1
|
Seczynska M, Steinmetz LM. Genome recombination on demand. Science 2025; 387:477-478. [PMID: 39883784 DOI: 10.1126/science.adt0750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Large genome rearrangements in mammalian cells can be generated at scale.
Collapse
Affiliation(s)
- Marta Seczynska
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lars M Steinmetz
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
2
|
Koeppel J, Ferreira R, Vanderstichele T, Riedmayr LM, Peets EM, Girling G, Weller J, Murat P, Liberante FG, Ellis T, Church GM, Parts L. Randomizing the human genome by engineering recombination between repeat elements. Science 2025; 387:eado3979. [PMID: 39883775 DOI: 10.1126/science.ado3979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/09/2024] [Indexed: 02/01/2025]
Abstract
We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell. We tracked these rearrangements over time to measure selection pressures, finding a preference for shorter variants that avoided essential genes. We characterized 29 clones with multiple rearrangements, finding an impact of deletions on expression of genes in the variant but not on nearby genes. This genome-scrambling strategy enables large deletions, sequence relocations, and the insertion of regulatory elements to explore genome dispensability and organization.
Collapse
Affiliation(s)
| | - Raphael Ferreira
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | - Lisa Maria Riedmayr
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | | | | | | | | - Tom Ellis
- Wellcome Sanger Institute, Hinxton, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - George McDonald Church
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts, USA
- Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
3
|
Hoffmann SA. YeastFab Cloning of Toxic Genes and Protein Expression Optimization in Yeast. Methods Mol Biol 2025; 2850:435-450. [PMID: 39363086 DOI: 10.1007/978-1-0716-4220-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
YeastFab is a Golden Gate-based cloning standard and parts repository. It is designed for modular, hierarchical assembly of transcription units and multi-gene assemblies for expression in Saccharomyces cerevisiae. This makes it a suitable toolbox to optimize the expression strength of heterologous genes in yeast. When cloning heterologous coding sequences into YeastFab vectors, in several cases we have observed toxicity to the cloning host Escherichia coli. The provided protocol details how to clone such toxic genes from multiple synthetic DNA fragments while adhering to the YeastFab standard. The presented cloning strategy includes a C-terminal FLAG tag that allows screening for constructs with a desired protein expression in yeast by western blot. The design allows scarlessly removing the tag through a Golden Gate reaction to facilitate cloning of expression constructs with the native, untagged transgene.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Yang H, Gong C, Wu Y, Xie X, Chen Y, Li Z, Shi Q, Liu J, Gao N, He B, Wang C, Liao Q, Bai J, Xiao Y. LncRNA SNHG1 facilitates colorectal cancer cells metastasis by recruiting HNRNPD protein to stabilize SERPINA3 mRNA. Cancer Lett 2024; 604:217217. [PMID: 39233042 DOI: 10.1016/j.canlet.2024.217217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Metastasis continues to negatively impact individuals diagnosed with colorectal cancer (CRC). Research has revealed the important role of long noncoding RNAs (lncRNAs) in CRC metastasis, but the underlying mechanisms remain unclear. Here, we revealed that the lncRNA small nucleolar RNA host gene 1 (SNHG1) is expressed at higher levels in metastatic CRC tissues than in primary CRC tissues, and that high lncRNA SNHG1 expression indicates poor patient outcomes. We found that lncRNA SNHG1 promotes the migration and invasion of tumor cells both in vivo and in vitro. Moreover, lncRNA SNHG1 increases serpin family A member 3 (SERPINA3) mRNA stability by interacting with the heterogeneous nuclear ribonucleoprotein D (HNRNPD) protein, and subsequently upregulates SERPINA3 expression. Moreover, HNRNPD and SERPINA3 reversed the effects of lncRNA SNHG1 knockdown on CRC cell metastasis. In conclusion, we report that the lncRNA SNHG1 recruits HNRNPD, in turn upregulating SERPINA3 expression and ultimately facilitating CRC cell migration and invasion. Targeting the lncRNA SNHG1/HNRNPD/SERPINA3 signaling pathway might be a therapeutic option for preventing CRC metastasis.
Collapse
Affiliation(s)
- Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuyun Wu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiuyue Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, 530021, China
| | - Jiao Liu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Liaoning, 110003, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Bing He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chao Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jianying Bai
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
5
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Schindler D, Walker RSK, Cai Y. Methodological advances enabled by the construction of a synthetic yeast genome. CELL REPORTS METHODS 2024; 4:100761. [PMID: 38653205 PMCID: PMC11046031 DOI: 10.1016/j.crmeth.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The international Synthetic Yeast Project (Sc2.0) aims to construct the first synthetic designer eukaryote genome. Over the past few years, the Sc2.0 consortium has achieved several significant milestones by synthesizing and characterizing all 16 nuclear chromosomes of the yeast Saccharomyces cerevisiae, as well as a 17thde novo neochromosome containing all nuclear tRNA genes. In this commentary, we discuss the recent technological advances achieved in this project and provide a perspective on how they will impact the emerging field of synthetic genomics in the future.
Collapse
Affiliation(s)
- Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35032 Marburg, Germany.
| | - Roy S K Walker
- School of Natural Sciences and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
7
|
Xi S, Nguyen T, Murray S, Lorenz P, Mellor J. Size fractionated NET-Seq reveals a conserved architecture of transcription units around yeast genes. Yeast 2024; 41:222-241. [PMID: 38433440 DOI: 10.1002/yea.3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Collapse
Affiliation(s)
- Shidong Xi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Tania Nguyen
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Struan Murray
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Phil Lorenz
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Chen LG, Lan T, Zhang S, Zhao M, Luo G, Gao Y, Zhang Y, Du Q, Lu H, Li B, Jiao B, Hu Z, Ma Y, Zhao Q, Wang Y, Qian W, Dai J, Jiao Y. A designer synthetic chromosome fragment functions in moss. NATURE PLANTS 2024; 10:228-239. [PMID: 38278952 DOI: 10.1038/s41477-023-01595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 01/28/2024]
Abstract
Rapid advances in DNA synthesis techniques have enabled the assembly and engineering of viral and microbial genomes, presenting new opportunities for synthetic genomics in multicellular eukaryotic organisms. These organisms, characterized by larger genomes, abundant transposons and extensive epigenetic regulation, pose unique challenges. Here we report the in vivo assembly of chromosomal fragments in the moss Physcomitrium patens, producing phenotypically virtually wild-type lines in which one-third of the coding region of a chromosomal arm is replaced by redesigned, chemically synthesized fragments. By eliminating 55.8% of a 155 kb endogenous chromosomal region, we substantially simplified the genome without discernible phenotypic effects, implying that many transposable elements may minimally impact growth. We also introduced other sequence modifications, such as PCRTag incorporation, gene locus swapping and stop codon substitution. Despite these substantial changes, the complex epigenetic landscape was normally established, albeit with some three-dimensional conformation alterations. The synthesis of a partial multicellular eukaryotic chromosome arm lays the foundation for the synthetic moss genome project (SynMoss) and paves the way for genome synthesis in multicellular organisms.
Collapse
Affiliation(s)
- Lian-Ge Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Tianlong Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Shuo Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengkai Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guangyu Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingwei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Houze Lu
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Bimeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingke Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiao Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Junbiao Dai
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
9
|
Coradini ALV, Ville CN, Krieger ZA, Roemer J, Hull C, Yang S, Lusk DT, Ehrenreich IM. Building synthetic chromosomes from natural DNA. Nat Commun 2023; 14:8337. [PMID: 38123566 PMCID: PMC10733283 DOI: 10.1038/s41467-023-44112-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
De novo chromosome synthesis is costly and time-consuming, limiting its use in research and biotechnology. Building synthetic chromosomes from natural components is an unexplored alternative with many potential applications. In this paper, we report CReATiNG (Cloning, Reprogramming, and Assembling Tiled Natural Genomic DNA), a method for constructing synthetic chromosomes from natural components in yeast. CReATiNG entails cloning segments of natural chromosomes and then programmably assembling them into synthetic chromosomes that can replace the native chromosomes in cells. We use CReATiNG to synthetically recombine chromosomes between strains and species, to modify chromosome structure, and to delete many linked, non-adjacent regions totaling 39% of a chromosome. The multiplex deletion experiment reveals that CReATiNG also enables recovery from flaws in synthetic chromosome design via recombination between a synthetic chromosome and its native counterpart. CReATiNG facilitates the application of chromosome synthesis to diverse biological problems.
Collapse
Affiliation(s)
- Alessandro L V Coradini
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Christopher Ne Ville
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zachary A Krieger
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joshua Roemer
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Cara Hull
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shawn Yang
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel T Lusk
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
10
|
Jiang S, Luo Z, Wu J, Yu K, Zhao S, Cai Z, Yu W, Wang H, Cheng L, Liang Z, Gao H, Monti M, Schindler D, Huang L, Zeng C, Zhang W, Zhou C, Tang Y, Li T, Ma Y, Cai Y, Boeke JD, Zhao Q, Dai J. Building a eukaryotic chromosome arm by de novo design and synthesis. Nat Commun 2023; 14:7886. [PMID: 38036514 PMCID: PMC10689750 DOI: 10.1038/s41467-023-43531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The genome of an organism is inherited from its ancestor and continues to evolve over time, however, the extent to which the current version could be altered remains unknown. To probe the genome plasticity of Saccharomyces cerevisiae, here we replace the native left arm of chromosome XII (chrXIIL) with a linear artificial chromosome harboring small sets of reconstructed genes. We find that as few as 12 genes are sufficient for cell viability, whereas 25 genes are required to recover the partial fitness defects observed in the 12-gene strain. Next, we demonstrate that these genes can be reconstructed individually using synthetic regulatory sequences and recoded open-reading frames with a "one-amino-acid-one-codon" strategy to remain functional. Finally, a synthetic neochromsome with the reconstructed genes is assembled which could substitute chrXIIL for viability. Together, our work not only highlights the high plasticity of yeast genome, but also illustrates the possibility of making functional eukaryotic chromosomes from entirely artificial sequences.
Collapse
Grants
- National Natural Science Foundation of China (31725002), Shenzhen Science and Technology Program (KQTD20180413181837372), Guangdong Provincial Key Laboratory of Synthetic Genomics (2019B030301006),Bureau of International Cooperation,Chinese Academy of Sciences (172644KYSB20180022) and Shenzhen Outstanding Talents Training Fund.
- National Key Research and Development Program of China (2018YFA0900100),National Natural Science Foundation of China (31800069),Guangdong Basic and Applied Basic Research Foundation (2023A1515030285)
- National Key Research and Development Program of China (2018YFA0900100), National Natural Science Foundation of China (31800082 and 32122050),Guangdong Natural Science Funds for Distinguished Young Scholar (2021B1515020060)
- UK Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/M005690/1, BB/P02114X/1 and BB/W014483/1, and a Volkswagen Foundation “Life? Initiative” Grant (Ref. 94 771)
- US NSF grants MCB-1026068, MCB-1443299, MCB-1616111 and MCB-1921641
Collapse
Affiliation(s)
- Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kang Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelin Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Li Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Marco Monti
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Linsen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Chun Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwei Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianyi Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yizhi Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Qiao Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Zhao Y, Coelho C, Hughes AL, Lazar-Stefanita L, Yang S, Brooks AN, Walker RSK, Zhang W, Lauer S, Hernandez C, Cai J, Mitchell LA, Agmon N, Shen Y, Sall J, Fanfani V, Jalan A, Rivera J, Liang FX, Bader JS, Stracquadanio G, Steinmetz LM, Cai Y, Boeke JD. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 2023; 186:5220-5236.e16. [PMID: 37944511 DOI: 10.1016/j.cell.2023.09.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/03/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Camila Coelho
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sandy Yang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, the University of Edinburgh, Edinburgh EH9 3BF
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Cindy Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Yue Shen
- BGI, Shenzhen, Beishan, Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI, Shenzhen, Shenzhen 518120, China
| | - Joseph Sall
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Viola Fanfani
- School of Biological Sciences, the University of Edinburgh, Edinburgh EH9 3BF
| | - Anavi Jalan
- Department of Biology, New York University, New York, NY, USA
| | - Jordan Rivera
- Department of Biology, New York University, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, NY 11201, USA.
| |
Collapse
|
12
|
McCulloch LH, Sambasivam V, Hughes AL, Annaluru N, Ramalingam S, Fanfani V, Lobzaev E, Mitchell LA, Cai J, Jiang H, LaCava J, Taylor MS, Bishai WR, Stracquadanio G, Steinmetz LM, Bader JS, Zhang W, Boeke JD, Chandrasegaran S. Consequences of a telomerase-related fitness defect and chromosome substitution technology in yeast synIX strains. CELL GENOMICS 2023; 3:100419. [PMID: 38020974 PMCID: PMC10667316 DOI: 10.1016/j.xgen.2023.100419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
We describe the complete synthesis, assembly, debugging, and characterization of a synthetic 404,963 bp chromosome, synIX (synthetic chromosome IX). Combined chromosome construction methods were used to synthesize and integrate its left arm (synIXL) into a strain containing previously described synIXR. We identified and resolved a bug affecting expression of EST3, a crucial gene for telomerase function, producing a synIX strain with near wild-type fitness. To facilitate future synthetic chromosome consolidation and increase flexibility of chromosome transfer between distinct strains, we combined chromoduction, a method to transfer a whole chromosome between two strains, with conditional centromere destabilization to substitute a chromosome of interest for its native counterpart. Both steps of this chromosome substitution method were efficient. We observed that wild-type II tended to co-transfer with synIX and was co-destabilized with wild-type IX, suggesting a potential gene dosage compensation relationship between these chromosomes.
Collapse
Affiliation(s)
- Laura H. McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Vijayan Sambasivam
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amanda L. Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Narayana Annaluru
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sivaprakash Ramalingam
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Leslie A. Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY 10065, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY 10065, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin S. Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William R. Bishai
- Department of Medicine/Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Lars M. Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Srinivasan Chandrasegaran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Tombácz D, Torma G, Gulyás G, Fülöp Á, Dörmő Á, Prazsák I, Csabai Z, Mizik M, Hornyák Á, Zádori Z, Kakuk B, Boldogkői Z. Hybrid sequencing discloses unique aspects of the transcriptomic architecture in equid alphaherpesvirus 1. Heliyon 2023; 9:e17716. [PMID: 37449092 PMCID: PMC10336594 DOI: 10.1016/j.heliyon.2023.e17716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
This study employed both short-read sequencing (SRS, Illumina) and long-read sequencing (LRS Oxford Nanopore Technologies) platforms to conduct a comprehensive analysis of the equid alphaherpesvirus 1 (EHV-1) transcriptome. The study involved the annotation of canonical mRNAs and their transcript variants, encompassing transcription start site (TSS) and transcription end site (TES) isoforms, in addition to alternative splicing forms. Furthermore, the study revealed the presence of numerous non-coding RNA (ncRNA) molecules, including intergenic and antisense transcripts, produced by EHV-1. An intriguing finding was the abundant production of chimeric transcripts, some of which potentially encode fusion polypeptides. Moreover, EHV-1 exhibited a greater incidence of transcriptional overlaps and splicing compared to related viruses. It is noteworthy that many genes have their unique TESs along with the co-terminal transcription ends, a characteristic scarcely seen in other alphaherpesviruses. The study also identified transcripts that overlap the replication origins of the virus. Moreover, a novel ncRNA, referred to as NOIR, was found to intersect with the 5'-ends of longer transcript isoform specified by the major transactivator genes ORF64 and ORF65, surrounding the OriL. These findings together imply the existence of a key regulatory mechanism that governs both transcription and replication through, among others, a process that involves interference between the DNA and RNA synthesis machineries.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ákos Hornyák
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Advancing Desulfurization in the Model Biocatalyst Rhodococcus qingshengii IGTS8 via an In Locus Combinatorial Approach. Appl Environ Microbiol 2023; 89:e0197022. [PMID: 36688659 PMCID: PMC9973023 DOI: 10.1128/aem.01970-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.
Collapse
|
16
|
Zhang H, Xiong Y, Xiao W, Wu Y. Investigation of Genome Biology by Synthetic Genome Engineering. Bioengineering (Basel) 2023; 10:271. [PMID: 36829765 PMCID: PMC9952402 DOI: 10.3390/bioengineering10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Synthetic genomes were designed based on an understanding of natural genomic information, offering an opportunity to engineer and investigate biological systems on a genome-wide scale. Currently, the designer version of the M. mycoides genome and the E. coli genome, as well as most of the S. cerevisiae genome, have been synthesized, and through the cycles of design-build-test and the following engineering of synthetic genomes, many fundamental questions of genome biology have been investigated. In this review, we summarize the use of synthetic genome engineering to explore the structure and function of genomes, and highlight the unique values of synthetic genomics.
Collapse
Affiliation(s)
- Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Lui KH, Geisberg JV, Moqtaderi Z, Struhl K. 3' Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles. Mol Cell Biol 2022; 42:e0024422. [PMID: 35972270 PMCID: PMC9476944 DOI: 10.1128/mcb.00244-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/15/2023] Open
Abstract
The 3' ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3' untranslated regions (3' UTRs) but rarely within coding regions. An individual gene can yield many 3'-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3' UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3' UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3'-UTR chimeric genes indicate that the poly(A) profile is determined by the 3' UTR. Thus, 3' UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3'-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3' UTRs.
Collapse
Affiliation(s)
- Kai Hin Lui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Brophy JAN, Magallon KJ, Duan L, Zhong V, Ramachandran P, Kniazev K, Dinneny JR. Synthetic genetic circuits as a means of reprogramming plant roots. Science 2022; 377:747-751. [PMID: 35951698 DOI: 10.1126/science.abo4326] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The shape of a plant's root system influences its ability to reach essential nutrients in the soil and to acquire water during drought. Progress in engineering plant roots to optimize water and nutrient acquisition has been limited by our capacity to design and build genetic programs that alter root growth in a predictable manner. We developed a collection of synthetic transcriptional regulators for plants that can be compiled to create genetic circuits. These circuits control gene expression by performing Boolean logic operations and can be used to predictably alter root structure. This work demonstrates the potential of synthetic genetic circuits to control gene expression across tissues and reprogram plant growth.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Lina Duan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Kiril Kniazev
- Department of Biology, Stanford University, Stanford, CA, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
Neighbourly modulation of transcript isoforms. Nat Rev Genet 2022; 23:264. [DOI: 10.1038/s41576-022-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|