrices are free from matrix effects and do not depend on the total amount of carbonate in a sample. Therefore, the proposed method provides a useful analytical basis for remote sensing of the cation composition of carbonates, both in terrestrial and extra-terrestrial environments.
Collapse
Affiliation(s)
- Shu-Hei Urashima
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan; Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
| | - Mayu Morita
- HORIBA Techno Service Co., Ltd., 2 Miyanohigashi-cho, Kisshoin Minami-ku, Kyoto, 601-8305, Japan.
| | - Shintaro Komatani
- HORIBA Techno Service Co., Ltd., 2 Miyanohigashi-cho, Kisshoin Minami-ku, Kyoto, 601-8305, Japan.
| | - Hiroharu Yui
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan; Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
| |
Collapse
|
7
|
Lauretta DS, Adam CD, Allen AJ, Ballouz RL, Barnouin OS, Becker KJ, Becker T, Bennett CA, Bierhaus EB, Bos BJ, Burns RD, Campins H, Cho Y, Christensen PR, Church ECA, Clark BE, Connolly HC, Daly MG, DellaGiustina DN, Drouet d’Aubigny CY, Emery JP, Enos HL, Freund Kasper S, Garvin JB, Getzandanner K, Golish DR, Hamilton VE, Hergenrother CW, Kaplan HH, Keller LP, Lessac-Chenen EJ, Liounis AJ, Ma H, McCarthy LK, Miller BD, Moreau MC, Morota T, Nelson DS, Nolau JO, Olds R, Pajola M, Pelgrift JY, Polit AT, Ravine MA, Reuter DC, Rizk B, Rozitis B, Ryan AJ, Sahr EM, Sakatani N, Seabrook JA, Selznick SH, Skeen MA, Simon AA, Sugita S, Walsh KJ, Westermann MM, Wolner CWV, Yumoto K. Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu. Science 2022; 377:285-291. [DOI: 10.1126/science.abm1018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Carbonaceous asteroids, such as (101955) Bennu, preserve material from the early Solar System, including volatile compounds and organic molecules. We report spacecraft imaging and spectral data collected during and after retrieval of a sample from Bennu’s surface. The sampling event mobilized rocks and dust into a debris plume, excavating a 9-m-long elliptical crater. This exposed material that is darker, spectrally redder, and more abundant in fine particulates than the original surface. The bulk density of the displaced subsurface material was 500–700 kg per cubic meter, about half that of the whole asteroid. Particulates that landed on instrument optics spectrally resemble aqueously altered carbonaceous meteorites. The spacecraft stored 250 ± 101 g of material, which will be delivered to Earth in 2023.
Collapse
Affiliation(s)
- D. S. Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - A. J. Allen
- Physics Department, University of Central Florida, Orlando, FL, USA
| | - R.-L. Ballouz
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - O. S. Barnouin
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - K. J. Becker
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - T. Becker
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - C. A. Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - B. J. Bos
- Goddard Space Flight Center, Greenbelt, MD, USA
| | - R. D. Burns
- Goddard Space Flight Center, Greenbelt, MD, USA
| | - H. Campins
- Physics Department, University of Central Florida, Orlando, FL, USA
| | - Y. Cho
- Department of Earth and Planetary Environmental Science, University of Tokyo, Tokyo, Japan
| | - P. R. Christensen
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | | | - B. E. Clark
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - H. C. Connolly
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
- Department of Geology, Rowan University, Glassboro, NJ, USA
| | - M. G. Daly
- Department of Earth and Space Science and Engineering, York University, Toronto, ON, Canada
| | | | | | - J. P. Emery
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, USA
| | - H. L. Enos
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | | | | | - D. R. Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | - H. Ma
- Lockheed Martin Space, Littleton, CO, USA
| | | | | | | | - T. Morota
- Department of Earth and Planetary Environmental Science, University of Tokyo, Tokyo, Japan
| | | | - J. O. Nolau
- Physics Department, University of Central Florida, Orlando, FL, USA
| | - R. Olds
- Lockheed Martin Space, Littleton, CO, USA
| | - M. Pajola
- INAF (Italian National Institute for Astrophysics) – Astronomical Observatory of Padova, Padova, Italy
| | | | - A. T. Polit
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | | | - B. Rizk
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - B. Rozitis
- School of Physical Sciences, Open University, Milton Keynes, UK
| | - A. J. Ryan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - N. Sakatani
- Department of Physics, Rikkyo University, Tokyo, Japan
| | - J. A. Seabrook
- Department of Earth and Space Science and Engineering, York University, Toronto, ON, Canada
| | - S. H. Selznick
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - A. A. Simon
- Goddard Space Flight Center, Greenbelt, MD, USA
| | - S. Sugita
- Department of Earth and Planetary Environmental Science, University of Tokyo, Tokyo, Japan
| | - K. J. Walsh
- Southwest Research Institute, Boulder, CO, USA
| | - M. M. Westermann
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - C. W. V. Wolner
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - K. Yumoto
- Department of Earth and Planetary Environmental Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Urashima SH, Nishioka T, Yui H. Micro-Raman spectroscopic analysis on natural carbonates: linear relations found via biaxial plotting of peak frequencies for cation substituted species. ANAL SCI 2022; 38:921-929. [PMID: 35583804 PMCID: PMC9206923 DOI: 10.1007/s44211-022-00119-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Carbonates are ubiquitous minerals carrying important information on aqueous environments where they precipitated on the Earth and space. While their ideal chemical formulae are denoted as simple as MCO3 or M1M2(CO3)2 (M: metal cations), natural carbonates generally form solid-solution series and their compositions deviate from the ideal formulae. Since their cation composition due to the substitution provides a sensitive indicator for chemical and thermodynamic environments of aqueous solutions where they precipitated, their composition analysis has been widely carried out from the environmental/geochemical/astrochemical aspects. However, in widely used back-scattered electron and energy dispersion X-Ray analyses, samples should be generally sliced and/or their surface be polished prior to the measurements. For analyzing rare samples with small sizes, such as ones sampled from deep-sea and/or meteorites and asteroids, a non-destructive method without any pretreatments has been strongly desired. Here, a novel analytical method for discriminating various carbonates with Raman micro-spectroscopy is demonstrated, showing that the biaxial plot of the peak frequencies of their lattice modes linearly moves upon partial substitution of the cations. The cation substitution leads to linear movement in the biaxial map, and the slopes of the movement were different for Mg2+-Fe2+ and Mn2+-Fe2+ substitutions. This finding suggests that the micro-Raman analysis would be a non-destructive analytical method for evaluating the relative amount of Mg2+, Fe2+, and Mn2+ in dolomite-ankerite-kutnohorite solid-solution series, as well as Mg2+/Fe2+ ratio for magnesite-breunnerite-siderite. It would be helpful for analyzing the present and past terrestrial and cosmochemical environments.
Collapse
Affiliation(s)
- Shu-Hei Urashima
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Tomoya Nishioka
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Hiroharu Yui
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
| |
Collapse
|
9
|
Golish DR, Simon AA, Reuter DC, Ferrone S, Clark BE, Li JY, DellaGiustina DN, Drouet d’Aubigny C, Rizk B, Lauretta DS. Cross-Instrument Comparison of MapCam and OVIRS on OSIRIS-REx. SPACE SCIENCE REVIEWS 2022; 218:5. [PMID: 35250103 PMCID: PMC8885487 DOI: 10.1007/s11214-022-00873-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Two of the instruments onboard the OSIRIS-REx spacecraft, the MapCam color imager and the OVIRS visible and infrared spectrometer, observed the surface of asteroid (101955) Bennu in partially overlapping wavelengths. Significant scientific advances have been enabled by using data from these two instruments in tandem, but a robust statistical understanding of their relationship is needed for future analyses to cross-compare their data as accurately and sensitively as possible. Here we present a cross-instrument comparison of data acquired by MapCam and OVIRS, including methods and results for all global and site-specific observation campaigns in which both instruments were active. In our analysis, we consider both the absolute radiometric offset and the relative (normalized) variation between the two instruments; we find that both depend strongly on the photometric and instrumental conditions during the observation. The two instruments have a large absolute offset (>15%) due to their independent radiometric calibrations. However, they are very consistent (relative offset as low as 1%) when each instrument's response is normalized at a single wavelength, particularly at low phase angles where shadows on Bennu's rough surface are minimized. We recommend using the global datasets acquired at 12:30 pm local solar time for cross-comparisons; data acquired at higher phase angles have larger uncertainties.
Collapse
Affiliation(s)
- D. R. Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - A. A. Simon
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| | - D. C. Reuter
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| | - S. Ferrone
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY USA
| | - B. E. Clark
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY USA
| | - J.-Y. Li
- Planetary Science Institute, Tucson, AZ USA
| | | | | | - B. Rizk
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - D. S. Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| |
Collapse
|
10
|
Abstract
Ceres is the largest object in the main belt and it is also the most water-rich body in the inner solar system besides the Earth. The discoveries made by the Dawn Mission revealed that the composition of Ceres includes organic material, with a component of carbon globally present and also a high quantity of localized aliphatic organics in specific areas. The inferred mineralogy of Ceres indicates the long-term activity of a large body of liquid water that produced the alteration minerals discovered on its surface, including ammonia-bearing minerals. To explain the presence of ammonium in the phyllosilicates, Ceres must have accreted organic matter, ammonia, water and carbon present in the protoplanetary formation region. It is conceivable that Ceres may have also processed and transformed its own original organic matter that could have been modified by the pervasive hydrothermal alteration. The coexistence of phyllosilicates, magnetite, carbonates, salts, organics and a high carbon content point to rock–water alteration playing an important role in promoting widespread carbon occurrence.
Collapse
|
11
|
Hamilton VE, Goodrich CA, Treiman AH, Connolly HC, Zolensky ME, Shaddad MH. Meteoritic Evidence for a Ceres-sized Water-rich Carbonaceous Chondrite Parent Asteroid. NATURE ASTRONOMY 2020; 2020:350-355. [PMID: 33681472 PMCID: PMC7932045 DOI: 10.1038/s41550-020-01274-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Carbonaceous chondrite meteorites record the earliest stages of Solar System geo-logical activities and provide insight into their parent bodies' histories. Some carbonaceous chondrites are volumetrically dominated by hydrated minerals, providing evidence for low temperature and pressure aqueous alteration1. Others are dominated by anhydrous minerals and textures that indicate high temperature metamorphism in the absence of aqueous fluids1. Evidence of hydrous metamorphism at intermediate pressures and temperatures in carbonaceous chondrite parent bodies has been virtually absent. Here we show that an ungrouped, aqueously altered carbonaceous chondrite fragment (numbered 202) from the Almahata Sitta (AhS) meteorite contains an assemblage of minerals, including amphibole, that reflect fluid-assisted metamorphism at intermediate temperatures and pressures on the parent asteroid. Amphiboles are rare in carbonaceous chondrites, having only been identified previously as a trace component in Allende (CV3oxA) chondrules2. Formation of these minerals requires prolonged metamorphism in a large (~640-1800 km diameter), unknown asteroid. Because Allende and AhS 202 represent different asteroidal parent bodies, intermediate conditions may have been more widespread in the early Solar System than recognized from known carbonaceous chondrite meteorites, which are likely a biased sampling.
Collapse
Affiliation(s)
- V E Hamilton
- Department of Space Studies, Southwest Research Institute, 1050 Walnut St., #300, Boulder, CO 80302 USA
| | - C A Goodrich
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Blvd., Houston, TX 77058 USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Blvd., Houston, TX 77058 USA
| | - H C Connolly
- Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ 08028 USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 USA
- Department of Earth and Planetary Science, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024
| | - M E Zolensky
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, Texas 77058, USA
| | - M H Shaddad
- Physics Department, University of Khartoum, Khartoum 11115, Sudan
| |
Collapse
|
12
|
Simon AA, Kaplan HH, Hamilton VE, Lauretta DS, Campins H, Emery JP, Barucci MA, DellaGiustina DN, Reuter DC, Sandford SA, Golish DR, Lim LF, Ryan A, Rozitis B, Bennett CA. Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu. Science 2020; 370:science.abc3522. [PMID: 33033153 DOI: 10.1126/science.abc3522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 11/02/2022]
Abstract
Asteroid (101955) Bennu is a dark asteroid on an Earth-crossing orbit that is thought to have assembled from the fragments of an ancient collision. We use spatially resolved visible and near-infrared spectra of Bennu to investigate its surface properties and composition. In addition to a hydrated phyllosilicate band, we detect a ubiquitous 3.4-micrometer absorption feature, which we attribute to a mix of organic and carbonate materials. The shape and depth of this absorption feature vary across Bennu's surface, spanning the range seen among similar main-belt asteroids. The distribution of the absorption feature does not correlate with temperature, reflectance, spectral slope, or hydrated minerals, although some of those characteristics correlate with each other. The deepest 3.4-micrometer absorptions occur on individual boulders. The variations may be due to differences in abundance, recent exposure, or space weathering.
Collapse
Affiliation(s)
- Amy A Simon
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
| | | | | | - Dante S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Humberto Campins
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Joshua P Emery
- Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - M Antonietta Barucci
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Université de Paris, Sorbonne Université, Meudon, France
| | | | - Dennis C Reuter
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - Dathon R Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Lucy F Lim
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Andrew Ryan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Benjamin Rozitis
- School of Physical Sciences, The Open University, Milton Keynes, UK
| | - Carina A Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
DellaGiustina DN, Burke KN, Walsh KJ, Smith PH, Golish DR, Bierhaus EB, Ballouz RL, Becker TL, Campins H, Tatsumi E, Yumoto K, Sugita S, Deshapriya JDP, Cloutis EA, Clark BE, Hendrix AR, Sen A, Al Asad MM, Daly MG, Applin DM, Avdellidou C, Barucci MA, Becker KJ, Bennett CA, Bottke WF, Brodbeck JI, Connolly HC, Delbo M, de Leon J, Drouet d'Aubigny CY, Edmundson KL, Fornasier S, Hamilton VE, Hasselmann PH, Hergenrother CW, Howell ES, Jawin ER, Kaplan HH, Le Corre L, Lim LF, Li JY, Michel P, Molaro JL, Nolan MC, Nolau J, Pajola M, Parkinson A, Popescu M, Porter NA, Rizk B, Rizos JL, Ryan AJ, Rozitis B, Shultz NK, Simon AA, Trang D, Van Auken RB, Wolner CWV, Lauretta DS. Variations in color and reflectance on the surface of asteroid (101955) Bennu. Science 2020; 370:science.abc3660. [PMID: 33033157 DOI: 10.1126/science.abc3660] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/24/2020] [Indexed: 11/02/2022]
Abstract
Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. Here we present multispectral images (0.44 to 0.89 micrometers) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet region (i.e., become bluer at shorter wavelengths), then brighten in the visible to near-infrared region, leading to Bennu's moderately blue average color. Craters indicate that the time scale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages.
Collapse
Affiliation(s)
- D N DellaGiustina
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. .,Department of Geosciences, University of Arizona, Tucson, AZ, USA
| | - K N Burke
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - K J Walsh
- Southwest Research Institute, Boulder, CO, USA
| | - P H Smith
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - D R Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - R-L Ballouz
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - T L Becker
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - H Campins
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - E Tatsumi
- Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain.,Department of Earth and Planetary Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - K Yumoto
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - S Sugita
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - J D Prasanna Deshapriya
- LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique), Observatoire de Paris, Université PSL (Paris Sciences & Lettres), CNRS (Centre National de la Recherche Scientifique), Université de Paris, Sorbonne Université, 92195 Meudon, France
| | - E A Cloutis
- Department of Geography, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - B E Clark
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - A R Hendrix
- Planetary Science Institute, Tucson, AZ, USA
| | - A Sen
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - M M Al Asad
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - M G Daly
- The Centre for Research in Earth and Space Science, York University, Toronto, ON, Canada
| | - D M Applin
- Department of Geography, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - C Avdellidou
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - M A Barucci
- LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique), Observatoire de Paris, Université PSL (Paris Sciences & Lettres), CNRS (Centre National de la Recherche Scientifique), Université de Paris, Sorbonne Université, 92195 Meudon, France
| | - K J Becker
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - C A Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - W F Bottke
- Southwest Research Institute, Boulder, CO, USA
| | - J I Brodbeck
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - H C Connolly
- Department of Geology, Rowan University, Glassboro, NJ, USA
| | - M Delbo
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - J de Leon
- Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain
| | | | - K L Edmundson
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - S Fornasier
- LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique), Observatoire de Paris, Université PSL (Paris Sciences & Lettres), CNRS (Centre National de la Recherche Scientifique), Université de Paris, Sorbonne Université, 92195 Meudon, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris CEDEX 05, France
| | | | - P H Hasselmann
- LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique), Observatoire de Paris, Université PSL (Paris Sciences & Lettres), CNRS (Centre National de la Recherche Scientifique), Université de Paris, Sorbonne Université, 92195 Meudon, France
| | - C W Hergenrother
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - E S Howell
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - E R Jawin
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - H H Kaplan
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - L Le Corre
- Planetary Science Institute, Tucson, AZ, USA
| | - L F Lim
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - J Y Li
- Planetary Science Institute, Tucson, AZ, USA
| | - P Michel
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - J L Molaro
- Planetary Science Institute, Tucson, AZ, USA
| | - M C Nolan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - J Nolau
- Lockheed Martin Space, Littleton, CO, USA
| | - M Pajola
- Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Padova, Padua, Italy
| | - A Parkinson
- Department of Geography, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - M Popescu
- Astronomical Institute of the Romanian Academy, Bucharest, Romania.,Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain
| | - N A Porter
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - B Rizk
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - J L Rizos
- Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain
| | - A J Ryan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - B Rozitis
- The School of Physical Sciences, The Open University, Milton Keynes, UK
| | - N K Shultz
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - A A Simon
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - D Trang
- University of Hawai'i at Mānoa, Hawai'i Institute of Geophysics and Planetology, Honolulu, HI, USA
| | - R B Van Auken
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - C W V Wolner
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - D S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Rozitis B, Ryan AJ, Emery JP, Christensen PR, Hamilton VE, Simon AA, Reuter DC, Al Asad M, Ballouz RL, Bandfield JL, Barnouin OS, Bennett CA, Bernacki M, Burke KN, Cambioni S, Clark BE, Daly MG, Delbo M, DellaGiustina DN, Elder CM, Hanna RD, Haberle CW, Howell ES, Golish DR, Jawin ER, Kaplan HH, Lim LF, Molaro JL, Munoz DP, Nolan MC, Rizk B, Siegler MA, Susorney HCM, Walsh KJ, Lauretta DS. Asteroid (101955) Bennu's weak boulders and thermally anomalous equator. SCIENCE ADVANCES 2020; 6:eabc3699. [PMID: 33033037 PMCID: PMC7544501 DOI: 10.1126/sciadv.abc3699] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/09/2020] [Indexed: 05/18/2023]
Abstract
Thermal inertia and surface roughness are proxies for the physical characteristics of planetary surfaces. Global maps of these two properties distinguish the boulder population on near-Earth asteroid (NEA) (101955) Bennu into two types that differ in strength, and both have lower thermal inertia than expected for boulders and meteorites. Neither has strongly temperature-dependent thermal properties. The weaker boulder type probably would not survive atmospheric entry and thus may not be represented in the meteorite collection. The maps also show a high-thermal inertia band at Bennu's equator, which might be explained by processes such as compaction or strength sorting during mass movement, but these explanations are not wholly consistent with other data. Our findings imply that other C-complex NEAs likely have boulders similar to those on Bennu rather than finer-particulate regoliths. A tentative correlation between albedo and thermal inertia of C-complex NEAs may be due to relative abundances of boulder types.
Collapse
Affiliation(s)
- B Rozitis
- School of Physical Sciences, The Open University, Milton Keynes, UK.
| | - A J Ryan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - J P Emery
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, USA
| | - P R Christensen
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | | | - A A Simon
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD, USA
| | - D C Reuter
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD, USA
| | - M Al Asad
- Department of Earth, Atmospheric, and Ocean Science, University of British Columbia, Vancouver, BC, Canada
| | - R-L Ballouz
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - O S Barnouin
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - C A Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - M Bernacki
- Mines ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, Sophia Antipolis Cedex, France
| | - K N Burke
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - S Cambioni
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - B E Clark
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - M G Daly
- The Centre for Research in Earth and Space Science, York University, Toronto, ON, Canada
| | - M Delbo
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - D N DellaGiustina
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - C M Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - R D Hanna
- Jackson School of Geosciences, University of Texas, Austin, TX, USA
| | - C W Haberle
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - E S Howell
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - D R Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - E R Jawin
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - H H Kaplan
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD, USA
| | - L F Lim
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD, USA
| | - J L Molaro
- Planetary Science Institute, Tucson, AZ, USA
| | - D Pino Munoz
- Mines ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, Sophia Antipolis Cedex, France
| | - M C Nolan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - B Rizk
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - M A Siegler
- Planetary Science Institute, Tucson, AZ, USA
| | - H C M Susorney
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - K J Walsh
- Southwest Research Institute, Boulder, CO, USA
| | - D S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
|