1
|
Li Z, Liu Z, Yu D, Yao Q, Ma W, Zhang C, Fan J, Peng X. Next-generation red ultra-bright fluorescent dyes for nuclear imaging and peripheral blood leukocytes sorting. Chem Sci 2024:d4sc04848b. [PMID: 39371456 PMCID: PMC11451967 DOI: 10.1039/d4sc04848b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024] Open
Abstract
The nucleus is a membrane-bound organelle in eukaryotic cells and plays a crucial role in cellular processes. Visualizing nuclear morphology is essential for investigating nuclear functions and understanding the relationship between nuclear morphological alterations and multiple diseases. Fluorescent dyes have been developed to visualize nuclear morphology, but the selection of red nuclear-labeling fluorescent dyes remains limited (high price, unknown structure, or high toxicity). Herein, we have developed a red ultra-bright nuclear-targeted dye, BPC1, through the engineering of unsymmetrical cyanine dyes derived from D-π-A systems. BPC1 exhibits ultrahigh fluorescence brightness and exceptional cell permeability, and selectively stains nuclear DNA rather than mitochondrial DNA, enabling the visualization of the nucleus in diverse cells at extremely low doses (100 nM) and laser power (0.8 μW). Furthermore, BPC1 is utilized for nuclear staining in blood cells, aiding in the distinct visualization of the white blood cell nucleus and facilitating the identification and enumeration of various leukocyte types. Our study implies considerable commercial potential for BPC1 and underscores its capacity to serve as a powerful tool in life sciences and cell biology research.
Collapse
Affiliation(s)
- Zipeng Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Zheng Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Ding Yu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wanying Ma
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Changyu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
- Liaoning Binhai Laboratory Dalian 116023 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Liaoning Binhai Laboratory Dalian 116023 China
| |
Collapse
|
2
|
Ruef N, Martínez Magdaleno J, Ficht X, Purvanov V, Palayret M, Wissmann S, Pfenninger P, Stolp B, Thelen F, Barreto de Albuquerque J, Germann P, Sharpe J, Abe J, Legler DF, Stein JV. Exocrine gland-resident memory CD8 + T cells use mechanosensing for tissue surveillance. Sci Immunol 2023; 8:eadd5724. [PMID: 38134242 DOI: 10.1126/sciimmunol.add5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.
Collapse
Affiliation(s)
- Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Matthieu Palayret
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Petra Pfenninger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bettina Stolp
- Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Flavian Thelen
- Department of Medical Oncology and Hematology, University of Zürich and University Hospital Zürich, 8091 Zürich, Switzerland
| | | | - Philipp Germann
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
- Institucio' Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, 3011 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Donnaloja F, Raimondi MT, Messa L, Barzaghini B, Carnevali F, Colombo E, Mazza D, Martinelli C, Boeri L, Rey F, Cereda C, Osellame R, Cerullo G, Carelli S, Soncini M, Jacchetti E. 3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells. APL Bioeng 2023; 7:036112. [PMID: 37692376 PMCID: PMC10491463 DOI: 10.1063/5.0153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Carnevali
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milan, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases, “V. Buzzi” Children's Hospital, 20154 Milan, Italy
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Das UN. Infection, Inflammation, and Immunity in Sepsis. Biomolecules 2023; 13:1332. [PMID: 37759732 PMCID: PMC10526286 DOI: 10.3390/biom13091332] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis is triggered by microbial infection, injury, or even major surgery. Both innate and adaptive immune systems are involved in its pathogenesis. Cytoplasmic presence of DNA or RNA of the invading organisms or damaged nuclear material (in the form of micronucleus in the cytoplasm) in the host cell need to be eliminated by various nucleases; failure to do so leads to the triggering of inflammation by the cellular cGAS-STING system, which induces the release of IL-6, TNF-α, and IFNs. These cytokines activate phospholipase A2 (PLA2), leading to the release of polyunsaturated fatty acids (PUFAs), gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), which form precursors to various pro- and anti-inflammatory eicosanoids. On the other hand, corticosteroids inhibit PLA2 activity and, thus, suppress the release of GLA, AA, EPA, and DHA. PUFAs and their metabolites have a negative regulatory action on the cGAS-STING pathway and, thus, suppress the inflammatory process and initiate inflammation resolution. Pro-inflammatory cytokines and corticosteroids (corticosteroids > IL-6, TNF-α) suppress desaturases, which results in decreased formation of GLA, AA, and other PUFAs from the dietary essential fatty acids (EFAs). A deficiency of GLA, AA, EPA, and DHA results in decreased production of anti-inflammatory eicosanoids and failure to suppress the cGAS-STING system. This results in the continuation of the inflammatory process. Thus, altered concentrations of PUFAs and their metabolites, and failure to suppress the cGAS-STING system at an appropriate time, leads to the onset of sepsis. Similar abnormalities are also seen in radiation-induced inflammation. These results imply that timely administration of GLA, AA, EPA, and DHA, in combination with corticosteroids and anti-IL-6 and anti-TNF-α antibodies, may be of benefit in mitigating radiation-induced damage and sepsis.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA
| |
Collapse
|
5
|
Xue Y, Lin L, Li Q, Liu K, Hu M, Ye J, Cao J, Zhai J, Zheng F, Wang Y, Zhang T, Du L, Gao C, Wang G, Wang X, Qin J, Liao X, Kong X, Sorokin L, Shi Y, Wang Y. SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201949. [PMID: 36507562 PMCID: PMC9896058 DOI: 10.1002/advs.202201949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Niche for stem cells profoundly influences their maintenance and fate during tissue homeostasis and pathological disorders; however, the underlying mechanisms and tissue-specific features remain poorly understood. Here, it is reported that fatty acid desaturation catabolized by stearoyl-coenzyme A desaturase 1 (SCD1) regulates hair follicle stem cells (HFSCs) and hair growth by maintaining the bulge, niche for HFSCs. Scd1 deletion in mice results in abnormal hair growth, an effect exerted directly on keratin K14+ keratinocytes rather than on HFSCs. Mechanistically, Scd1 deficiency impairs the level of integrin α6β4 complex and thus the assembly of hemidesmosomes (HDs). The disruption of HDs allows the aberrant activation of focal adhesion kinase and PI3K in K14+ keratinocytes and subsequently their differentiation and proliferation. The overgrowth of basal keratinocytes results in downward extension of the outer root sheath and interruption of bulge formation. Then, inhibition of PI3K signaling in Scd1-/- mice normalizes the bulge, HFSCs, and hair growth. Additionally, supplementation of oleic acid to Scd1-/- mice reestablishes HDs and the homeostasis of bulge niche, and restores hair growth. Thus, SCD1 is critical in regulating hair growth through stabilizing HDs in basal keratinocytes and thus sustaining bulge for HFSC residence and periodic activity.
Collapse
Affiliation(s)
- Yueqing Xue
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Tao Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Guan Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xinhua Liao
- School of Life SciencesShanghai UniversityShanghai200444China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Lydia Sorokin
- Institute of Physiological Chemistry and PathobiochemistryCells in Motion Interfaculty Centre (CIMIC)University of MünsterD‐48149MünsterGermany
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- The Third Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouJiangsu215123China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
6
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
7
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
8
|
|
9
|
Abstract
How cells sense their physical microenvironment remains incompletely understood. In two recent Science articles, Lomakin et al. (2020) and Venturini et al. (2020) demonstrate that progressive nuclear deformation associated with cellular confinement triggers intracellular events that promote cell contractility and migration, revealing the nucleus to serve as a central mechanosensor.
Collapse
Affiliation(s)
- Joseph T Long
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci 2021; 22:E830. [PMID: 33467648 PMCID: PMC7830719 DOI: 10.3390/ijms22020830] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Teresina De Iorio
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| |
Collapse
|